22 datasets found
  1. a

    Soil Survey Geographic Database (SSURGO) Downloader

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Soil Survey Geographic Database (SSURGO) Downloader [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/documents/305ef916da574a71877edb15c3f47f08
    Explore at:
    Dataset updated
    Jun 17, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Description

    The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updatesTitle: Soil Survey Geographic Database (SSURGO) DownloaderItem Type: Web Mapping Application URLSummary: Download ready-to-use project packages with over 170 attributes derived from the SSURGO (Soil Survey Geographic Database) dataset.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: https://nmcdc.maps.arcgis.com/home/item.html?id=cdc49bd63ea54dd2977f3f2853e07fff link to Esri web mapping applicationFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=305ef916da574a71877edb15c3f47f08#overviewUID: 26Data Requested: Ag CensusMethod of Acquisition: Esri web mapDate Acquired: 6/16/22Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDINGDOCUMENTATION FROM DATA SOURCE URL: This application provides quick access to ready-to-use project packages filled with useful soil data derived from the SSURGO dataset.To use this application, navigate to your study area and click the map. A pop-up window will open. Click download and the project package will be copied to your computer. Double click the downloaded package to open it in ArcGIS Pro. Alt + click on the layer in the table of contents to zoom to the subbasin.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryThe map packages were created from the October 2021 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a

  2. USA Soils Map Units

    • historic-cemeteries.lthp.org
    • mapdirect-fdep.opendata.arcgis.com
    • +9more
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Soils Map Units [Dataset]. https://historic-cemeteries.lthp.org/maps/06e5fd61bdb6453fb16534c676e1c9b9
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -

  3. SSURGO QA ArcGIS Pro Toolbox

    • ngda-soils-geoplatform.hub.arcgis.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2025). SSURGO QA ArcGIS Pro Toolbox [Dataset]. https://ngda-soils-geoplatform.hub.arcgis.com/documents/79c2e15485604eb08e3fc4f2c7706fb1
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    Authors
    GeoPlatform ArcGIS Online
    Description

    SSURGO-QA ArcGIS Pro Toolbox1. SetupDownload SSURGO by Areasymbol - Use Soil Data Access and Web Soil Survey download page to get SSURGO datasets. User can a wildcard to query the database by Areasymbol or by age.Download SSURGO by Region - Downloads SSURGO Soil Survey Areas that are owned by a specific region including an approximiate 2 soil survey area buffer.Generate Regional Transactional Geodatabase - Used to create the Regional Transactional Spatial Database (RTSD) for SSURGO.Generate SSO SSURGO Datasets - Create a SSURGO file geodatabase for a selected MLRA Soil Survey Office.Import SSURGO Datasets in FGDB - This tooll will import SSURGO spatial and tabular datasets within a given location into a File Geodatabase and establish the necessary table and feature class relationships to interact with the dataset.Insert NATSYM and MUNAME Value - This tool adds the National Mapunit Symbol (NATMUSYM) and the Mapunit Name (MUNAME) values to the corresponding MUKEY. An MUKEY field is required to execute. A network connection is required in order to submit a query to SDacess.RTSD - Check SDJR Project Out - Designed to work with the RTSD to manage SDJR projects and export data for those projects to be sent to the MLRA SSO.

  4. U

    USA SSURGO - Soil Hydrologic Group

    • data.unep.org
    • hub.arcgis.com
    Updated Dec 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN World Environment Situation Room (2022). USA SSURGO - Soil Hydrologic Group [Dataset]. https://data.unep.org/app/dataset/wesr-arcgis-wm-usa-ssurgo---soil-hydrologic-group
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset provided by
    UN World Environment Situation Room
    Area covered
    United States
    Description

    When rain falls over land, a portion of it runs off into stream channels and storm water systems while the remainder infiltrates into the soil or returns to the atmosphere directly through evaporation.Physical properties of soil affect the rate that water is absorbed and the amount of runoff produced by a storm. Hydrologic soil group provides an index of the rate that water infiltrates a soil and is an input to rainfall-runoff models that are used to predict potential stream flow.For more information on using hydrologic soil group in hydrologic modeling see the publication Urban Hydrology for Small Watersheds (Natural Resources Conservation Service, United States Department of Agriculture, Technical Release–55).Dataset SummaryPhenomenon Mapped: Soil hydrologic groupUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for hydrologic group is derived from the gSSURGO map unit aggregated attribute table field Hydrologic Group - Dominant Conditions (hydgrpdcd).The seven classes of hydrologic soil group followed by definitions:Group A - Group A soils consist of deep, well drained sands or gravelly sands with high infiltration and low runoff rates.Group B - Group B soils consist of deep well drained soils with a moderately fine to moderately coarse texture and a moderate rate of infiltration and runoff.Group C - Group C consists of soils with a layer that impedes the downward movement of water or fine textured soils and a slow rate of infiltration.Group D - Group D consists of soils with a very slow infiltration rate and high runoff potential. This group is composed of clays that have a high shrink-swell potential, soils with a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material.Group A/D - Group A/D soils naturally have a very slow infiltration rate due to a high water table but will have high infiltration and low runoff rates if drained.Group B/D - Group B/D soils naturally have a very slow infiltration rate due to a high water table but will have a moderate rate of infiltration and runoff if drained.Group C/D - Group C/D soils naturally have a very slow infiltration rate due to a high water table but will have a slow rate of infiltration if drained.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "soil hydrologic group" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "soil hydrologic group" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  5. SSURGO Downloader (Mature Support)

    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    Updated Nov 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). SSURGO Downloader (Mature Support) [Dataset]. https://a-public-data-collection-for-nepa-sandbox.hub.arcgis.com/items/cdc49bd63ea54dd2977f3f2853e07fff
    Explore at:
    Dataset updated
    Nov 28, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Important Note: This item is in mature support as of March 2025 and will be retired in December 2027. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This application provides quick access to ready-to-use project packages filled with useful soil data derived from the SSURGO dataset.To use this application, navigate to your study area and click the map. A pop-up window will open. Click download and the project package will be copied to your computer. Double click the downloaded package to open it in ArcGIS Pro. Alt + click on the layer in the table of contents to zoom to the subbasin.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryThe map packages were created from the October 2023 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Map Unit Name (muname) fields. This field was created using the dominant soil order of each map unit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a

  6. USA SSURGO - Soil Hydrologic Group

    • anrgeodata.vermont.gov
    • atlas.eia.gov
    • +7more
    Updated Jun 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Soil Hydrologic Group [Dataset]. https://anrgeodata.vermont.gov/datasets/be2124509b064754875b8f0d6176cc4c
    Explore at:
    Dataset updated
    Jun 20, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    When rain falls over land, a portion of it runs off into stream channels and storm water systems while the remainder infiltrates into the soil or returns to the atmosphere directly through evaporation. Physical properties of soil affect the rate that water is absorbed and the amount of runoff produced by a storm. Hydrologic soil group provides an index of the rate that water infiltrates a soil and is an input to rainfall-runoff models that are used to predict potential stream flow. For more information on using hydrologic soil group in hydrologic modeling see the publication Urban Hydrology for Small Watersheds (Natural Resources Conservation Service, United States Department of Agriculture, Technical Release–55). Dataset SummaryPhenomenon Mapped: Soil hydrologic groupGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for hydrologic group is derived from the gSSURGO map unit aggregated attribute table field Hydrologic Group - Dominant Conditions(hydgrpdcd). The seven classes of hydrologic soil group followed by definitions:Group A - Group A soils consist of deep, well drained sands or gravelly sands with high infiltration and low runoff rates.Group B - Group B soils consist of deep well drained soils with a moderately fine to moderately coarse texture and a moderate rate of infiltration and runoff.Group C - Group C consists of soils with a layer that impedes the downward movement of water or fine textured soils and a slow rate of infiltration.Group D - Group D consists of soils with a very slow infiltration rate and high runoff potential. This group is composed of clays that have a high shrink-swell potential, soils with a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material.Group A/D - Group A/D soils naturally have a very slow infiltration rate due to a high water table but will have high infiltration and low runoff rates if drained.Group B/D - Group B/D soils naturally have a very slow infiltration rate due to a high water table but will have a moderate rate of infiltration and runoff if drained.Group C/D - Group C/D soils naturally have a very slow infiltration rate due to a high water table but will have a slow rate of infiltration if drained. What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selectingAddthenBrowse Living Atlas Layers. A window will open. Type "soil hydrologic group" in the search box and browse to the layer. Select the layer then clickAdd to Map. In ArcGIS Pro, open a map and selectAdd Datafrom the Map Tab. SelectDataat the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expandPortalif necessary, then selectLiving Atlas. Type "soil hydrologic group" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many otherbeautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  7. USA SSURGO - Farmland Class

    • hub.arcgis.com
    Updated Jun 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Farmland Class [Dataset]. https://hub.arcgis.com/datasets/9708ede640c640aca1de362589e60f46
    Explore at:
    Dataset updated
    Jun 19, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Farmland Protection Policy Act, part of the 1981 Farm Bill, is intended to limit federal activities that contribute to the unnecessary conversion of farmland to other uses. The law applies to construction projects funded by the federal government such as highways, airports, and dams, and to the management of federal lands. As part of the implementation of this law, the Natural Resources Conservation Service identifies high quality agricultural soils as prime farmland, unique farmland, and land of statewide or local importance. Each category may contain one or more limitations such as Prime Farmland if Irrigated. For more information of farmland classification see the National Soil Survey Handbook. Dataset SummaryPhenomenon Mapped: FarmlandGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for farmland class is derived from the gSSURGO map unit table field Farm Class(farmlndcl). What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "farmland" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "farmland" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many otherbeautiful and authoritative maps on hundreds of topics like this one. Data Dictionary"All areas are prime farmland" 1;"Farmland of local importance" 2;"Farmland of statewide importance" 3;"Farmland of statewide importance, if drained" 4;"Farmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing season" 5;"Farmland of statewide importance, if irrigated" 6;"Farmland of statewide importance, if irrigated and drained" 7;"Farmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing season" 8;"Farmland of statewide importance, if irrigated and reclaimed of excess salts and sodium" 9;"Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60" 10;"Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing season" 11;"Farmland of statewide importance, if warm enough" 12;"Farmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing season" 13;"Farmland of unique importance" 14;"Not prime farmland" 15;"Prime farmland if drained" 16;"Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season" 17;"Prime farmland if irrigated" 18;"Prime farmland if irrigated and drained" 19;"Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season" 20;"Prime farmland if irrigated and reclaimed of excess salts and sodium" 21;"Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60" 22;"Prime farmland if protected from flooding or not frequently flooded during the growing season" 23;"Prime farmland if subsoiled, completely removing the root inhibiting soil layer" 24;"Farmland of local importance, if irrigated" 25" Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  8. USA SSURGO - Soil Hydric Class

    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jun 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Soil Hydric Class [Dataset]. https://a-public-data-collection-for-nepa-sandbox.hub.arcgis.com/items/2be45af986af4624839cedae883faf47
    Explore at:
    Dataset updated
    Jun 19, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Hydric soils are soils that form under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part of the soil. Hydric soils are poorly or very poorly drained and under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of wetland vegetation. Hydric soils are part of the legal definition for wetlands in the United States and are used to identify wetland areas that require a permit issued by the Army Corps of Engineers under Section 404 of the Clean Water Act prior to any ground disturbing activities. For more information on hydric soils see the Natural Resources Conservation Service’s publication Field Indicators of Hydric Soils in the United States. Dataset SummaryPhenomenon Mapped: Hydric soilsGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for hydric class is derived from the gSSURGO map unit aggregated attribute table field Hydric Classification - Presence (hydclprs). What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "hydric" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "hydric" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many otherbeautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  9. a

    United States of America Soil Survey Geographic Database (SSURGO) - Farmland...

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated May 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). United States of America Soil Survey Geographic Database (SSURGO) - Farmland Class [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/united-states-of-america-soil-survey-geographic-database-ssurgo-farmland-class
    Explore at:
    Dataset updated
    May 19, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States,
    Description

    The Farmland Protection Policy Act, part of the 1981 Farm Bill, is intended to limit federal activities that contribute to the unnecessary conversion of farmland to other uses. The law applies to construction projects funded by the federal government such as highways, airports, and dams, and to the management of federal lands. As part of the implementation of this law, the Natural Resources Conservation Service identifies high quality agricultural soils as prime farmland, unique farmland, and land of statewide or local importance. Each category may contain one or more limitations such as Prime Farmland if Irrigated. For a complete list of categories and definitions, see the National Soil Survey Handbook.All areas are prime farmlandFarmland of local importanceFarmland of statewide importanceFarmland of statewide importance, if drainedFarmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if irrigatedFarmland of statewide importance, if irrigated and drainedFarmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if irrigated and reclaimed of excess salts and sodiumFarmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if warm enoughFarmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing seasonFarmland of unique importanceNot prime farmlandPrime farmland if drainedPrime farmland if drained and either protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigatedPrime farmland if irrigated and drainedPrime farmland if irrigated and either protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigated and reclaimed of excess salts and sodiumPrime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60Prime farmland if protected from flooding or not frequently flooded during the growing seasonPrime farmland if subsoiled, completely removing the root inhibiting soil layerDataset SummaryPhenomenon Mapped: FarmlandUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for farmland class is derived from the gSSURGO map unit table field Farm Class (farmlndcl).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "farmland" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "farmland" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  10. a

    United States of America Soil Survey Geographic Database (SSURGO) - Erosion...

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Jul 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). United States of America Soil Survey Geographic Database (SSURGO) - Erosion Class, 2021 [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/datasets/united-states-of-america-soil-survey-geographic-database-ssurgo-erosion-class-2021-1/about
    Explore at:
    Dataset updated
    Jul 26, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States
    Description

    Erosion, the loss of soil due to the effects of water and wind, can lead to serious degradation of lands and the loss of agricultural productivity.This layer classifies the amount of soil loss in the top soil layers in 5 classes:None: Area of soil deposition.Class 1: In this map unit,1 to 25 percent of the original topsoil has been lost to erosion. Class 2: In this map unit, 1 to 25 percent of the original topsoil has been lost to erosion.Class 3: In this map unit, 75 to 99 percent of the original topsoil has been lost to erosion.Class 4: In this map unit, all of the original topsoil has been lost to erosionDataset SummaryPhenomenon Mapped: Top soil loss due to erosionUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for runoff is derived from the gSSURGO component table field Erosion Class (erocl). The value in this layer is the dominant condition found within the map unit.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erosion class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erosion class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  11. a

    USA SSURGO - Erosion Class

    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    Updated Jun 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). USA SSURGO - Erosion Class [Dataset]. https://idaho-epscor-gem3-uidaho.hub.arcgis.com/datasets/usa-ssurgo-erosion-class/about
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    United States,
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Erosion_Class.Erosion, the loss of soil due to the effects of water and wind, can lead to serious degradation of lands and the loss of agricultural productivity.This layer classifies the amount of soil loss in the top soil layers in 5 classes:None: Area of soil deposition.Class 1: In this map unit,1 to 25 percent of the original topsoil has been lost to erosion. Class 2: In this map unit, 1 to 25 percent of the original topsoil has been lost to erosion.Class 3: In this map unit, 75 to 99 percent of the original topsoil has been lost to erosion.Class 4: In this map unit, all of the original topsoil has been lost to erosionDataset SummaryPhenomenon Mapped: Top soil loss due to erosionUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: July 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for runoff is derived from the gSSURGO component table field Erosion Class (erocl). The value in this layer is the dominant condition found within the map unit.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erosion class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erosion class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  12. a

    USA SSURGO - Drainage Class

    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    • uidaho.hub.arcgis.com
    Updated Jun 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). USA SSURGO - Drainage Class [Dataset]. https://idaho-epscor-gem3-uidaho.hub.arcgis.com/datasets/usa-ssurgo-drainage-class/about
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    United States,
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Drainage_Class.Soils vary widely in their ability to retain or drain water. The rate at which water drains into the soil has a direct effect on the amount and timing of runoff, what crops can be grown, and where wetlands form. In soils with low drainage rates water will pond on the soil's surface. Poorly drained soils are desirable when growing crops like rice where the fields are flooded for cultivation but other crops need better drained soils.Dataset SummaryPhenomenon Mapped: Drainage Class of SoilsUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: July 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for drainage class is derived from the gSSURGO map unit aggregated attribute table field Drainage Class - Dominant Condition (drclassdcd).The layer has an attribute field for Drainage Class and a description field for use in pop-ups. The eight values of drainage class with corresponding attribute table index value are defined by the NRCS Soil Survey Manual as:0. Excessively drained: Water is removed very rapidly. The occurrence of internal free water commonly is very rare or very deep. The soils are commonly coarse-textured and have very high hydraulic conductivity or are very shallow.1. Somewhat excessively drained: Water is removed from the soil rapidly. Internal free water occurrence commonly is very rare or very deep. The soils are commonly coarse-textured and have high saturated hydraulic conductivity or are very shallow.2. Well drained: Water is removed from the soil readily but not rapidly. Internal free water occurrence commonly is deep or very deep; annual duration is not specified. Water is available to plants throughout most of the growing season in humid regions. Wetness does not inhibit growth of roots for significant periods during most growing seasons. The soils are mainly free of the deep to redoximorphic features that are related to wetness.3. Moderately well drained: Water is removed from the soil somewhat slowly during some periods of the year. Internal free water occurrence commonly is moderately deep and transitory through permanent. The soils are wet for only a short time within the rooting depth during the growing season, but long enough that most mesophytic crops are affected. They commonly have a moderately low or lower saturated hydraulic conductivity in a layer within the upper 1 m, periodically receive high rainfall, or both.4. Somewhat poorly drained: Water is removed slowly so that the soil is wet at a shallow depth for significant periods during the growing season. The occurrence of internal free water commonly is shallow to moderately deep and transitory to permanent. Wetness markedly restricts the growth of mesophytic crops, unless artificial drainage is provided. The soils commonly have one or more of the following characteristics: low or very low saturated hydraulic conductivity, a high water table, additional water from seepage, or nearly continuous rainfall.5. Poorly drained: Water is removed so slowly that the soil is wet at shallow depths periodically during the growing season or remains wet for long periods. The occurrence of internal free water is shallow or very shallow and common or persistent. Free water is commonly at or near the surface long enough during the growing season so that most mesophytic crops cannot be grown, unless the soil is artificially drained. The soil, however, is not continuously wet directly below plow-depth. Free water at shallow depth is usually present. This water table is commonly the result of low or very low saturated hydraulic conductivity of nearly continuous rainfall, or of a combination of these.6. Very poorly drained: Water is removed from the soil so slowly that free water remains at or very near the ground surface during much of the growing season. The occurrence of internal free water is very shallow and persistent or permanent. Unless the soil is artificially drained, most mesophytic crops cannot be grown. The soils are commonly level or depressed and frequently ponded. If rainfall is high or nearly continuous, slope gradients may be greater.7. Subaqueous Soils: These soils are under the surface of a body of water. (There are only a few of these in the entire dataset.)What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "drainage class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "drainage class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  13. USA SSURGO - Erodibility Factor

    • climate-center-lincolninstitute.hub.arcgis.com
    • ilcn-lincolninstitute.hub.arcgis.com
    Updated Jun 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Erodibility Factor [Dataset]. https://climate-center-lincolninstitute.hub.arcgis.com/datasets/ac1bc7c30bd4455e85f01fc51055e586
    Explore at:
    Dataset updated
    Jun 20, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil erodibility factor, also known as K factor, is one of the 5 inputs to the Universal Soil Loss Equation. Soil erodibility factor quantifies the susceptibility of soil particles to detachment and movement by water. For more information on how soil erodibilty factor is calculated see the National Soil Survey Handbook. The Universal Soil Loss Equation is a mathematical model commonly used to estimate soil erosion rates. Originally designed for the management and conservation of farmland soils, the USLE is now used for a variety of other projects such as managing non-point pollution and sediment load in streams. In the United States, the equation is frequently used by federal agencies. For example federal regulations require that the Department of Agriculture identify highly erodible land based on the Universal Soil Loss Equation and its derivative models. Dataset SummaryPhenomenon Mapped: Erodibility factor (not adjusted for rock fragments)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: NoneCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). This field was calculated by selecting the least transmissive horizon of the dominant component for each mapunit. The values are in units of Micrometers per second (μm/s). In the past this layer used to display an average of components, but this is no longer the case. What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erodibility factor" in the search box and browse to the layer. Select the layer then clickAdd to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erodibility factor" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  14. a

    USA SSURGO - Erodibility Factor

    • uidaho.hub.arcgis.com
    Updated Jun 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). USA SSURGO - Erodibility Factor [Dataset]. https://uidaho.hub.arcgis.com/datasets/011e831ce50245b9b6cb8fbe7b8eda62
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    United States,
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us online at https://goto.arcgisonline.com/landscape11/USA_Soils_Erodibility_Factor.Soil erodibility factor, also known as K factor, is one of the 5 inputs to the Universal Soil Loss Equation. Soil erodibility factor quantifies the susceptibility of soil particles to detachment and movement by water. For more information on how soil erodibilty factor is calculated see the National Soil Survey Handbook.The Universal Soil Loss Equation is a mathematical model commonly used to estimate soil erosion rates. Originally designed for the management and conservation of farmland soils, the USLE is now used for a variety of other projects such as managing non-point pollution and sediment load in streams. In the United States, the equation is frequently used by federal agencies. For example federal regulations require that the Department of Agriculture identify highly erodible land based on the Universal Soil Loss Equation and its derivative models.Dataset SummaryPhenomenon Mapped: Erodibility factorUnits: NoneCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: July 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). This field was calculated by selecting the least transmissive horizon of the dominant component for each mapunit. The values are in units of Micrometers per second (μm/s).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erodibility factor" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erodibility factor" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  15. USA SSURGO - Available Water Storage 0-150 cm

    • hub.arcgis.com
    Updated Nov 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Available Water Storage 0-150 cm [Dataset]. https://hub.arcgis.com/datasets/e66bffd8e4614cc9bf3c770fe6a4d4fc
    Explore at:
    Dataset updated
    Nov 16, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The amount of water in soil is based on rainfall amount, what proportion of rain infiltrates into the soil, and the soil"s storage capacity. Available water storage is the maximum amount of plant available water a soil can provide. It is an indicator of a soil’s ability to retain water and make it sufficiently available for plant use. Available Water Storage is a capacity estimate for the top 150 centimeters of soil. It is calculated from the difference between soil water content at field capacity and the permanent wilting point adjusted for salinity and fragments. Available water storage is used to develop water budgets, predict droughtiness, design and operate irrigation systems, design drainage systems, protect water resources, and predict yields. Available water storage is an important input into hydrologic models including the Soil and Water Assessment Tool (SWAT) - a water quality model that is designed to assess non-point and point source pollution at the river basin scale. Available water storagecan also be used as an indication of a soil"s drought susceptibility, for water recharge modeling, to assess a soil"s ability to support crops, and for many other purposes. Dataset SummaryPhenomenon Mapped: Amount of water a soil can hold that is available to plantsGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: MillimetersCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource:Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for available water storage is derived from the gSSURGO map unit aggregated attribute table field: Available Water Storage 0-150cm Weighted Average (aws0150wta). What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "available water storage" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "available water storage" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  16. USA SSURGO - Erosion Class

    • hub.arcgis.com
    • gisforagriculture-usdaocio.hub.arcgis.com
    Updated Jun 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Erosion Class [Dataset]. https://hub.arcgis.com/datasets/cf102251aac548f9a751968f3fa0c1da
    Explore at:
    Dataset updated
    Jun 20, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Erosion, the loss of soil due to the effects of water and wind, leads to serious degradation of lands and the loss of agricultural productivity. This layer rates erosion in the past tense, i.e. how much of the original topsoil has been lost in each map unit.What time frame is implied for the soil loss? We asked Bob Dobos, soil scientist - interpretations at the National Soil Survey Center that question. Here is what he writes:"Accelerated erosion, either by wind or water, is caused typically by the activities of humans. We try to estimate the degree of erosion, but that can be dicey because of possible lack of an uneroded state. The timing of the erosion is not something that we try to establish. In my opinion, what is being observed is the degree of erosion since the first time the soil was farmed, perhaps 500 years or so in some places, much more recent in others. Since the observation of a soil is a snapshot in time, the rate of erosion or the time zero of erosion is not considered. Natural erosion also occurs as is evidenced by the Grand Canyon or the Channeled Scablands. I have never worked in an area that has visible evidence of natural erosion."This layer classifies the amount of soil loss in the top soil layers in 5 classes:None: Area of soil deposition.Class 1: In this map unit,1 to 25 percent of the original topsoil has been lost to erosion. Class 2: In this map unit, 25 to 75 percent of the original topsoil has been lost to erosion.Class 3: In this map unit, 75 to 99 percent of the original topsoil has been lost to erosion.Class 4: In this map unit, all of the original topsoil has been lost to erosion.Dataset SummaryPhenomenon Mapped: Top soil loss due to erosionGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024Data from the gNATSGO database was used to create the layer for the for the contiguous United States and Alaska. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Puerto Rico, the U.S. Virgin Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, Republic of the Marshall Islands, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for runoff is derived from the gSSURGO component table field Erosion Class (erocl). The value in this layer is the dominant condition found within the map unit.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erosion class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erosion class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  17. USA SSURGO - Soil Albedo

    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    Updated Jun 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Soil Albedo [Dataset]. https://a-public-data-collection-for-nepa-sandbox.hub.arcgis.com/items/e89fdc8e8b13417daa5ad232312f58cf
    Explore at:
    Dataset updated
    Jun 19, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Albedo measures the reflectivity of an object. Surfaces that are black reflect little light and have low albedo values while white surfaces reflect most of the light striking them and have high albedo values. Albedo is measured on a scale of 0 (no light reflected) to 1 (100% of light reflected). Albedo is measured using a scale of 0 (no light reflected) to 1 (100% of the light is reflected). Divide each integer"s raw pixel value by one hundred to find its representative albedo value. Thus, a pixel with the value of 24 represents an albedo value of 0.24 while a pixel with the value of 38 represents the albedo value 0.38. Dataset SummaryPhenomenon Mapped: Soil albedoGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: NoneCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Typical albedo values:Fresh asphalt 0.04Worn asphalt 0.12Confier forest 0.08 – 0.15Deciduous trees 0.15 – 0.18Bare soil 0.17Green grass 0.25Desert sand 0.4New concrete 0.55Ocean ice 0.5 – 0.7Fresh snow 0.8-0.9 Albedo is used in climate and water cycle models. Estimates of evapotranspiration rate and prediction of soil water balances require albedo values. Soil hydrology models that are part of water quality and resource assessment programs also require albedo. Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for soil albedo is derived from the gSSURGO component table field Albedo Dry - Representative Value (albedodry_r). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "albedo" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "albedo" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  18. USA SSURGO - Loss Tolerance Factor

    • hub.arcgis.com
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Loss Tolerance Factor [Dataset]. https://hub.arcgis.com/datasets/e059050c2983489a91614e5e4d4d0b35
    Explore at:
    Dataset updated
    Jun 22, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil loss tolerance factor is the maximum rate of soil loss that will permit crop productivity to be sustained economically and indefinitely on a given soil. Soil loss tolerance is rated as 1, 2, 3, 4 or 5 tons per acre per year. The primary use for soil loss tolerance factor is evaluating the effectiveness of erosion control measures on farmland. Soil loss tolerance factor serves as a quantitative standard to compare to erosion rate estimates from models such as the Revised Universal Soil Loss Equation. Farmlands where soil loss tolerance factor is less than modeled erosion rates are considered unsustainable. Dataset SummaryPhenomenon Mapped: Soil loss toleranceUnits: tons/acre/yearCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Projection: Web Mercator Auxiliary SphereSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for soil loss tolerance is derived from the gSSURGO component table field T (tfact). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting AddthenBrowse Living Atlas Layers. A window will open. Type "loss tolerance" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and selectAdd Datafrom the Map Tab. SelectDataat the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expandPortalif necessary, then selectLiving Atlas. Type "loss tolerance" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  19. USA SSURGO - Frost Free Period

    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    Updated Jun 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Frost Free Period [Dataset]. https://a-public-data-collection-for-nepa-sandbox.hub.arcgis.com/items/edd2f5723d3a47df9c71ac8ddbf8f277
    Explore at:
    Dataset updated
    Jun 20, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Annual Frost Free Period is the expected number of days between the last freezing temperature in spring (January-July) and the first freezing temperature in fall (August-December). The number of days is based on the probability that the values for the standard normal period will be exceeded in 5 years out of 10. For more information see the Natural Resources Conservation Service"sSoil Survey Manual. Dataset SummaryPhenomenon Mapped: Length of frost-free seasonGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: DaysCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS).The value for frost free period is derived from the gSSURGO component table field Frost Free Days - Representative Value (ffd_r). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selectingAddthenBrowse Living Atlas Layers. A window will open. Type "frost free" in the search box and browse to the layer. Select the layer then clickAdd to Map. In ArcGIS Pro, open a map and selectAdd Datafrom the Map Tab. SelectDataat the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expandPortalif necessary, then selectLiving Atlas. Type "frost free" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many otherbeautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  20. USA SSURGO - Corrosion Potential for Concrete

    • a-public-data-collection-for-nepa-sandbox.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). USA SSURGO - Corrosion Potential for Concrete [Dataset]. https://a-public-data-collection-for-nepa-sandbox.hub.arcgis.com/items/073dc1a6f0ae4ad18bba6c1ede795d24
    Explore at:
    Dataset updated
    Jun 20, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Concrete, metals and other materials gradually deteriorate through chemical reactions with their environment. This process, known as corrosion, occurs slowly in some soils and more quickly in others. When in contact with the soil, concrete can deteriorate due to a chemical reaction between a base (concrete) and a weak acid (wet soil). This layer classifies soils with low, moderate, and high rates of corrosion of concrete based on the soil texture, organic content, pH, and chemical composition. For more information on the classification system, see the National Soil Survey Handbook Part 618.80 Guides for Estimating Risk of Corrosion Potential for Uncoated Steel. Dataset SummaryPhenomenon Mapped: Corrosion of concreteGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: Three classes - low, medium, and highCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for concrete corrosion is derived from the gSSURGO component table field Corrosion Concrete (corcon). The value in this layer is the dominant condition found within the map unit. What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selectingAddthenBrowse Living Atlas Layers. A window will open. Type "concrete corrosion" in the search box and browse to the layer. Select the layer then clickAdd to Map.In ArcGIS Pro, open a map and selectAdd Datafrom the Map Tab. SelectDataat the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expandPortalif necessary, then selectLiving Atlas. Type "concrete corrosion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many otherbeautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New Mexico Community Data Collaborative (2022). Soil Survey Geographic Database (SSURGO) Downloader [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/documents/305ef916da574a71877edb15c3f47f08

Soil Survey Geographic Database (SSURGO) Downloader

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 17, 2022
Dataset authored and provided by
New Mexico Community Data Collaborative
Description

The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updatesTitle: Soil Survey Geographic Database (SSURGO) DownloaderItem Type: Web Mapping Application URLSummary: Download ready-to-use project packages with over 170 attributes derived from the SSURGO (Soil Survey Geographic Database) dataset.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: https://nmcdc.maps.arcgis.com/home/item.html?id=cdc49bd63ea54dd2977f3f2853e07fff link to Esri web mapping applicationFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=305ef916da574a71877edb15c3f47f08#overviewUID: 26Data Requested: Ag CensusMethod of Acquisition: Esri web mapDate Acquired: 6/16/22Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDINGDOCUMENTATION FROM DATA SOURCE URL: This application provides quick access to ready-to-use project packages filled with useful soil data derived from the SSURGO dataset.To use this application, navigate to your study area and click the map. A pop-up window will open. Click download and the project package will be copied to your computer. Double click the downloaded package to open it in ArcGIS Pro. Alt + click on the layer in the table of contents to zoom to the subbasin.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryThe map packages were created from the October 2021 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a

Search
Clear search
Close search
Google apps
Main menu