6 datasets found
  1. Geospatial data for the Vegetation Mapping Inventory Project of El Morro...

    • catalog.data.gov
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of El Morro National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-el-morro-national-monument
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. were derived from the NVC. NatureServe developed a preliminary list of potential vegetation types. These data were combined with existing plot data (Cully 2002) to derive an initial list of potential types. Additional data and information were gleaned from a field visit and incorporated into the final list of map units. Because of the park’s small size and the large amount of field data, the map units are equivalent to existing vegetation associations or local associations/descriptions (e.g., Prairie Dog Colony). In addition to vegetation type, vegetation structures were described using three attributes: height, coverage density, and coverage pattern. In addition to vegetation structure and context, a number of attributes for each polygon were stored in the associated table within the GIS database. Many of these attributes were derived from the photointerpretation; others were calculated or crosswalked from other classifications. Table 2.7.2 shows all of the attributes and their sources. Anderson Level 1 and 2 codes are also included (Anderson et al. 1976). These codes should allow for a more regional perspective on the vegetation types. Look-up tables for the names associated with the codes is included within the geodatabase and in Appendix D. The look-up tables contain all the NVC formation information as well as alliance names, unique IDs, and the ecological system codes (El_Code) for the associations. These El_Codes often represent a one-to-many relationship; that is, one association may be related to more than one ecological system. The NatureServe conservation status is included as a separate item. Finally, slope (degrees), aspect, and elevation were calculated for each polygon label point using a digital elevation model and an ArcView script. The slope figure will vary if one uses a TIN (triangulated irregular network) versus a GRID (grid-referenced information display) for the calculation (Jenness 2005). A grid was used for the slope figure in this dataset. Acres and hectares were calculated using XTools Pro for ArcGIS Desktop.

  2. Labels en annotaties in ArcGIS Pro

    • support-esrinl-support.hub.arcgis.com
    Updated Oct 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri_NL_Support (2023). Labels en annotaties in ArcGIS Pro [Dataset]. https://support-esrinl-support.hub.arcgis.com/datasets/labels-en-annotaties-in-arcgis-pro
    Explore at:
    Dataset updated
    Oct 3, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri_NL_Support
    Description

    Laatste update: 12 mei 2025Een kaart kan zowel geometrische objecten als tekst bevatten. Teksten dienen vaak ter verduidelijking, bijvoorbeeld om de naam van een land, provincie, stad of rivier aan te geven. Daarnaast kunnen teksten ook verschillen in prioriteit weergeven door gebruik te maken van verschillende lettertypes en groottes.Dit artikel beschrijft hoe tekstuele informatie in kaarten verwerkt kan worden binnen ArcGIS Pro. ArcGIS Pro kent twee opties om teksten op kaarten te plaatsen: (1) labels als dynamische optie en (2) annotaties als meer statische mogelijkheid.

  3. c

    Connecticut CAMA and Parcel Layer

    • geodata.ct.gov
    • data.ct.gov
    • +1more
    Updated Nov 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2024). Connecticut CAMA and Parcel Layer [Dataset]. https://geodata.ct.gov/datasets/ctmaps::connecticut-cama-and-parcel-layer
    Explore at:
    Dataset updated
    Nov 20, 2024
    Dataset authored and provided by
    State of Connecticut
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually. The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2025 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on September 2025 from data collected in 2024-2025. Data was processed using Python scripts and ArcGIS Pro for standardization and integration of the data. To learn more about Parcel and CAMA in CT visit our Parcels Page in the Geodata Portal.Coordinate system: This dataset is provided in NAD 83 Connecticut State Plane (2011) (EPSG 2234) projection as it was for 2024. Prior versions were provided at WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857). Ownership Suppression: The updated dataset includes parcel data for all towns across the state, with some towns featuring fully suppressed ownership information. In these instances, the owner’s name was replaced with the label "Current Owner," the co-owner’s name will be listed as "Current Co-Owner," and the mailing address will appear as the property address itself. For towns with fully suppressed ownership data, please note that no "Suppression" field was included in the submission to confirm these details and this labeling approach was implemented as the solution.New Data Fields:The new dataset introduces the “Property Zip” and “Mailing Zip” fields, which will display the zip codes for the owner and property.Service URL:In 2024, we implemented a stable URL to maintain public access to the most up-to-date data layer. Users are strongly encouraged to transition to the new service as soon as possible to ensure uninterrupted workflows. This URL will remain persistent, providing long-term stability for your applications and integrations. Once you’ve transitioned to the new service, no further URL changes will be necessary.CAMA Notes:The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,354,720 entries and information on property assessments and other relevant attributes.CAMA was provided by the towns.Spatial Data Notes:Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,282,833 parcels.No alteration has been made to the spatial geometry of the data.Fields that are associated with CAMA data were provided by towns.The data fields that have information from the CAMA were sourced from the towns’ CAMA data.If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.Linking fields were renamed to "Link".All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.Field names for town (Muni, Municipality) were renamed to "Town Name".Attributes included in the data: Town Name OwnerCo-OwnerLinkEditorEdit DateCollection year – year the parcels were submittedLocationProperty ZipMailing AddressMailing CityMailing StateMailing ZipAssessed TotalAssessed LandAssessed BuildingPre-Year Assessed Total Appraised LandAppraised BuildingAppraised OutbuildingConditionModelValuationZoneState UseState Use DescriptionLand Acre Living AreaEffective AreaTotal roomsNumber of bedroomsNumber of BathsNumber of Half-BathsSale PriceSale DateQualifiedOccupancyPrior Sale PricePrior Sale DatePrior Book and PagePlanning RegionFIPS Code *Please note that not all parcels have a link to a CAMA entry.*If any discrepancies are discovered within the data, whether pertaining to geographical inaccuracies or attribute inaccuracy, please directly contact the respective municipalities to request any necessary amendmentsAdditional information about the specifics of data availability and compliance will be coming soon.If you need a WFS service for use in specific applications : Please Click HereContact: opm.giso@ct.gov

  4. B

    Toronto Land Use Spatial Data - parcel-level - (2019-2021)

    • borealisdata.ca
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Fortin (2023). Toronto Land Use Spatial Data - parcel-level - (2019-2021) [Dataset]. http://doi.org/10.5683/SP3/1VMJAG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2023
    Dataset provided by
    Borealis
    Authors
    Marcel Fortin
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Toronto
    Description

    Please note that this dataset is not an official City of Toronto land use dataset. It was created for personal and academic use using City of Toronto Land Use Maps (2019) found on the City of Toronto Official Plan website at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/official-plan-maps-copy, along with the City of Toronto parcel fabric (Property Boundaries) found at https://open.toronto.ca/dataset/property-boundaries/ and Statistics Canada Census Dissemination Blocks level boundary files (2016). The property boundaries used were dated November 11, 2021. Further detail about the City of Toronto's Official Plan, consolidation of the information presented in its online form, and considerations for its interpretation can be found at https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/official-plan/ Data Creation Documentation and Procedures Software Used The spatial vector data were created using ArcGIS Pro 2.9.0 in December 2021. PDF File Conversions Using Adobe Acrobat Pro DC software, the following downloaded PDF map images were converted to TIF format. 9028-cp-official-plan-Map-14_LandUse_AODA.pdf 9042-cp-official-plan-Map-22_LandUse_AODA.pdf 9070-cp-official-plan-Map-20_LandUse_AODA.pdf 908a-cp-official-plan-Map-13_LandUse_AODA.pdf 978e-cp-official-plan-Map-17_LandUse_AODA.pdf 97cc-cp-official-plan-Map-15_LandUse_AODA.pdf 97d4-cp-official-plan-Map-23_LandUse_AODA.pdf 97f2-cp-official-plan-Map-19_LandUse_AODA.pdf 97fe-cp-official-plan-Map-18_LandUse_AODA.pdf 9811-cp-official-plan-Map-16_LandUse_AODA.pdf 982d-cp-official-plan-Map-21_LandUse_AODA.pdf Georeferencing and Reprojecting Data Files The original projection of the PDF maps is unknown but were most likely published using MTM Zone 10 EPSG 2019 as per many of the City of Toronto's many datasets. They could also have possibly been published in UTM Zone 17 EPSG 26917 The TIF images were georeferenced in ArcGIS Pro using this projection with very good results. The images were matched against the City of Toronto's Centreline dataset found here The resulting TIF files and their supporting spatial files include: TOLandUseMap13.tfwx TOLandUseMap13.tif TOLandUseMap13.tif.aux.xml TOLandUseMap13.tif.ovr TOLandUseMap14.tfwx TOLandUseMap14.tif TOLandUseMap14.tif.aux.xml TOLandUseMap14.tif.ovr TOLandUseMap15.tfwx TOLandUseMap15.tif TOLandUseMap15.tif.aux.xml TOLandUseMap15.tif.ovr TOLandUseMap16.tfwx TOLandUseMap16.tif TOLandUseMap16.tif.aux.xml TOLandUseMap16.tif.ovr TOLandUseMap17.tfwx TOLandUseMap17.tif TOLandUseMap17.tif.aux.xml TOLandUseMap17.tif.ovr TOLandUseMap18.tfwx TOLandUseMap18.tif TOLandUseMap18.tif.aux.xml TOLandUseMap18.tif.ovr TOLandUseMap19.tif TOLandUseMap19.tif.aux.xml TOLandUseMap19.tif.ovr TOLandUseMap20.tfwx TOLandUseMap20.tif TOLandUseMap20.tif.aux.xml TOLandUseMap20.tif.ovr TOLandUseMap21.tfwx TOLandUseMap21.tif TOLandUseMap21.tif.aux.xml TOLandUseMap21.tif.ovr TOLandUseMap22.tfwx TOLandUseMap22.tif TOLandUseMap22.tif.aux.xml TOLandUseMap22.tif.ovr TOLandUseMap23.tfwx TOLandUseMap23.tif TOLandUseMap23.tif.aux.xml TOLandUseMap23.tif.ov Ground control points were saved for all georeferenced images. The files are the following: map13.txt map14.txt map15.txt map16.txt map17.txt map18.txt map19.txt map21.txt map22.txt map23.txt The City of Toronto's Property Boundaries shapefile, "property_bnds_gcc_wgs84.zip" were unzipped and also reprojected to EPSG 26917 (UTM Zone 17) into a new shapefile, "Property_Boundaries_UTM.shp" Mosaicing Images Once georeferenced, all images were then mosaiced into one image file, "LandUseMosaic20211220v01", within the project-generated Geodatabase, "Landuse.gdb" and exported TIF, "LandUseMosaic20211220.tif" Reclassifying Images Because the original images were of low quality and the conversion to TIF made the image colours even more inconsistent, a method was required to reclassify the images so that different land use classes could be identified. Using Deep learning Objects, the images were re-classified into useful consistent colours. Deep Learning Objects and Training The resulting mosaic was then prepared for reclassification using the Label Objects for Deep Learning tool in ArcGIS Pro. A training sample, "LandUseTrainingSamples20211220", was created in the geodatabase for all land use types as follows: Neighbourhoods Insitutional Natural Areas Core Employment Areas Mixed Use Areas Apartment Neighbourhoods Parks Roads Utility Corridors Other Open Spaces General Employment Areas Regeneration Areas Lettering (not a land use type, but an image colour (black), used to label streets). By identifying the letters, it then made the reclassification and vectorization results easier to clean up of unnecessary clutter caused by the labels of streets. Reclassification Once the training samples were created and saved, the raster was then reclassified using the Image Classification Wizard tool in ArcGIS Pro, using the Support...

  5. g

    Soil Survey Data MB Labels

    • geoportal.gov.mb.ca
    • catalogue.arctic-sdi.org
    • +3more
    Updated Mar 8, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manitoba Maps (2012). Soil Survey Data MB Labels [Dataset]. https://geoportal.gov.mb.ca/datasets/manitoba::soil-survey-data-mb-labels
    Explore at:
    Dataset updated
    Mar 8, 2012
    Dataset authored and provided by
    Manitoba Maps
    License

    https://www.gov.mb.ca/legal/copyright.htmlhttps://www.gov.mb.ca/legal/copyright.html

    Area covered
    Description

    Soil is essential to human survival. We rely on it for the production of food, fibre, timber and energy crops. Together with climate, the soil determines which crops can be grown, where, and how much they will yield. In addition to supporting our agricultural needs, we rely on the soil to regulate the flow of rainwater and to act as a filter for drinking water. With such a tremendously important role, it is imperative that we manage our soils for their long-term productivity, sustainability and health. The first step in sustainable soil management is ensuring that the soil will support the land use activity. For example, only the better agricultural soils in Manitoba will support grain and vegetable production, while more marginal agricultural soils will support forage and pasture-based production. For this reason, agricultural development should only occur in areas where the soil resource will support the agricultural activity. The only way to do this is to understand the soil resource that is available. Soil survey information is the key to understanding the soil resource. Soil survey is an inventory of the properties of the soil (such as texture, internal drainage, parent material, depth to groundwater, topography, degree of erosion, stoniness, pH, and salinity) and their spatial distribution over a landscape. Soils are grouped into similar types and their boundaries are delineated on a map. Each soil type has a unique set of physical, chemical and mineralogical characteristics and has similar reactions to use and management. The information assembled in a soil survey can be used to predict or estimate the potentials and limitations of the soils’ behaviour under different uses. As such, soil surveys can be used to plan the development of new lands or to evaluate the conversion of land to new uses. Soil surveys also provide insight into the kind and intensity of land management that will be needed. The survey scale of soils data for Manitoba ranges from 1:5,000 to 1:126,720, as identified in the 'SCALE' column.This file contains soils data that has been collected at a survey intensity level of the first order. This includes data collected at a scale of 1:5,000. The survey objective at this scale is to collect high precision field scale data and it is mostly used in research plots and other highly intensive areas. It is also applicable to agricultural production and planning such as precision farming, agriculture capability, engineering, recreation, potato/irrigation suitability, and productivity indices. Profile descriptions and samples are collected for all soils. At least one soil inspection exists per delineation and the minimum size delineation is 0.25 acres. The soil taxonomy is generally Phases of Soil Series. The mapping scale is 1:5,000 or 12.7 in/ mile.This file also contains soils data that has been collected in Manitoba at a survey intensity level of the second order. This includes data collected at a scale of 1:20,000. The survey objective at this scale is to collect field scale data and it is mostly used in agricultural production and planning such as precision farming, agriculture capability, engineering, recreation, potato/irrigation suitability, and productivity indices. Soil pits are generally about 200 metres apart and are dug along transects which are about 500 metres apart. This translates to about 32 inspections sites per section(640 acres). The soils in each delineation are identified by field observations and remotely sensed data. Boundaries are verified at closely spaced intervals. Profile descriptions are collected for all major named soils and 10 inspection sites/section and 2 to 3 horizons per site require lab analyses. At least one soil inspection exists in over 90% of delineations and the minimum size delineation is generally about 4 acres at 1:20,000. The soil taxonomy is generally Phases of Soil Series. The mapping scale is 1:20,000 or 3.2 inch/ mile.This file also contains data that has been collected at the third order. This includes scales of 1:40,000 and 1:50,000.The survey objective at this scale is to collect field scale or regional data. If the topography is relatively uniform, appropriate interpretations include agriculture capability, engineering, recreation, potato/irrigation suitability, and productivity indices. Soil pits are generally dug adjacent to section perimeters. This translates to about 16 inspection sites per section(640 acres). Soil boundaries are plotted by observation and remote sensed data. Profile descriptions exist for all major named soils and 2 inspection sites/section and 2 to 3 horizons per site require lab analyses. At least one soil inspection exists in 60-80% of delineations and the minimum size delineation is generally in the 10 to 20acre range. The soil taxonomy is generally Series or Phases of Soil Series. The mapping scale is 1:40,000 or 2 inch/ mile; 1:50,000 or 1.5 inch/mile.This file also contains soils data that has been collected at a survey intensity level of the fourth order. This includes scales of 1:63,360, 1:100,000, 1:125,000, and 1:126,720.The survey objective is to collect provincial data and to provide general soil information about land management and land use. The number of soil pits dug averaged to about 6 inspections per section (640 acres). Soil boundaries are plotted by interpretation of remotely sensed data and few inspections exist. Profile descriptions are collected for all major named soils. At least one soil inspection exists in 30-60% of delineations and the minimum size delineation is 40 acres (1:63,360), 100 acres (1:100,000), 156 acres (126,700) and 623 acres (250,000). The soil taxonomy is generally phases of Subgroup or Association. As of 2022, soil survey field work and reports are still currently being collected in certain areas where detailed information does not exist. This file will be updated as more information becomes available. Typically, this is conducted on an rural municipality basis.In some areas of Manitoba, more detailed and historical information exists than what is contained in this file. However, at this time, some of this information is only available in a hard copy format. This file will be updated as more of this information is transferred into a GIS format.This file has an organizational framework similar to the original SoilAID digital files and a portion of this geographic extent was originally available on the Manitoba Land Initiative (MLI) website.Domains and coded values have also been integrated into the geodatabase files. This allows the user to view attribute information in either an abbreviated or a more descriptive manner. Choosing to display the description of the coded values allows the user to view the expanded information associated with the attribute value (reducing the need to constantly refer to the descriptions within the metadata). To change these settings in ArcCatalog, go to Customize --> ArcCatalog Options --> Tables tab --> check or uncheck 'Display coded value domain and subtype descriptions'.To change these settings in ArcMap, go to Customize --> ArcMapOptions --> Tables tab --> check or uncheck 'Display coded value domain and subtype descriptions'. This setting can also be changed by opening the attribute table, then Table Options (top left) --> Appearance --> check or uncheck 'Display coded value domain and subtype descriptions'. The file also contains field aliases, which can also be turned on or off under Table Options.This same capability is available in ArcGIS Pro.For more info:https://www.gov.mb.ca/agriculture/soil/soil-survey/importance-of-soil-survey-mb.html#

  6. g

    NSDI Zambia Operational Health Facility Layer, Version 01 (Beta)

    • data.grid3.org
    • africageoportal.com
    • +3more
    Updated Aug 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GRID3 (2020). NSDI Zambia Operational Health Facility Layer, Version 01 (Beta) [Dataset]. https://data.grid3.org/datasets/f523a78b0e2b4c6a8719ef05a165ab4e
    Explore at:
    Dataset updated
    Aug 21, 2020
    Dataset authored and provided by
    GRID3
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The "NSDI Zambia Operational Health Facility Layer, Version 01 (Beta)" provides health facility and health affiliated infrastructure point locations, names, types, and source of the data. The dataset was developed by compiling and standardizing existing government data sources of health facility and affiliated infrastructure locations and names data from the Ministry of Health (MoH) obtained in 2019 and from the 2010 census cartography from Zambia Statistics Agency (ZamStats). The dataset is available for download in shapefile format and can be viewed in Geographic Information Systems(GIS) such as ArcMap, QGIS, or Google Earth (Pro). The data is available for all of Zambia. It has the following attributes: Name, Original Name (from original dataset), Type, Sub Type, Source, Province (Code), District (Code), Global ID. The dataset also includes a Label column which can be used for labeling.For more information about the settlement data and methodology, see the data release notes here.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of El Morro National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-el-morro-national-monument
Organization logo

Geospatial data for the Vegetation Mapping Inventory Project of El Morro National Monument

Explore at:
Dataset updated
Nov 25, 2025
Dataset provided by
National Park Servicehttp://www.nps.gov/
Description

The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. were derived from the NVC. NatureServe developed a preliminary list of potential vegetation types. These data were combined with existing plot data (Cully 2002) to derive an initial list of potential types. Additional data and information were gleaned from a field visit and incorporated into the final list of map units. Because of the park’s small size and the large amount of field data, the map units are equivalent to existing vegetation associations or local associations/descriptions (e.g., Prairie Dog Colony). In addition to vegetation type, vegetation structures were described using three attributes: height, coverage density, and coverage pattern. In addition to vegetation structure and context, a number of attributes for each polygon were stored in the associated table within the GIS database. Many of these attributes were derived from the photointerpretation; others were calculated or crosswalked from other classifications. Table 2.7.2 shows all of the attributes and their sources. Anderson Level 1 and 2 codes are also included (Anderson et al. 1976). These codes should allow for a more regional perspective on the vegetation types. Look-up tables for the names associated with the codes is included within the geodatabase and in Appendix D. The look-up tables contain all the NVC formation information as well as alliance names, unique IDs, and the ecological system codes (El_Code) for the associations. These El_Codes often represent a one-to-many relationship; that is, one association may be related to more than one ecological system. The NatureServe conservation status is included as a separate item. Finally, slope (degrees), aspect, and elevation were calculated for each polygon label point using a digital elevation model and an ArcView script. The slope figure will vary if one uses a TIN (triangulated irregular network) versus a GRID (grid-referenced information display) for the calculation (Jenness 2005). A grid was used for the slope figure in this dataset. Acres and hectares were calculated using XTools Pro for ArcGIS Desktop.

Search
Clear search
Close search
Google apps
Main menu