This is STATA software code for analysis on publicly available NHANES data
This package contains two files designed to help read individual level DHS data into Stata. The first file addresses the problem that versions of Stata before Version 7/SE will read in only up to 2047 variables and most of the individual files have more variables than that. The file will read in the .do, .dct and .dat file and output new .do and .dct files with only a subset of the variables specified by the user. The second file deals with earlier DHS surveys in which .do and .dct file do not exist and only .sps and .sas files are provided. The file will read in the .sas and .sps files and output a .dct and .do file. If necessary the first file can then be run again to select a subset of variables.
Database of the nation''s substance abuse and mental health research data providing public use data files, file documentation, and access to restricted-use data files to support a better understanding of this critical area of public health. The goal is to increase the use of the data to most accurately understand and assess substance abuse and mental health problems and the impact of related treatment systems. The data include the U.S. general and special populations, annual series, and designs that produce nationally representative estimates. Some of the data acquired and archived have never before been publicly distributed. Each collection includes survey instruments (when provided), a bibliography of related literature, and related Web site links. All data may be downloaded free of charge in SPSS, SAS, STATA, and ASCII formats and most studies are available for use with the online data analysis system. This system allows users to conduct analyses ranging from cross-tabulation to regression without downloading data or relying on other software. Another feature, Quick Tables, provides the ability to select variables from drop down menus to produce cross-tabulations and graphs that may be customized and cut and pasted into documents. Documentation files, such as codebooks and questionnaires, can be downloaded and viewed online.
https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBLhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/GV8NBL
The NATCOOP project set out to study how nature shapes the preferences and incentives of economic agents and how this in turn affects common-pool resource management. Imagine a group of fishermen targeting a species that requires a lot of teamwork to harvest. Do these fishers become more social over time compared to fishers that work in a more solitary manner? If so, does this have implications for how the fishery should be managed? To study this, the NATCOOP team travelled to Chile and Tanzania and collected data using surveys and economic experiments. These two very different countries have a large population of small-scale fishermen, and both host several distinct types of fisheries. Over the course of five field trips, the project team surveyed more than 2500 fishermen with each field trip contributing to the main research question by measuring fishermen’s preferences for cooperation and risk. Additionally, each fieldtrip aimed to answer another smaller research question that was either focused on risk taking or cooperation behavior in the fisheries. The data from both surveys and experiments are now publicly available and can be freely studied by other researchers, resource managers, or interested citizens. Overall, the NATCOOP dataset contains participants’ responses to a plethora of survey questions and their actions during incentivized economic experiments. It is available in both the .dta and .csv format, and its use is recommended with statistical software such as R or Stata. For those unaccustomed with statistical analysis, we included a video tutorial on how to use the data set in the open-source program R.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
It is a widely accepted fact that evolving software systems change and grow. However, it is less well-understood how change is distributed over time, specifically in object oriented software systems. The patterns and techniques used to measure growth permit developers to identify specific releases where significant change took place as well as to inform them of the longer term trend in the distribution profile. This knowledge assists developers in recording systemic and substantial changes to a release, as well as to provide useful information as input into a potential release retrospective. However, these analysis methods can only be applied after a mature release of the code has been developed. But in order to manage the evolution of complex software systems effectively, it is important to identify change-prone classes as early as possible. Specifically, developers need to know where they can expect change, the likelihood of a change, and the magnitude of these modifications in order to take proactive steps and mitigate any potential risks arising from these changes. Previous research into change-prone classes has identified some common aspects, with different studies suggesting that complex and large classes tend to undergo more changes and classes that changed recently are likely to undergo modifications in the near future. Though the guidance provided is helpful, developers need more specific guidance in order for it to be applicable in practice. Furthermore, the information needs to be available at a level that can help in developing tools that highlight and monitor evolution prone parts of a system as well as support effort estimation activities. The specific research questions that we address in this chapter are: (1) What is the likelihood that a class will change from a given version to the next? (a) Does this probability change over time? (b) Is this likelihood project specific, or general? (2) How is modification frequency distributed for classes that change? (3) What is the distribution of the magnitude of change? Are most modifications minor adjustments, or substantive modifications? (4) Does structural complexity make a class susceptible to change? (5) Does popularity make a class more change-prone? We make recommendations that can help developers to proactively monitor and manage change. These are derived from a statistical analysis of change in approximately 55000 unique classes across all projects under investigation. The analysis methods that we applied took into consideration the highly skewed nature of the metric data distributions. The raw metric data (4 .txt files and 4 .log files in a .zip file measuring ~2MB in total) is provided as a comma separated values (CSV) file, and the first line of the CSV file contains the header. A detailed output of the statistical analysis undertaken is provided as log files generated directly from Stata (statistical analysis software).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Antenatal care (ANC) is the care given to pregnant by qualified medical experts in order to guarantee the optimal health conditions for the mother and the unborn child during pregnancy. Four or fewer antenatal care (ANC) visits are strongly linked to maternal and perinatal death. Because of this, the World Health Organization created a new model known as minimum of eight antenatal care (ANC8+) contact. This study aims to focus on the current antenatal care contact which not previously addressed. Therefore, the aim of this to investigate time to first antenatal care contact and its predictors among pregnant women at Bishoftu General Hospital 2023/24Methods: An institutional-based cross-sectional study design was conducted among 347 study participants which was selected by systematic random sampling method. The data was collected using pretested, structured questionnaires. Data was entered into Epi Data version 4.6 and analyzed using STATA 15. Descriptive summary statistics like median survival time, Kaplan Meier survival curve, and Log-rank test were computed. Bivariate and multivariable Weibull regresion models were fitted to identify the time to first antenatal care contact and predictors. A hazard ratio with a 95% confidence interval was calculated and p-values < 0.05 were considered statistically significantEthical approval and informed consentEthical clearance was obtained from an institutional Research Ethics Review Board (IRB) of the University of Arsi University (with Reference number, A/CHS/18/2023). In addition, a letter of ethical approval was sent to Bishoftu General Hospital to be obtained from the hospital’s administrators. Informed, voluntary, and verbal were obtained from the head of the hospital and mothers. There are no study participants under the age of 18 years. Before conducting the interviews, information was given to the participants, and were assured of voluntary participation, confidentiality, and freedom to withdraw from the study at any time. The nature and significance of the study were explained to the participantsData collection tool and proceduresTo ensure the quality of data at the beginning, a data collection questionnaire was pre-tested on 5% of the calculated sample size at Chelelaka Health Center and necessary modifications will be made based on gaps identified in the questionnaire. Any error found during the process of checking will be corrected and modifications will be made to the final version of the data abstraction format. Training will be given to data collectors and supervisors for 01 days before the actual data collection task on the already existing records, half-day theoretical and half-day practical training. Data quality will be controlled by designing the proper data collection materials, through continuous supervision. All completed data collection forms will be examined for completeness and consistency during data management, storage, cleaning, and analysis. The data will be entered and cleaned by the principal investigator before analysis. Midwives, who are working in the maternity ward, will collect the data. The principal investigator of the study will control the overall activity.
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Methods
Please see description in manuscript & supplementary information.
This STATA program calculates CFI for each patient from analytic data files containing information on patient identifiers, ICD-9-CM diagnosis codes (version 32), ICD-10-CM Diagnosis Codes (version 2020), CPT codes, and HCPCS codes. NOTE: When downloading, store "CFI_ICD9CM_V32.tab" and "CFI_ICD10CM_V2020.tab" as csv files (these files are originally stored as csv files, but Dataverse automatically converts them to tab files). Please read "Frailty-Index-STATA-code-Guide" before proceeding. Interpretation, validation data, and annotated references are provided in "Research Background - Claims-Based Frailty Index".
https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/4.0/customlicense?persistentId=hdl:1902.29/11638https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/4.0/customlicense?persistentId=hdl:1902.29/11638
This is a 3-part short course (held over three afternoons). Stata part 1 will offer an introduction to Stata for Windows. Part 2 will teach entering data in Stata, working with Stata do files, and show how to append, sort, and merge data sets in Stata. Part 3 teaches how to perform basic statistical procedures and how to draw sub samples from large datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Integrated Postsecondary Education Data System (IPEDS) Complete Data Files from 1980 to 2023. Includes data file, STATA data file, SPSS program, SAS program, STATA program, and dictionary. All years compressed into one .zip file due to storage limitations.From IPEDS Complete Data File Help Page (https://nces.ed.gov/Ipeds/help/complete-data-files):Choose the file to download by reading the description in the available titles. Then, click on the link in that row corresponding to the column header of the type of file/information desired to download.To download and view the survey files in basic CSV format use the main download link in the Data File column.For files compatible with the Stata statistical software package, use the alternate download link in the Stata Data File column.To download files with the SPSS, SAS, or STATA (.do) file extension for use with statistical software packages, use the download link in the Programs column.To download the data Dictionary for the selected file, click on the corresponding link in the far right column of the screen. The data dictionary serves as a reference for using and interpreting the data within a particular survey file. This includes the names, definitions, and formatting conventions for each table, field, and data element within the file, important business rules, and information on any relationships to other IPEDS data.For statistical read programs to work properly, both the data file and the corresponding read program file must be downloaded to the same subdirectory on the computer’s hard drive. Download the data file first; then click on the corresponding link in the Programs column to download the desired read program file to the same subdirectory.When viewing downloaded survey files, categorical variables are identified using codes instead of labels. Labels for these variables are available in both the data read program files and data dictionary for each file; however, for files that automatically incorporate this information you will need to select the Custom Data Files option.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
September 1., 2016 REPLICATION FILES FOR «THE IMPACT OF STATE TELEVISION ON VOTER TURNOUT», TO BE PUBLISHED BY THE BRITISH JOURNAL OF POLITICAL SCIENCE The replication files consist of two datasets and corresponding STATA do-files. Please note the following: 1. The data used in the current microanalysis are based on the National Election Surveys of 1965, 1969, and 1973. The Institute of Social Research (ISF) was responsible for the original studies, and data was made available by the NSD (Norwegian Center for Research Data). Neither ISF nor NSD are responsible for the analyses/interpretations of the data presented here. 2. Some of the data used in the municipality-level analyses are taken from NSD’s local government database (“Kommunedatabasen”). The NSD is not responsible for the analysis presented here or the interpretation offered in the BJPS-paper. 3. Note the municipality identification has been anonymized to avoid identification of individual respondents. 4. Most of the analyses generate Word-files that are produced by the outreg2 facility in STATA. These tables can be compared with those presented in the paper. The graphs are directly comparable to those in the paper. In a few cases, the results are only generated in the STATA output window. The paper employs two sets of data: I. Municipal level data in entered in STATA-format (AggregateReplicationTVData.dta), and with a corresponding data with map coordinates (muncoord.dta). The STATA code is in a do-file (ReplicationOfAggregateAnalysis.do). II. The survey data is in a STATA-file (ReplicationofIndividualLevelPanel.dta) and a with a corresponding do-file (ReplicationOfIndividualLevelAnalysis 25.08.2016.do). Please remember to change the file reference (i.e. use-statement) to execute the do-files.
Working with SPSS, SAS, Shazam, Excel and STATA users - why are there so many statistical packages and how do we keep our users happy while making our lives easier, outside of therapy?
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
The Current Population Survey Civic Engagement and Volunteering (CEV) Supplement is the most robust longitudinal survey about volunteerism and other forms of civic engagement in the United States. Produced by AmeriCorps in partnership with the U.S. Census Bureau, the CEV takes the pulse of our nation’s civic health every two years. The data on this page was collected in September 2023. The next wave of the CEV will be administered in September 2025.
The CEV can generate reliable estimates at the national level, within states and the District of Columbia, and in the largest twelve Metropolitan Statistical Areas to support evidence-based decision making and efforts to understand how people make a difference in communities across the country.
Click on "Export" to download and review an excerpt from the 2023 CEV Analytic Codebook that shows the variables available in the analytic CEV datasets produced by AmeriCorps.
Click on "Show More" to download and review the following 2023 CEV data and resources provided as attachments:
1) 2023 CEV Dataset Fact Sheet – brief summary of technical aspects of the 2023 CEV dataset. 2) CEV FAQs – answers to frequently asked technical questions about the CEV 3) Constructs and measures in the CEV 4) 2023 CEV Analytic Data and Setup Files – analytic dataset in Stata (.dta), R (.rdata), SPSS (.sav), and Excel (.csv) formats, codebook for analytic dataset, and Stata code (.do) to convert raw dataset to analytic formatting produced by AmeriCorps. These files were updated on January 16, 2025 to correct erroneous missing values for the ssupwgt variable. 5) 2023 CEV Technical Documentation – codebook for raw dataset and full supplement documentation produced by U.S. Census Bureau 6) 2023 CEV Raw Data and Read In Files – raw dataset in Stata (.dta) format, Stata code (.do) and dictionary file (.dct) to read ASCII dataset (.dat) into Stata using layout files (.lis)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Descriptive and inferential statistics are taught to students in many disciplines. More classroom time is often spent on the theory behind different statistical methods that investigate relationships between variables rather than on how to interpret the results obtained to answer the research question that started the process. While statistical software (such as R, Stata, and SPSS) has made it easier to undertake regression with any dataset, the output produced remains challenging to understand and explain to intended audiences. To address this issue, the author created a 90-minute workshop that teaches students how to read tables of descriptive statistics and linear regression results produced by statistical software. The workshop has been taught each semester at the author’s institution since its creation in the Fall 2022 term, attracting a predominantly graduate student audience. Feedback has been positive thus far, with student requests for additional workshops on reading the results of different statistical models, such as logistic and count regression. Through an explanation of the process and the resources used, this presentation will provide a practical overview of how librarians can teach others how to read descriptive statistics and regression results using a research question and their own experiences working with data to guide them. It will include steps to prepare for designing a statistical literacy workshop. The aim of this presentation is to provide ideas that will help librarians move towards teaching a statistical literacy workshop at their own institutions or help them expand their teaching activities in this area.
Understanding Society, (UK Household Longitudinal Study), which began in 2009, is conducted by the Institute for Social and Economic Research (ISER) at the University of Essex and the survey research organisations Verian Group (formerly Kantar Public) and NatCen. It builds on and incorporates, the British Household Panel Survey (BHPS), which began in 1991.
The Understanding Society: Longitudinal Teaching Dataset, Waves 1-9, 2009-2018 is a teaching resource using data from Understanding Society, the UK Household Longitudinal Study, which interviews individuals in the sampled households every year. There are two target audiences – 1) lecturers who would like to use the data file provided for longitudinal methods teaching purposes, and 2) data users who are new to using longitudinal data and can get a better understanding of using longitudinal data by using the supplied analysis guidance which utilizes the data file.
The statistical software used to construct the dataset is Stata and the analysis guidance provided is accompanied by Stata syntax only. The datafile is also available to download in SPSS and tab-delimited text formats. The User Guide includes guidance on how to convert the datafile in Stata format to R.
A second teaching resource using the Understanding Society survey is also available, see SN 8465, Understanding Society: Ethnicity and Health Teaching Dataset.
For information on the main Understanding Society study, see SN 6614, Understanding Society and Harmonised BHPS.
General information: The data sets contain information on how often materials of studies available through GESIS: Data Archive for the Social Sciences were downloaded and/or ordered through one of the archive´s plattforms/services between 2004 and 2017.
Sources and plattforms: Study materials are accessible through various GESIS plattforms and services: Data Catalogue (DBK), histat, datorium, data service (and others).
Years available: - Data Catalogue: 2012-2017 - data service: 2006-2017 - datorium: 2014-2017 - histat: 2004-2017
Data sets: Data set ZA6899_Datasets_only_all_sources contains information on how often data files such as those with dta- (Stata) or sav- (SPSS) extension have been downloaded. Identification of data files is handled semi-automatically (depending on the plattform/serice). Multiple downloads of one file by the same user (identified through IP-address or username for registered users) on the same days are only counted as one download.
Data set ZA6899_Doc_and_Data_all_sources contains information on how often study materials have been downloaded. Multiple downloads of any file of the same study by the same user (identified through IP-address or username for registered users) on the same days are only counted as one download.
Both data sets are available in three formats: csv (quoted, semicolon-separated), dta (Stata v13, labeled) and sav (SPSS, labeled). All formats contain identical information.
Variables: Variables/columns in both data sets are identical. za_nr ´Archive study number´ version ´GESIS Archiv Version´ doi ´Digital Object Identifier´ StudyNo ´Study number of respective study´ Title ´English study title´ Title_DE ´German study title´ Access ´Access category (0, A, B, C, D, E)´ PubYear ´Publication year of last version of the study´ inZACAT ´Study is currently also available via ZACAT´ inHISTAT ´Study is currently also available via HISTAT´ inDownloads ´There are currently data files available for download for this study in DBK or datorium´ Total ´All downloads combined´ downloads_2004 ´downloads/orders from all sources combined in 2004´ [up to ...] downloads_2017 ´downloads/orders from all sources combined in 2017´ d_2004_dbk ´downloads from source dbk in 2004´ [up to ...] d_2017_dbk ´downloads from source dbk in 2017´ d_2004_histat ´downloads from source histat in 2004´ [up to ...] d_2017_histat ´downloads from source histat in 2017´ d_2004_dataservice ´downloads/orders from source dataservice in 2004´ [up to ...] d_2017_dataservice ´downloads/orders from source dataservice in 2017´
More information is available within the codebook.
The Current Population Survey Civic Engagement and Volunteering (CEV) Supplement is the most robust longitudinal survey about volunteerism and other forms of civic engagement in the United States. Produced by AmeriCorps in partnership with the U.S. Census Bureau, the CEV takes the pulse of our nation’s civic health every two years. The data on this page was collected in September 2021. The CEV can generate reliable estimates at the national level, within states and the District of Columbia, and in the largest twelve Metropolitan Statistical Areas to support evidence-based decision making and efforts to understand how people make a difference in communities across the country. Click on "Export" to download and review an excerpt from the 2021 CEV Analytic Codebook that shows the variables available in the analytic CEV datasets produced by AmeriCorps. Click on "Show More" to download and review the following 2021 CEV data and resources provided as attachments: 1) 2021 CEV Dataset Fact Sheet – brief summary of technical aspects of the 2021 CEV dataset. 2) CEV FAQs – answers to frequently asked technical questions about the CEV 3) Constructs and measures in the CEV 4) 2021 CEV Analytic Data and Setup Files – analytic dataset in Stata (.dta), R (.rdata), SPSS (.sav), and Excel (.csv) formats, codebook for analytic dataset, and Stata code (.do) to convert raw dataset to analytic formatting produced by AmeriCorps. These files were updated on January 16, 2025 to correct erroneous missing values for the ssupwgt variable. 5) 2021 CEV Technical Documentation – codebook for raw dataset and full supplement documentation produced by U.S. Census Bureau 6) Nonresponse Bias Analysis produced by U.S. Census Bureau 7) 2021 CEV Raw Data and Read In Files – raw dataset in Stata (.dta) format, Stata code (.do) and dictionary file (.dct) to read ASCII dataset (.dat) into Stata using layout files (.lis)
This dataset was created by iFinance Tutor
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary : Fuel demand is shown to be influenced by fuel prices, people's income and motorization rates. We explore the effects of electric vehicle's rates in gasoline demand using this panel dataset.
Files : dataset.csv - Panel dimensions are the Brazilian state ( i ) and year ( t ). The other columns are: gasoline sales per capita (ln_Sg_pc), prices of gasoline (ln_Pg) and ethanol (ln_Pe) and their lags, motorization rates of combustion vehicles (ln_Mi_c) and electric vehicles (ln_Mi_e) and GDP per capita (ln_gdp_pc). All variables are all under the natural log function, since we use this to calculate demand elasticities in a regression model.
adjacency.csv - The adjacency matrix used in interaction with electric vehicles' motorization rates to calculate spatial effects. At first, it follows a binary adjacency formula: for each pair of states i and j, the cell (i, j) is 0 if the states are not adjacent and 1 if they are. Then, each row is normalized to have sum equal to one.
regression.do - Series of Stata commands used to estimate the regression models of our study. dataset.csv must be imported to work, see comment section.
dataset_predictions.xlsx - Based on the estimations from Stata, we use this excel file to make average predictions by year and by state. Also, by including years beyond the last panel sample, we also forecast the model into the future and evaluate the effects of different policies that influence gasoline prices (taxation) and EV motorization rates (electrification). This file is primarily used to create images, but can be used to further understand how the forecasting scenarios are set up.
Sources: Fuel prices and sales: ANP (https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp) State population, GDP and vehicle fleet: IBGE (https://www.ibge.gov.br/en/home-eng.html?lang=en-GB) State EV fleet: Anfavea (https://anfavea.com.br/en/site/anuarios/)
This is STATA software code for analysis on publicly available NHANES data