3 datasets found
  1. R

    Detect_label Dataset

    • universe.roboflow.com
    zip
    Updated Jun 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    le viet tung (2024). Detect_label Dataset [Dataset]. https://universe.roboflow.com/le-viet-tung/detect_label-dqfs9/dataset/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 29, 2024
    Dataset authored and provided by
    le viet tung
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Tiger Label Bounding Boxes
    Description

    Detect_label

    ## Overview
    
    Detect_label is a dataset for object detection tasks - it contains Tiger Label annotations for 528 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  2. R

    Microsoft Coco Dataset

    • universe.roboflow.com
    zip
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2025). Microsoft Coco Dataset [Dataset]. https://universe.roboflow.com/microsoft/coco/model/3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 4, 2025
    Dataset authored and provided by
    Microsoft
    Variables measured
    Object Bounding Boxes
    Description

    Microsoft Common Objects in Context (COCO) Dataset

    The Common Objects in Context (COCO) dataset is a widely recognized collection designed to spur object detection, segmentation, and captioning research. Created by Microsoft, COCO provides annotations, including object categories, keypoints, and more. The model it a valuable asset for machine learning practitioners and researchers. Today, many model architectures are benchmarked against COCO, which has enabled a standard system by which architectures can be compared.

    While COCO is often touted to comprise over 300k images, it's pivotal to understand that this number includes diverse formats like keypoints, among others. Specifically, the labeled dataset for object detection stands at 123,272 images.

    The full object detection labeled dataset is made available here, ensuring researchers have access to the most comprehensive data for their experiments. With that said, COCO has not released their test set annotations, meaning the test data doesn't come with labels. Thus, this data is not included in the dataset.

    The Roboflow team has worked extensively with COCO. Here are a few links that may be helpful as you get started working with this dataset:

  3. Data from: Hierarchical Deep Learning Framework for Automated Marine...

    • figshare.com
    bin
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bjørn Christian Weinbach (2024). Hierarchical Deep Learning Framework for Automated Marine Vegetation and Fauna Analysis Using ROV Video Data [Dataset]. http://doi.org/10.6084/m9.figshare.25688718.v4
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    figshare
    Authors
    Bjørn Christian Weinbach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Experimental data for the paper "Hierarchical Deep Learning Framework for Automated Marine Vegetation and Fauna Analysis Using ROV Video Data."This dataset supports the study "Hierarchical Deep Learning Framework for Automated Marine Vegetation and Fauna Analysis Using ROV Video Data" by providing resources essential for reproducing and validating the research findings.Dataset Contents and Structure:Hierarchical Model Weights: - .pth files containing trained weights for all alpha regularization values used in hierarchical classification models.MaskRCNN-Segmented Objects: - .jpg files representing segmented objects detected by the MaskRCNN model. - Accompanied by maskrcnn-segmented-objects-dataset.parquet, which includes metadata and classifications: - Columns:masked_image: Path to the segmented image file.confidence: Confidence score for the prediction.predicted_species: Predicted species label.species: True species label.MaskRCNN Weights: - Trained MaskRCNN model weights, including hierarchical CNN models integrated with MaskRCNN in the processing pipeline.Pre-Trained Models:.pt files for all object detectors trained on the Esefjorden Marine Vegetation Segmentation Dataset (EMVSD) in YOLO txt format.Segmented Object Outputs: - Segmentation outputs and datasets for the following models: - RT-DETR: - Segmented objects: rtdetr-segmented-objects/ - Dataset: rtdetr-segmented-objects-dataset.parquet - YOLO-SAG: - Segmented objects: yolosag-segmented-objects/ - Dataset: yolosag-segmented-objects-dataset.parquet - YOLOv11: - Segmented objects: yolov11-segmented-objects/ - Dataset: yolov11-segmented-objects-dataset.parquet - YOLOv8: - Segmented objects: yolov8-segmented-objects/ - Dataset: yolov8-segmented-objects-dataset.parquet - YOLOv9: - Segmented objects: yolov9-segmented-objects/ - Dataset: yolov9-segmented-objects-dataset.parquetUsage Instructions:1. Download and extract the dataset.2. Utilize the Python scripts provided in the associated GitHub repository for evaluation and inference: https://github.com/Ci2Lab/FjordVisionReproducibility:The dataset includes pre-trained weights, segmentation outputs, and experimental results to facilitate reproducibility. The .parquet files and segmented object directories follow a standardized format to ensure consistency.Licensing:This dataset is released under the CC-BY 4.0 license, permitting reuse with proper attribution.Related Materials:- GitHub Repository: https://github.com/Ci2Lab/FjordVision

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
le viet tung (2024). Detect_label Dataset [Dataset]. https://universe.roboflow.com/le-viet-tung/detect_label-dqfs9/dataset/3

Detect_label Dataset

detect_label-dqfs9

detect_label-dataset

Explore at:
15 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Jun 29, 2024
Dataset authored and provided by
le viet tung
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Variables measured
Tiger Label Bounding Boxes
Description

Detect_label

## Overview

Detect_label is a dataset for object detection tasks - it contains Tiger Label annotations for 528 images.

## Getting Started

You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.

  ## License

  This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Search
Clear search
Close search
Google apps
Main menu