94 datasets found
  1. 2015 - 2016 LARIAC Lidar DEM: Los Angeles Region, CA

    • fisheries.noaa.gov
    html
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2017). 2015 - 2016 LARIAC Lidar DEM: Los Angeles Region, CA [Dataset]. https://www.fisheries.noaa.gov/inport/item/55257
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 20, 2017
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Sep 27, 2015 - Oct 18, 2016
    Area covered
    Description

    This raster dataset contains LiDAR-derived elevation data flown from Fall 2015 to Spring 2016, with additional reflights through Fall 2016. This dataset encompasses all of the LARIAC4 project, comprised of approximately 4214 square miles.

    The NOAA Office for Coastal Management (OCM) downloaded this digital elevation model (DEM) data from the USGS site: ftp://rockyftp.cr.usgs.gov/vdelivery/Data...

  2. d

    Lidar-Derived Seamless Digital Elevation Model (DEM) Mosaic for Coastal...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Lidar-Derived Seamless Digital Elevation Model (DEM) Mosaic for Coastal Topography—Chandeleur Islands, Louisiana, 23-25 June 2016 [Dataset]. https://catalog.data.gov/dataset/lidar-derived-seamless-digital-elevation-model-dem-mosaic-for-coastal-topographychandeleur
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Chandeleur Islands, Louisiana
    Description

    A digital elevation model (DEM) mosaic was produced for the Chandeleur Islands, Louisiana, from remotely sensed, geographically referenced elevation measurements collected by Leading Edge Geomatics (LEG) using a Leica Chiroptera II Bathymetric and Topographic Sensor. Dewberry reports that the nominal pulse spacing for this project was 1 point every 0.7 meters. Dewberry used proprietary procedures to classify the LAS according to project specifications: 0-Never Classified, 1-Unclassified, 2-Ground (includes model key point bit for points identified as Model Key Point), 7-Low Noise, 17-Bridges, 18-High Noise, 40-Bathymetric point or submerged topography (includes model key point bit for points identified as Model Key Point), 41-Water Surface, and 42-Derived water surface.

  3. a

    Maryland LiDAR Baltimore City - DEM Meters

    • dev-maryland.opendata.arcgis.com
    • data.imap.maryland.gov
    • +1more
    Updated Jan 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2015). Maryland LiDAR Baltimore City - DEM Meters [Dataset]. https://dev-maryland.opendata.arcgis.com/datasets/f4fc2b60589d4ca7905019d9ad058783
    Explore at:
    Dataset updated
    Jan 1, 2015
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    MD/PA Sandy Supplemental Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00397 Woolpert Order No. 74333 CONTRACTOR: Woolpert, Inc. This task is for a high resolution data set of lidar covering approximately 1,845 square miles. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, one (1) meter pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format, and LAS swath data. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. Coastal tiles 18SVH065720 and 8SVH095690 contain no lidar points as they exist completely in water. A DEM IMG was generated for these two tiles as the digitized hydro breakline assumed the data extent in the area. As such only 2568 LAS and Intensity files will be delivered along with 2570 DEM IMG's.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/BaltimoreCity/MD_baltimorecity_dem_m/ImageServer

  4. a

    Maine Elevation DEM 2019 (Imagery Layer)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • maine.hub.arcgis.com
    • +2more
    Updated Sep 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2020). Maine Elevation DEM 2019 (Imagery Layer) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/maine::maine-elevation-dem-2019-imagery-layer-
    Explore at:
    Dataset updated
    Sep 16, 2020
    Dataset authored and provided by
    State of Maine
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Purpose: To acquire detailed surface elevation data for use in conservation planning, design, research, floodplain mapping, dam safety assessments and elevation modeling, etc. Classified LAS files are used to show the manually reviewed bare earth surface. This allows the user to create intensity images, breaklines and raster DEMs. The purpose of these LiDAR data was to produce high accuracy 3D hydro-flattened digital elevation models (DEMs) with a 1-meter cell size. These raw LiDAR point cloud data were used to create classified LiDAR LAS files, intensity images, 3D breaklines, and hydro-flattened DEMs as necessary.Product: These are Digital Elevation Model (DEM) data for Northern Maine as part of the required deliverables for the Crown of Maine 2018 QL2 LiDAR project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1-meter hydro-flattened raster DEM.This lidar data set includes unclassified swath LAS 1.4 files, classified LAS 1.4 files, hydro and bridge breaklines, hydro-flattened digital elevation models (DEMs), and intensity imagery. Geographic Extent: 4 partial counties in Northern Maine, covering approximately 6,732 total square miles. Dataset Description: The Crown of Maine 2018 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.71 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 19, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 8,056 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in spring of 2018 and 2019, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 256 independent accuracy checkpoints, 149 in Bare Earth and Urban landcovers (149 NVA points), 107 in Tall Weeds categories (107 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.

  5. d

    LAS dataset of LiDAR data collected at Lake Superior at Minnesota Point,...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). LAS dataset of LiDAR data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 [Dataset]. https://catalog.data.gov/dataset/las-dataset-of-lidar-data-collected-at-lake-superior-at-minnesota-point-duluth-mn-august-2
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Minnesota, Duluth, Minnesota Point, Lake Superior
    Description

    This dataset is a LAS (industry-standard binary format for storing large point clouds) dataset containing light detection and ranging (LiDAR) data representing beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. Average point spacing of the LiDAR points in the dataset is 0.137 meters (m; 0.45 feet [ft]). The LAS dataset was used to create a 1-m (3.28084 ft) digital elevation model (DEM) of the approximately 4 kilometer (2.5 mile) surveyed reach of the beach. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019).

  6. Digital Elevation Model (DEM), LiDAR acquired and processed over the entire...

    • data.wu.ac.at
    html, map service url
    Updated Aug 19, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSGIC Non-Profit | GIS Inventory (2017). Digital Elevation Model (DEM), LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos & 2' contours. The Lidar LAS data has been classified to bare-earth as well as first-return points., Published in 2009, 1:1200 (1in=100ft) scale, Maryland National Capital Park and Planning Commission. [Dataset]. https://data.wu.ac.at/schema/data_gov/ZTQ4MGQ3MzAtMDFmOC00Y2ExLWJkZjEtM2ZmNjU4MTc5NzMz
    Explore at:
    html, map service urlAvailable download formats
    Dataset updated
    Aug 19, 2017
    Dataset provided by
    National States Geographic Information Council
    Area covered
    4a068497dc3565afafee7ad0ed160636c7425723
    Description

    Digital Elevation Model (DEM) dataset current as of 2009. LiDAR acquired and processed over the entire county to support the generation of 1"=100' scale orthophotos & 2' contours. The Lidar LAS data has been classified to bare-earth as well as first-return points..

  7. U

    Digital elevation model, in meters, of the bathymetry of Dierks Lake,...

    • data.usgs.gov
    • catalog.data.gov
    Updated Nov 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Wagner; Amanda Whaling (2021). Digital elevation model, in meters, of the bathymetry of Dierks Lake, Arkansas [Dataset]. http://doi.org/10.5066/P9PB1TE8
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Daniel Wagner; Amanda Whaling
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jun 28, 2018 - Jul 2, 2018
    Area covered
    Dierks Lake, Arkansas
    Description

    The dataset is a digital elevation model (DEM), in GeoTiff format, of the bathymetry of Dierks Lake, Howard and Sevier Counties, Arkansas. The extent of the DEM represents the area encompassing the extent of the aerial Light Detection And Ranging (LiDAR) data used in the project. Horizontal and vertical units are expressed in meters. The DEM was derived from an LAS dataset (an industry-standard binary format for storing aerial LiDAR data) created from point datasets stored in “Dierks2018_gdb”. The point datasets include aerial LiDAR data from a survey conducted in 2016 by the National Resources Conservation Service (U.S. Geological Survey, 2017), point data from digitized historical topographic maps, and bathymetric data from a survey conducted in June 2018 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for single- and multi-beam sonar surveys similar to those described by Wilson and Richards (2006) and Richards and ...

  8. a

    Maryland LiDAR Baltimore City - DEM Feet

    • dev-maryland.opendata.arcgis.com
    • data.imap.maryland.gov
    • +1more
    Updated Jan 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2015). Maryland LiDAR Baltimore City - DEM Feet [Dataset]. https://dev-maryland.opendata.arcgis.com/datasets/e40871e90800420ea90b0fcdf9a36063
    Explore at:
    Dataset updated
    Jan 1, 2015
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    MD/PA Sandy Supplemental Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00397 Woolpert Order No. 74333 CONTRACTOR: Woolpert, Inc. This task is for a high resolution data set of lidar covering approximately 1,845 square miles. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, one (1) meter pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format, and LAS swath data. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. Coastal tiles 18SVH065720 and 8SVH095690 contain no lidar points as they exist completely in water. A DEM IMG was generated for these two tiles as the digitized hydro breakline assumed the data extent in the area. As such only 2568 LAS and Intensity files will be delivered along with 2570 DEM IMG's.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/BaltimoreCity/MD_baltimorecity_dem_ft/ImageServer

  9. c

    LAS dataset of lidar, single-beam, and multibeam data collected at Minnesota...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Sep 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). LAS dataset of lidar, single-beam, and multibeam data collected at Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/las-dataset-of-lidar-single-beam-and-multibeam-data-collected-at-minnesota-point-near-the-
    Explore at:
    Dataset updated
    Sep 14, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Minnesota, Duluth, Minnesota Point, Lake Superior
    Description

    This dataset is a LAS dataset containing light detection and ranging (lidar) data and multibeam sonar data representing the beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The LAS dataset used to create a digital elevation model (DEM) of the approximate 1.87 square kilometer surveyed area. Lidar data were collected using a boat mounted Velodyne VLP-16 unit. Multibeam sonar data were collected using a Norbit integrated wide band multibeam system compact (iWBMSc) sonar unit. Single-beam sonar data were collected using a Ceescope sonar unit. All elevation data were collected June 22-24, 2021. Methodology similar to Wagner, D.M., Lund, J.W., and Sanks, K.M., 2020 was used.

  10. a

    Digital Elevation Model (DEM) - USGS LiDAR

    • data-dauphinco.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated May 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dauphin County, PA (2018). Digital Elevation Model (DEM) - USGS LiDAR [Dataset]. https://data-dauphinco.opendata.arcgis.com/documents/339f39c0b4054cbc90c454b7dfb61231
    Explore at:
    Dataset updated
    May 1, 2018
    Dataset authored and provided by
    Dauphin County, PA
    Description

    The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.

  11. 2018 - 2019 State of Maine Lidar DEM: Crown of Maine

    • fisheries.noaa.gov
    geotiff +1
    Updated Oct 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2019). 2018 - 2019 State of Maine Lidar DEM: Crown of Maine [Dataset]. https://www.fisheries.noaa.gov/inport/item/75268
    Explore at:
    not applicable, geotiffAvailable download formats
    Dataset updated
    Oct 29, 2019
    Dataset provided by
    OCM Partners
    Time period covered
    May 12, 2018 - Jun 8, 2019
    Area covered
    Description

    Original Dataset Product: These are Digital Elevation Model (DEM) data for Northern Maine as part of the required deliverables for the Crown of Maine 2018 QL2 LiDAR project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1-meter hydro-flattened raster DEM. This lidar data set includes unclassified swath LAS 1.4 files, classified LAS 1.4 files, hydr...

  12. d

    2011 - 2013 Indiana Statewide Lidar

    • search.dataone.org
    • indiana-gio-data-sharing-ingov.hub.arcgis.com
    • +7more
    Updated Oct 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2023). 2011 - 2013 Indiana Statewide Lidar [Dataset]. https://search.dataone.org/view/sha256%3Aa9ddf3cf359a6899a349750db96d282f16861318416cbc4a8b05a3fc44925bc9
    Explore at:
    Dataset updated
    Oct 16, 2023
    Dataset provided by
    OpenTopography
    Time period covered
    Mar 13, 2011 - Apr 30, 2012
    Area covered
    Description

    Indiana's Statewide Lidar data is produced at 1.5-meter average post spacing for all 92 Indiana Counties covering more than 36,420 square miles. New Lidar data was captured except where previously captured Lidar data exists, or the participating County bought-up to a higher resolution of 1.0-meter average post spacing Lidar data. Existing Lidar data exists for: Porter, Steuben, Noble, De Kalb, Allen, Madison, Delaware, Hendricks, Marion, Hancock, Morgan, Johnson, Shelby, Monroe, and portions of Vermillion, Parke, Vigo, Clay, Sullivan, Knox, Gibson, and Posey. These existing Lidar datasets were seamlessly integrated into this new statewide dataset. From this seamless Lidar product a statewide 5-foot post spacing hydro-flattened DEM product was created and is also available. See the FGDC Metadata provided for more details.

    This statewide project is divided into three geographic areas captured over a 3-year period (2011-2013):
    Area 1 (2011) Indiana central counties: St. Joseph, Elkhart, Starke, Marshall, Kosciusko, Pulaski, Fulton, Cass, Miami, Wabash, Carroll, Howard, Clinton, Tipton, Boone, Hendricks, Marion, Morgan, Johnson, Monroe, Brown, Bartholomew, Lawrence, Jackson, Orange, Washington, Crawford, and Harrison.

    Area 2 (2012) Indiana eastern counties: LaGrange, Steuben, Noble, DeKalb, Whitley, Allen, Huntington, Wells, Adams, Grant, Blackford, Jay, Hamilton, Madison, Delaware, Randolph, Hancock, Henry, Wayne, Shelby, Rush, Fayette, Union, Decatur, Franklin, Jennings, Ripley, Dearborn, Ohio, Scott, Jefferson, Switzerland, Clark, and Floyd.

    Area 3 (2013) Indiana western counties: Lake, Porter, LaPorte, Newton, Jasper, Benton, White, Warren, Tippecanoe, Fountain, Montgomery, Vermillion, Parke, Putnam, Vigo, Clay, Owen, Sullivan, Greene, Knox, Daviess, Martin, Gibson, Pike, Dubois, Posey, Vanderburgh, Warrick, Spencer, and Perry.

    Funders of OpenTopography Hosting of the Indiana Statewide Lidar and DEM data: USDA NRCS, Indiana, ISPLS Foundation, Indiana Geographic Information Office, Indiana Office of Technology, Indiana Geological Survey, Surdex Corporation, Vectren Energy Delivery, Indiana, Woolpert, Inc., and Individual IGIC Member Donations from Jim Stout, Jeff McCann, Cele Morris, Becky McKinley, Phil Worrall, and Andy Nicholson.

    To explore a web map of topographic differencing for the entire state of Indiana click here

  13. f

    Florida Peninsular Lidar LAS Index

    • geodata.floridagio.gov
    • floridagio.gov
    • +1more
    Updated Jul 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Florida Geographic Information Office (2021). Florida Peninsular Lidar LAS Index [Dataset]. https://geodata.floridagio.gov/datasets/florida-peninsular-lidar-las-index
    Explore at:
    Dataset updated
    Jul 20, 2021
    Dataset authored and provided by
    State of Florida Geographic Information Office
    Area covered
    Florida,
    Description

    Index grid for locating and downloading original LAS and DEM datasets from the FL Peninsular and Hx Michael Supplemental LiDAR projects. Dashboard.

  14. Northland LiDAR Point Cloud (2024)

    • data.linz.govt.nz
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information New Zealand (2024). Northland LiDAR Point Cloud (2024) [Dataset]. https://data.linz.govt.nz/layer/d3TxZSZ248ThwNf/northland-lidar-point-cloud-2024/
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Land Information New Zealandhttps://www.linz.govt.nz/
    License

    https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This layer contains the Point Cloud for LiDAR data in the Northland region, captured between 18 April 2024 - 28 June 2024.

    The DEM is available as layer Northland LiDAR 1m DEM (2024).

    The DSM is available as layer Northland LiDAR 1m DSM (2024).

    The Index Tiles are available as layer Northland LiDAR Index Tiles (2024).

    LiDAR was captured for Regional Software Holdings Ltd by Landpro Ltd from 18 April to 28 June 2024. The dataset was generated by Landpro and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand.

    Data comprises:

    DEM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout

    DSM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout

    Point cloud: las tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout

    Pulse density specification is at a minimum of 8 pulses/square metre.

    Vertical Accuracy Specification is +/- 0.2m (95%) Horizontal Accuracy Specification is +/- 1.0m (95%)

    Vertical datum is NZVD2016.

  15. d

    2016 USGS Lidar DEM: Maine QL2.

    • datadiscoverystudio.org
    • fisheries.noaa.gov
    • +1more
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). 2016 USGS Lidar DEM: Maine QL2. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/a0a4af57456c453f98adcad4e70d1d21/html
    Explore at:
    Dataset updated
    Feb 7, 2018
    Description

    description: Product: These are Digital Elevation Model (DEM) data for Franklin, Oxford, Piscataquis, and Somerset Counties, Maine as part of the required deliverables for the 2016 Maine Lidar project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1 meter hydro-flattened raster DEM. Geographic Extent: Four partial counties in western Maine, covering approximately 5,034 total square miles Dataset Description: Maine 2016 QL2 Lidar project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) UTM Zone 19, meters and vertical datum of NAVD1988 (Geoid 12B), meters. Lidar data was delivered as flightline-extent unclassified LAS swaths, as processed Classified LAS 1.4 files formatted to 6,115 individual 1,500 meter x 1,500 meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500 meter x 1,500 schema. Continuous breaklines were produced in Esri file geodatabase format. Continuous contours with an interval of 1 foot were created in Esri file geodatabase format. Ground Conditions: Lidar was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 101 ground control points that were used to calibrate the lidar to known ground locations established throughout the Maine project area. An additional 205 independent accuracy checkpoints, 118 in Bare Earth and Urban landcovers (118 NVA points), 87 in Forested, Brushland/Trees, and Tall Weeds/Crops categories (87 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. In addition to the bare earth DEMs, the topobathy lidar point data are also available. These data are available for custom download here: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=6264 Breaklines created from the lidar area also available for download in either gdb or gpkg format at: https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6264/breaklines. The DEM and breakline products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA, OCM or its partners.; abstract: Product: These are Digital Elevation Model (DEM) data for Franklin, Oxford, Piscataquis, and Somerset Counties, Maine as part of the required deliverables for the 2016 Maine Lidar project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1 meter hydro-flattened raster DEM. Geographic Extent: Four partial counties in western Maine, covering approximately 5,034 total square miles Dataset Description: Maine 2016 QL2 Lidar project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) UTM Zone 19, meters and vertical datum of NAVD1988 (Geoid 12B), meters. Lidar data was delivered as flightline-extent unclassified LAS swaths, as processed Classified LAS 1.4 files formatted to 6,115 individual 1,500 meter x 1,500 meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500 meter x 1,500 schema. Continuous breaklines were produced in Esri file geodatabase format. Continuous contours with an interval of 1 foot were created in Esri file geodatabase format. Ground Conditions: Lidar was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 101 ground control points that were used to calibrate the lidar to known ground locations established throughout the Maine project area. An additional 205 independent accuracy checkpoints, 118 in Bare Earth and Urban landcovers (118 NVA points), 87 in Forested, Brushland/Trees, and Tall Weeds/Crops categories (87 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. In addition to the bare earth DEMs, the topobathy lidar point data are also available. These data are available for custom download here: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=6264 Breaklines created from the lidar area also available for download in either gdb or gpkg format at: https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6264/breaklines. The DEM and breakline products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA, OCM or its partners.

  16. Wapato Lake National Wildlife Refuge: 2011 LiDAR Data; Classified and Raw...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish and Wildlife Service (2025). Wapato Lake National Wildlife Refuge: 2011 LiDAR Data; Classified and Raw LAS, Shapefiles, DEM [Dataset]. https://catalog.data.gov/dataset/wapato-lake-national-wildlife-refuge-2011-lidar-data-classified-and-raw-las-shapefiles-dem
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Description

    This dataset includes, LiDAR point cloud, DEM, hydro-conditioned DEM, and other calibration files. All geospatial data is available through the FWS Geospatial FileShare (EDW). FWS stores this dataset on the FWS Enterprise Data Warehouse for use in internal projects. There are no restrictions on this data, but it is very large and managed on an internal server. It is available to anyone on request.

  17. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  18. 2021 USGS Lidar DEM: Central Eastern Massachusetts

    • fisheries.noaa.gov
    geotiff +1
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2022). 2021 USGS Lidar DEM: Central Eastern Massachusetts [Dataset]. https://www.fisheries.noaa.gov/inport/item/75261
    Explore at:
    not applicable, geotiffAvailable download formats
    Dataset updated
    Jun 17, 2022
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Mar 20, 2021 - Apr 24, 2021
    Area covered
    Description

    Original Product: Hydroflattened Digital Elevation Model (DEM) data covering the Central Eastern Massachusetts project area.

    Original Dataset Geographic Extent: This dataset and derived products encompass an area covering approximately 5,246 Square Miles of Massachusetts.

    Original Dataset Description: Lidar flight line swaths were processed to create 6,038 classified LAS 1.4 files delin...

  19. r

    Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped...

    • researchdata.edu.au
    • data.gov.au
    Updated Dec 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2018). Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped to Galilee Subregion extent [Dataset]. https://researchdata.edu.au/smoothed-digital-elevation-subregion-extent/2993521
    Explore at:
    Dataset updated
    Dec 9, 2018
    Dataset provided by
    data.gov.au
    Authors
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from the 1 second SRTM Digital Elevation Model (DEM) dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    A clipped version of the Australia wide 1 second -S DEM, version 1, which limits the size to the rectangular extent of the Galilee Basin Subregion, enhancing speed and efficiency for visualisation and processing.

    The metadata for the Geoscience Australia 1 sec SRTM is below:

    The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artefacts and noise.

    The data has been treated with several processes to produce more usable products:

    \* A cleaned digital surface model (DSM)

    \* regular grid representing ground surface topography as well as other features including vegetation and man-made structures

    \* A bare-earth digital elevation model (DEM)

    \* regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.

    \* A smoothed digital elevation model (DEM-S)

    \* A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.

    \* A hydrologically enforced digital elevation model (DEM-H)

    \* A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.

    The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.

    For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.

    The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.

    Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.

    The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.

    Purpose

    To enhance the speed and efficiency for visualisation and processing of the smoothed 1 second DEM data within the Galilee Basin Subregion

    Dataset History

    The original, Australia wide, 1 second smoothed DEM was clipped to rectangular extents of the Galilee subregion using the Spatial Analyst 'Extract By Rectangle' tool in ESRI ArcCatalog v10.0 with the following parameters:

    Input raster: source 1 second SRTM

    Extent: Galilee Basin subregion polygon

    Extraction Area: INSIDE

    'no data' values are created outside the clip extent therefore the extent of the dataset may still reflect the national DEM extent in ArcCatalog. Check the tool details for more info.

    The lineage of the source 1 second SRTM is below:

    The following datasets were used to derive this version of the 1 second DEM products:

    Source data

    1. SRTM 1 second Version 2 data (Slater et al., 2006), supplied by Defence Imagery and Geospatial Organisation (DIGO) as 813 1 x 1 degree tiles. Data were produced by NASA from radar data collected by the Shuttle Radar Topography Mission in February 2000.

    2. GEODATA 9 second DEM Version 3 (Geoscience Australia, 2008) used to fill voids.

    3. SRTM Water Body Data (SWBD) shapefile accompanying the SRTM data (Slater et al., 2006). This defines the coastline and larger inland waterbodies for the DEM and DSM.

    4. Vegetation masks and water masks applied to the DEM to remove vegetation.

    Full metadata, methodologies and lineage descriptions can be found in the PDF userguide within this dataset.

    Dataset Citation

    Bioregional Assessment Programme (2014) Smoothed Digital Elevation Model (DEM) - 1 arc second resolution - Clipped to Galilee Subregion extent. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/0fe257aa-8845-4183-9d05-5b48edd98f34.

    Dataset Ancestors

  20. d

    GLO DEM 1sec SRTM MGA56

    • data.gov.au
    • researchdata.edu.au
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). GLO DEM 1sec SRTM MGA56 [Dataset]. https://data.gov.au/data/dataset/ca38ed31-e15d-4bb5-a7ef-0aeba3dad3f4
    Explore at:
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from the Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM) dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    This dataset provides a userguide and setup information relating to accessing the Geoscience Australia, 1 second SRTM Digital Elevation Model (DEM), for visualisation and analysis using ESRI ArcMap and ArcCatalog.

    The 1 second DSM, DEM, DEM-S and DEM-H are national elevation data products derived from the Shuttle Radar Topography Mission (SRTM) data. The SRTM data is not suitable for routine application due to various artifacts and noise.

    The data has been treated with several processes to produce more usable products:

    * A cleaned digital surface model (DSM)

    o regular grid representing ground surface topography as well as other features including vegetation and man-made structures

    * A bare-earth digital elevation model (DEM)

    o regular grid representing ground surface topography, and where possible, excluding other features such as vegetation and man-made structures.

    * A smoothed digital elevation model (DEM-S)

    o A smoothed DEM based on the bare-earth DEM that has been adaptively smoothed to reduce random noise typically associated with the SRTM data in low relief areas.

    * A hydrologically enforced digital elevation model (DEM-H)

    o A hydrologically enforced DEM is based on DEM-S that has had drainage lines imposed and been further smoothed using the ANUDEM interpolation software.

    The last product, a hydrologically enforced DEM, is most similar to the DEMs commonly in use around Australia, such as the GEODATA 9 Second DEM and the 25 m resolution DEMs produced by State and Territory agencies from digitised topographic maps.

    For any analysis where surface shape is important, one of the smoothed DEMs (DEM-S or DEM-H) should be used. DEM-S is preferred for shape and vertical accuracy and DEM-H for hydrological connectivity. The DSM is suitable if you want to see the vegetation as well as the land surface height. There are few cases where DEM is the best data source, unless access to a less processed product is necessary.

    The 1 second DEM (in its various incarnations) has quite different characteristics to DEMs derived by interpolation from topographic data. Those DEMs are typically quite smooth and are based on fairly accurate but sparse source data, usually contours and spot heights supplemented by drainage lines. The SRTM data is derived from radar measurements that are dense (there is essentially a measurement at almost every grid cell) but noisy.

    Version 1.0 of the DSM was released in early 2009 and version 1.0 of the DEM was released in late 2009. Version 1.0 of the DEM-S was released in July 2010 and version 1.0 of the hydrologically enforced DEM-H was released in October 2011. These products provide substantial improvements in the quality and consistency of the data relative to the original SRTM data, but are not free from artefacts. Improved products will be released over time.

    The 3 second products were derived from the 1 second data and version 1.0 was released in August 2010. Future releases of these products will occur when the 1 second products have been improved. At this stage there is no 3 second DEM-H product, which requires re-interpolation with drainage enforcement at that resolution.

    Dataset History

    See readme file: readme file for gloucester basin 1sec srtm.xyz

    This is ascii file created by CSIRO 3 september 2013 using Geosoft Oasis Montaj software

    file is 1 second shuttle radar data (28.6 x 28.6 m) which has had buildings and vegetation removed

    (processing by CSIRO and GA) DEM-S product

    file format is gda94 easting, gda94 northing, height above sea level

    mga zone 56 coordinates, all data in metres

    origin (bottom left) is 379007E, 6400022N

    1260 pts in east direction

    2798 pts in north direction

    Dataset Citation

    Bioregional Assessment Programme (XXXX) GLO DEM 1sec SRTM MGA56. Bioregional Assessment Derived Dataset. Viewed 18 July 2018, http://data.bioregionalassessments.gov.au/dataset/ca38ed31-e15d-4bb5-a7ef-0aeba3dad3f4.

    Dataset Ancestors

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
OCM Partners (2017). 2015 - 2016 LARIAC Lidar DEM: Los Angeles Region, CA [Dataset]. https://www.fisheries.noaa.gov/inport/item/55257
Organization logo

2015 - 2016 LARIAC Lidar DEM: Los Angeles Region, CA

ca2015_la_dem_m8659_metadata

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
htmlAvailable download formats
Dataset updated
Apr 20, 2017
Dataset provided by
OCM Partners, LLC
Time period covered
Sep 27, 2015 - Oct 18, 2016
Area covered
Description

This raster dataset contains LiDAR-derived elevation data flown from Fall 2015 to Spring 2016, with additional reflights through Fall 2016. This dataset encompasses all of the LARIAC4 project, comprised of approximately 4214 square miles.

The NOAA Office for Coastal Management (OCM) downloaded this digital elevation model (DEM) data from the USGS site: ftp://rockyftp.cr.usgs.gov/vdelivery/Data...

Search
Clear search
Close search
Google apps
Main menu