5 datasets found
  1. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  2. q

    Large Datasets in R - Plant Phenology & Temperature Data from NEON

    • qubeshub.org
    Updated May 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg (2018). Large Datasets in R - Plant Phenology & Temperature Data from NEON [Dataset]. http://doi.org/10.25334/Q4DQ3F
    Explore at:
    Dataset updated
    May 10, 2018
    Dataset provided by
    QUBES
    Authors
    Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg
    Description

    This module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.

  3. J & r designs studio inc USA Import & Buyer Data

    • seair.co.in
    Updated Oct 4, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim (2018). J & r designs studio inc USA Import & Buyer Data [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Oct 4, 2018
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  4. J r design studio USA Import & Buyer Data

    • seair.co.in
    Updated Nov 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim (2016). J r design studio USA Import & Buyer Data [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Nov 20, 2016
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  5. Z

    [Dataset] Does Volunteer Engagement Pay Off? An Analysis of User...

    • data.niaid.nih.gov
    • recerca.uoc.edu
    Updated Nov 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolás Felipe Gutiérrez-Páez (2022). [Dataset] Does Volunteer Engagement Pay Off? An Analysis of User Participation in Online Citizen Science Projects [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7357746
    Explore at:
    Dataset updated
    Nov 28, 2022
    Dataset provided by
    Simon Krukowski
    H. Ulrich Hoppe
    Ishari Amarasinghe
    Nicolás Felipe Gutiérrez-Páez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explanation/Overview:

    Corresponding dataset for the analyses and results achieved in the CS Track project in the research line on participation analyses, which is also reported in the publication "Does Volunteer Engagement Pay Off? An Analysis of User Participation in Online Citizen Science Projects", a conference paper for the conference CollabTech 2022: Collaboration Technologies and Social Computing and published as part of the Lecture Notes in Computer Science book series (LNCS,volume 13632) here. The usernames have been anonymised.

    Purpose:

    The purpose of this dataset is to provide the basis to reproduce the results reported in the associated deliverable, and in the above-mentioned publication. As such, it does not represent raw data, but rather files that already include certain analysis steps (like calculated degrees or other SNA-related measures), ready for analysis, visualisation and interpretation with R.

    Relatedness:

    The data of the different projects was derived from the forums of 7 Zooniverse projects based on similar discussion board features. The projects are: 'Galaxy Zoo', 'Gravity Spy', 'Seabirdwatch', 'Snapshot Wisconsin', 'Wildwatch Kenya', 'Galaxy Nurseries', 'Penguin Watch'.

    Content:

    In this Zenodo entry, several files can be found. The structure is as follows (files and folders and descriptions).

    corresponding_calculations.html

    Quarto-notebook to view in browser

    corresponding_calculations.qmd

    Quarto-notebook to view in RStudio

    assets

    data

    annotations

    annotations.csv

    List of annotations made per day for each of the analysed projects

    comments

    comments.csv

    Total list of comments with several data fields (i.e., comment id, text, reply_user_id)

    rolechanges

    478_rolechanges.csv

    List of roles per user to determine number of role changes

    1104_rolechanges.csv

    ...

    ...

    totalnetworkdata

    Edges

    478_edges.csv

    Network data (edge set) for the given projects (without time slices)

    1104_edges.csv

    ...

    ...

    Nodes

    478_nodes.csv

    Network data (node set) for the given projects (without time slices)

    1104_nodes.csv

    ...

    ...

    trajectories

    Network data (edge and node sets) for the given projects and all time slices (Q1 2016 - Q4 2021)

    478

    Edges

    edges_4782016_q1.csv

    edges_4782016_q2.csv

    edges_4782016_q3.csv

    edges_4782016_q4.csv

    ...

    Nodes

    nodes_4782016_q1.csv

    nodes_4782016_q4.csv

    nodes_4782016_q3.csv

    nodes_4782016_q2.csv

    ...

    1104

    Edges

    ...

    Nodes

    ...

    ...

    scripts

    datavizfuncs.R

    script for the data visualisation functions, automatically executed from within corresponding_calculations.qmd

    import.R

    script for the import of data, automatically executed from within corresponding_calculations.qmd

    corresponding_calculations_files

    files for the html/qmd view in the browser/RStudio

    Grouping:

    The data is grouped according to given criteria (e.g., project_title or time). Accordingly, the respective files can be found in the data structure

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1

Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research

Explore at:
txtAvailable download formats
Dataset updated
Dec 4, 2023
Dataset provided by
figshare
Authors
Kingsley Okoye; Samira Hosseini
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

Search
Clear search
Close search
Google apps
Main menu