This dataset shows the results of mapping the connectivity of key values (natural heritage, indigenous heritage, social and historic and economic) of the Great Barrier Reef with its neighbouring regions (Torres Strait, Coral Sea and Great Sandy Strait). The purpose of this mapping process was to identify values that need joint management across multiple regions. It contains a spreadsheet containing the connection information obtained from expert elicitation, all maps derived from this information and all GIS files needed to recreate these maps. This dataset contains the connection strength for 59 attributes of the values between 7 regions (GBR Far Northern, GBR Cairns-Cooktown, GBR Whitsunday-Townsville, GBR Mackay-Capricorn, Torres Strait, Coral Sea and Great Sandy Strait) based on expert opinion. Each connection is assessed based on its strength, mechanism and confidence. Where a connection was known to not exist between two regions then this was also explicitly recorded. A video tutorial on this dataset and its maps is available from https://vimeo.com/335053846.
Methods:
The information for the connectivity maps was gathered from experts (~30) during a 3-day workshop in August 2017. Experts were provided with a template containing a map of Queensland and the neighbouring seas, with an overlay of the regions of interest to assess the connectivity. These were Torres Strait, GBR:Far North Queensland, GBR:Cairns to Cooktown, GBC: Townsville to Whitsundays, GBR: Mackay to Capricorn Bunkers and Great Sandy Strait (which includes Hervey bay). A range of reference maps showing locations of the values were provided, where this information could be obtained. As well as the map the template provided 7x7 table for filling in the connectivity strength and connection type between all combinations of these regions. The experts self-organised into groups to discuss and complete the template for each attribute to be mapped. Each expert was asked to estimate the strength of connection between each region as well as the connection mechanism and their confidence in the information. Due to the limited workshop time the experts were asked to focus on initially recording the connections between the GBR and its neighbouring regions and not to worry about the internal connections in the GBR, or long-distance connections along the Queensland coast. In the second half of the workshop the experts were asked to review the maps created and expand on the connections to include those internal to the GBR. After the workshop an initial set of maps were produced and reviewed by the project team and a range of issues were identified and resolved. Additional connectivity maps for some attributes were prepared after the workshop by the subject experts within the project team. The data gathered from these templates was translated into a spreadsheet, then processing into the graphic maps using QGIS to present the connectivity information. The following are the value attributes where their connectivity was mapped: Seagrass meadows: pan-regional species (e.g. Halophila spp. and Halodule spp.) Seagrass meadows: tropical/sub-tropical (Cymodocea serrulata, Syringodium isoetifolium) Seagrass meadows: tropical (Thalassia, Cymodocea, Thalassodendron, Enhalus, Rotundata) Seagrass meadows: Zostera muelleri Mangroves & saltmarsh Hard corals Crustose coralline algae Macroalgae Crown of thorns starfish larval flow Acropora larval flow Casuarina equisetifolia & Pandanus tectorius Argusia argentia Pisonia grandis: cay vegetation Inter-reef gardens (sponges + gorgonians) (Incomplete) Halimeda Upwellings Pelagic foraging seabirds Inshore and offshore foraging seabirds Migratory shorebirds Ornate rock lobster Yellowfin tuna Black marlin Spanish mackerel Tiger shark Grey nurse shark Humpback whales Dugongs Green turtles Hawksbill turtles Loggerhead turtles Flatback turtles Longfin & Shortfin Eels Red-spot king prawn Brown tiger prawn Eastern king prawns Great White Shark Sandfish (H. scabra) Black teatfish (H. whitmaei) Location of sea country Tangible cultural resources Location of place attachment Location of historic shipwrecks Location of places of social significance Location of commercial fishing activity Location of recreational use Location of tourism destinations Australian blacktip shark (C. tilstoni) Barramundi Common black tip shark (C. limbatus) Dogtooth tuna Grey mackerel Mud crab Coral trout (Plectropomus laevis) Coral trout (Plectropomus leopardus) Red throat emperor Reef manta Saucer scallop (Ylistrum balloti) Bull shark Grey reef shark
Limitations of the data:
The connectivity information in this dataset is only rough in nature, capturing the interconnections between 7 regions. The connectivity data is based on expert elicitation and so is limited by the knowledge of the experts that were available for the workshop. In most cases the experts had sufficient knowledge to create robust maps. There were however some cases where the knowledge of the participants was limited, or the available scientific knowledge on the topic was limited (particularly for the ‘inter-reefal gardens’ attribute) or the exact meaning of the value attribute was poorly understood or could not be agreed up on (particularly for the social and indigenous heritage maps). This information was noted with the maps. These connectivity maps should be considered as an initial assessment of the connections between each of the regions and should not be used as authoritative maps without consulting with additional sources of information. Each of the connectivity links between regions was recorded with a level of confidence, however these were self-reported, and each assessment was performed relatively quickly, with little time for reflection or review of all the available evidence. It is likely that in many cases the experts tended to have a bias to mark links with strong confidence. During subsequent revisions of some maps there were substantial corrections and adjustments even for connections with a strong confidence, indicating that there could be significant errors in the maps where the experts were not available for subsequent revisions. Each of the maps were reviewed by several project team members with broad general knowledge. Not all connection combinations were captured in this process due to the limited expert time available. A focus was made on capturing the connections between the GBR and its neighbouring regions. Where additional time was available the connections within 4 regions in the GBR was also captured. The connectivity maps only show connections between immediately neighbouring regions, not far connections such as between Torres Strait and Great Sandy Strait. In some cases the connection information for longer distances was recorded from the experts but not used in the mapping process. The coastline polygon and the region boundaries in the maps are not spatially accurate. They were simplified to make the maps more diagrammatic. This was done to reduce the chance of misinterpreting the connection arrows on the map as being spatially explicit.
Format:
This dataset is made up of a spreadsheet that contains all the connectivity information recorded from the expert elicitation and all the GIS files needed to recreate the generated maps.
original/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_Master_v2018-09-05.xlsx: ‘Values connectivity’: This sheet contains the raw connectivity codes transcribed from the templates produced prepared by the subject experts. This is the master copy of the connection information. Subsequent sheets in the spreadsheet are derived using formulas from this table. 1-Vertical-data: This is a transformation of the ‘Values connectivity’ sheet so that each source and destination connection is represented as a single row. This also has the connection mechanism codes split into individual columns to allow easier processing in the map generation. This sheet pulls in the spatial information for the arrows on the maps (‘LinkGeom’ attribute) or crosses that represent no connections (‘NoLinkGeom’) using lookup tables from the ‘Arrow-Geom-LUT’ and ‘NoConnection-Geom-LUT’ sheets. 2.Point-extract: This contains all the ‘no connection’ points from the ‘Values connectivity’ dataset. This was saved as working/ GBR_NESP-TWQ-3-3-3_Seascape-connectivity_no-con-pt.csv and used by the QGIS maps to draw all the crosses on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘NoLinkGeom’ attribute is used to filter out all line features, by unchecking blank rows in the ‘NoLinkGeom’ filter. 2.Line-extract: This contains all the ‘connections’ between regions from the ‘Values connectivity’ dataset. This was saved as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_arrows.csv and used by the QGIS maps to draw all the arrows on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘LinkGeom’ attribute is used to filter out all point features, by unchecking blank rows in the ‘LinkGeom’ filter. Map-Atlas-Settings: This contains the metadata for each of the maps generated by QGIS. This sheet was exported as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_map-atlas-settings.csv and used by QGIS to drive its Atlas feature to generate one map per row of this table. The AttribID is used to enable and disable the appropriate connections on the map being generated. The WKT attribute (Well Known Text) determines the bounding box of the map to be generated and the other attributes are used to display text on the map. map-image-metadata: This table contains metadata descriptions for each of the value attribute maps. This metadata was exported as a CSV and saved into the final generated JPEG maps using the eAtlas Image Metadata Editor Application
This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spatial dataset derived from many different open data repositories and cropped on the Omo-Turkana Basin boundary, used to create a base-map describing the components of Water-Energy-Food nexus in the case study.
omo-turkana.gpkg: vector dataset including the following layers, together with the related map style for QGIS Desktop used in the DAFNE Geoportal basemap:
zambezi_raster.zip: raster dataset including the following layers:
Original data sources include:
Natural Earth, a public domain map dataset available at different scales;
Protected Planet, the most up to date and complete source of data on protected areas and other effective area-based conservation measures, maintained by UNEP-WCMC and IUCN;
OpenStreetMap, a collaborative project to create a free editable map of the world;
NASA's Shuttle Radar Topography Mission (SRTM) Digital Elevation Database;
Global Water Surface, a virtual time machine that maps the location and temporal distribution of water surfaces at the global scale.
This dataset is a compilation of county parcel data from Minnesota counties that have opted-in for their parcel data to be included in this dataset.
It includes the following 55 counties that have opted-in as of the publication date of this dataset: Aitkin, Anoka, Becker, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Fillmore, Grant, Hennepin, Houston, Isanti, Itasca, Jackson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Mille Lacs, Morrison, Mower, Murray, Norman, Olmsted, Otter Tail, Pennington, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Saint Louis, Scott, Sherburne, Stearns, Stevens, Traverse, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.
If you represent a county not included in this dataset and would like to opt-in, please contact Heather Albrecht (Heather.Albrecht@hennepin.us), co-chair of the Minnesota Geospatial Advisory Council (GAC)’s Parcels and Land Records Committee's Open Data Subcommittee. County parcel data does not need to be in the GAC parcel data standard to be included. MnGeo will map the county fields to the GAC standard.
County parcel data records have been assembled into a single dataset with a common coordinate system (UTM Zone 15) and common attribute schema. The county parcel data attributes have been mapped to the GAC parcel data standard for Minnesota: https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html
This compiled parcel dataset was created using Python code developed by Minnesota state agency GIS professionals, and represents a best effort to map individual county source file attributes into the common attribute schema of the GAC parcel data standard. The attributes from counties are mapped to the most appropriate destination column. In some cases, the county source files included attributes that were not mapped to the GAC standard. Additionally, some county attribute fields were parsed and mapped to multiple GAC standard fields, such as a single line address. Each quarter, MnGeo provides a text file to counties that shows how county fields are mapped to the GAC standard. Additionally, this text file shows the fields that are not mapped to the standard and those that are parsed. If a county shares changes to how their data should be mapped, MnGeo updates the compilation. If you represent a county and would like to update how MnGeo is mapping your county attribute fields to this compiled dataset, please contact us.
This dataset is a snapshot of parcel data, and the source date of the county data may vary. Users should consult County websites to see the most up-to-date and complete parcel data.
There have been recent changes in date/time fields, and their processing, introduced by our software vendor. In some cases, this has resulted in date fields being empty. We are aware of the issue and are working to correct it for future parcel data releases.
The State of Minnesota makes no representation or warranties, express or implied, with respect to the use or reuse of data provided herewith, regardless of its format or the means of its transmission. THE DATA IS PROVIDED “AS IS” WITH NO GUARANTEE OR REPRESENTATION ABOUT THE ACCURACY, CURRENCY, SUITABILITY, PERFORMANCE, MECHANTABILITY, RELIABILITY OR FITINESS OF THIS DATA FOR ANY PARTICULAR PURPOSE. This dataset is NOT suitable for accurate boundary determination. Contact a licensed land surveyor if you have questions about boundary determinations.
DOWNLOAD NOTES: This dataset is only provided in Esri File Geodatabase and OGC GeoPackage formats. A shapefile is not available because the size of the dataset exceeds the limit for that format. The distribution version of the fgdb is compressed to help reduce the data footprint. QGIS users should consider using the Geopackage format for better results.
Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous
Geoscape Administrative Boundaries is Australia’s most comprehensive national collection of boundaries, including government, statistical and electoral boundaries. It is built and maintained by Geoscape Australia using authoritative government data. Further information about contributors to Administrative Boundaries is available here.
This dataset comprises seven Geoscape products:
Updated versions of Administrative Boundaries are published on a quarterly basis.
Users have the option to download datasets with feature coordinates referencing either GDA94 or GDA2020 datums.
Notable changes in the May 2025 release
Victorian Wards have seen almost half of the dataset change now reflecting the boundaries from the 2024 subdivision review. https://www.vec.vic.gov.au/electoral-boundaries/council-reviews/ subdivision-reviews.
One new locality ‘Kenwick Island’ has been added to the local Government area ‘Mackay Regional’ in Queensland.
There have been spatial changes(area) greater than 1 km2 to the localities ‘Nicholson’, ‘Lawn Hill’ and ‘Coral Sea’ in Queensland and ‘Calguna’, ‘Israelite Bay’ and ‘Balladonia’ in Western Australia.
An update to the NT Commonwealth Electoral Boundaries has been applied to reflect the redistribution of the boundaries gazetted on 4 March 2025.
Geoscape has become aware that the DATE_CREATED and DATE_RETIRED attributes in the commonwealth_electoral_polygon MapInfo TAB tables were incorrectly ordered and did not match the product data model. These attributes have been re-ordered to match the data model for the May 2025 release.
IMPORTANT NOTE: correction of issues with the 22 November 2022 release
Further information on Administrative Boundaries, including FAQs on the data, is available here or through Geoscape Australia’s network of partners. They provide a range of commercial products based on Administrative Boundaries, including software solutions, consultancy and support.
Note: On 1 October 2020, PSMA Australia Limited began trading as Geoscape Australia.
The Australian Government has negotiated the release of Administrative Boundaries to the whole economy under an open CCBY 4.0 licence.
Users must only use the data in ways that are consistent with the Australian Privacy Principles issued under the Privacy Act 1988 (Cth).
Users must also note the following attribution requirements:
Preferred attribution for the Licensed Material:
Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International license (CC BY 4.0).
Preferred attribution for Adapted Material:
Incorporates or developed using Administrative Boundaries © Geoscape Australia licensed by the Commonwealth of Australia under Creative Commons Attribution 4.0 International licence (CC BY 4.0).
Administrative Boundaries is large dataset (around 1.5GB unpacked), made up of seven themes each containing multiple layers.
Users are advised to read the technical documentation including the product change notices and the individual product descriptions before downloading and using the product.
Please note this dataset is the most recent version of the Administrative Boundaries (AB). For previous versions of the AB please go to this url: https://data.gov.au/dataset/ds-dga-b4ad5702-ea2b-4f04-833c-d0229bfd689e/details?q=previous
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 63 shapefiles that represent the areas of relevance for each research project under the National Environmental Science Program Marine and Coastal Hub, northern and southern node projects for Rounds 1, 2 & 3.
Methods: Each project map is developed using the following steps: 1. The project map was drawn based on the information provided in the research project proposals. 2. The map was refined based on feedback during the first data discussions with the project leader. 3. Where projects are finished most maps were updated based on the extents of datasets generated by the project and followup checks with the project leader.
The area mapped includes on-ground activities of the project, but also where the outputs of the project are likely to be relevant. The maps were refined by project leads, by showing them the initial map developed from the proposal, then asking them "How would you change this map to better represent the area where your project is relevant?". In general, this would result in changes such as removing areas where they were no longer intending research to be, or trimming of the extents to better represent the habitats that are relevant.
The project extent maps are intentionally low resolution (low number of polygon vertices), limiting the number of vertices 100s of points. This is to allow their easy integration into project metadata records and for presenting via interactive web maps and spatial searching. The goal of the maps was to define the project extent in a manner that was significantly more accurate than a bounding box, reducing the number of false positives generated from a spatial search. The geometry was intended to be simple enough that projects leaders could describe the locations verbally and the rough nature of the mapping made it clear that the regions of relevance are approximate.
In some cases, boundaries were drawn manually using a low number of vertices, in the process adjusting them to be more relevant to the project. In others, high resolution GIS datasets (such as the EEZ, or the Australian coastline) were used, but simplified at a resolution of 5-10km to ensure an appopriate vertices count for the final polygon extent. Reference datasets were frequently used to make adjustments to the maps, for example maps of wetlands and rivers were used to better represent the inner boundary of projects that were relevant for wetlands.
In general, the areas represented in the maps tend to show an area larger then the actual project activities, for example a project focusing on coastal restoration might include marine areas up to 50 km offshore and 50 km inshore. This buffering allows the coastline to be represented with a low number of verticies without leading to false negatives, where a project doesn't come up in a search because the area being searched is just outside the core area of a project.
Limitations of the data: The areas represented in this data are intentionally low resolution. The polygon features from the various projects overlap significantly and thus many boundaries are hidden with default styling. This dataset is not a complete representation of the work being done by the NESP MaC projects as it was collected only 3 years into a 7 year program.
Format of the data: The maps were drawn in QGIS using relevant reference layers and saved as shapefiles. These are then converted to GeoJSON or WKT (Well-known Text) and incorporated into the ISO19115-3 project metadata records in GeoNetwork. Updates to the map are made to the original shapefiles, and the metadata record subsequently updated.
All projects are represented as a single multi-polygon. The multiple polygons was developed by merging of separate areas into a single multi-polygon. This was done to improve compatibility with web platforms, allowing easy conversion to GeoJSON and WKT.
This dataset will be updated periodically as new NESP MaC projects are developed and as project progress and the map layers are improved. These updates will typically be annual.
Data dictionary: NAME - Title of the layer PROJ - Project code of the project relating to the layer NODE - Whether the project is part of the Northern or Southern Nodes TITLE - Title of the project P_LEADER - Name of the Project leader and institution managing the project PROJ_LINK - Link to the project metadata MAP_DESC - Brief text description of the map area MAP_TYPE - Describes whether the map extent is a 'general' area of relevance for the project work, or 'specific' where there is on ground survey or sampling activities MOD_DATE - Last modification date to the individual map layer (prior to merging)
Updates & Processing: These maps were created by eAtlas and IMAS Data Wranglers as part of the NESP MaC Data Management activities. As new project information is made available, the maps may be updated and republished. The update log will appear below with notes to indicate when individual project maps are updated: 20220626 - Dataset published (All shapefiles have MOD_DATE 20230626)
Location of the data: This dataset is filed in the eAtlas enduring data repository at: data\custodian esp-mac-3\AU_AIMS-UTAS_NESP-MaC_Project-extents-maps
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This file contains European countries in a shapefile format that can be used in python, R or matlab. The file has been created by Drin Marmullaku based on GADM version 4.1 (https://gadm.org/) and distributed according to their license (https://gadm.org/license.html).
Please cite as: Sevdari, Kristian; Marmullaku, Drin (2023). Shapefile of European countries. Technical University of Denmark. Dataset. https://doi.org/10.11583/DTU.23686383 This dataset is distributed under a CCBY-NC-SA 4.0 license
Using the data to create maps for publishing of academic research articles is allowed. Thus you can use the maps you made with GADM data for figures in articles published by PLoS, Springer Nature, Elsevier, MDPI, etc. You are allowed (but not required) to publish these articles (and the maps they contain) under an open license such as CC-BY as is the case with PLoS journals and may be the case with other open access articles. Data for the following countries is covered by a a different license Austria: Creative Commons Attribution-ShareAlike 2.0 (source: Government of Austria)
The European Directive 2002/49/EC on the assessment and management of environmental noise aims at a harmonised assessment of exposure to noise in the Member States. It defines them as representations of data describing a noise situation according to a noise indicator, indicating exceedances of limit values, the number of persons exposed. Noise maps are not prescriptive. These are information documents that are not legally enforceable.As graphic elements, however, they can supplement a Local Planning Plan (LDP). As part of an Urban Travel Plan (UDP), maps can be used to establish baselines and target areas where better traffic management is needed. Carried out pursuant to Article 3-II-1-b of the Decree of 24 March 2006, the map represents the areas where the Lden and Ln boundaries are exceeded. — LD (Lden) Sound level indicator means Level Day-Evening-Night. — LN (Ln) Sound level indicator for the night period between 22.00 and 06:00. Aggregation carried out with the QGIS MIZOGEO plugin made available by CEREMA. Data source: CEREMA The European Directive 2002/49/EC on the assessment and management of environmental noise aims at a harmonised assessment of exposure to noise in the Member States.It defines them as representations of data describing a noise situation according to a noise indicator, indicating exceedances of limit values, the number of persons exposed. Noise maps are not prescriptive. These are information documents that are not legally enforceable.As graphic elements, however, they can supplement a Local Planning Plan (LDP). As part of an Urban Travel Plan (UDP), maps can be used to establish baselines and target areas where better traffic management is needed. Carried out pursuant to Article 3-II-1-b of the Decree of 24 March 2006, the map represents the areas where the Lden and Ln boundaries are exceeded. — LD (Lden) Sound level indicator means Level Day-Evening-Night. — LN (Ln) Sound level indicator for the night period between 22.00 and 06:00.
Aggregation carried out with the QGIS MIZOGEO plugin made available by CEREMA. Data source:CEREMAIt defines them as representations of data describing a noise situation according to a noise indicator, indicating exceedances of limit values, the number of persons exposed. Noise maps are not prescriptive. These are information documents that are not legally enforceable. As graphic elements, however, they can supplement a Local Planning Plan (LDP). As part of an Urban Travel Plan (UDP), maps can be used to establish baselines and target areas where better traffic management is needed. Carried out pursuant to Article 3-II-1-b of the Decree of 24 March 2006, the map represents the areas where the Lden and Ln boundaries are exceeded.
— LD (Lden) Sound level indicator means Level Day-Evening-Night. — LN (Ln) Sound level indicator for the night period between 22.00 and 06:00. Aggregation carried out with the QGIS MIZOGEO plugin made available by CEREMA. Data source: CEREMAThe European Directive 2002/49/EC on the assessment and management of environmental noise aims at a harmonised assessment of exposure to noise in the Member States. It defines them as representations of data describing a noise situation according to a noise indicator, indicating exceedances of limit values, the number of persons exposed. Noise maps are not prescriptive.
These are information documents that are not legally enforceable.As graphic elements, however, they can supplement a Local Planning Plan (LDP). As part of an Urban Travel Plan (UDP), maps can be used to establish baselines and target areas where better traffic management is needed. Carried out pursuant to Article 3-II-1-b of the Decree of 24 March 2006, the map represents the areas where the Lden and Ln boundaries are exceeded.
— LD (Lden) Sound level indicator means Level Day-Evening-Night.
— LN (Ln) Sound level indicator for the night period between 22.00 and 06:00.
Aggregation carried out with the QGIS MIZOGEO plugin made available by CEREMA.
Data source: CEREMA
Reason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. Because beaches in Puerto Rico and the U.S. Virgin Islands are open to the public, beaches also provide important outdoor recreation opportunities for urban residents, so we include beaches as parks in this indicator. Input Data
Southeast Blueprint 2023 subregions: Caribbean
Southeast Blueprint 2023 extent
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) Coastal Relief Model, accessed 11-22-2022
Protected Areas Database of the United States (PAD-US) 3.0: VI, PR, and Marine Combined Fee Easement
Puerto Rico Protected Natural Areas 2018 (December 2018 update): Terrestrial and marine protected areas (PACAT2018_areas_protegidasPR_TERRESTRES_07052019.shp, PACAT2018_areas_protegidasPR_MARINAS_07052019.shp)
2020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 census
OpenStreetMap data “multipolygons” layer, accessed 3-14-2023
A polygon from this dataset is considered a park if the “leisure” tag attribute is either “park” or “nature_reserve”, and considered a beach if the value in the “natural” tag attribute is “beach”. OpenStreetMap describes leisure areas as “places people go in their spare time” and natural areas as “a wide variety of physical geography, geological and landcover features”. Data were downloaded in .pbf format and translated ton an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page.
TNC Lands - Public Layer, accessed 3-8-2023
U.S. Virgin Islands beaches layer (separate vector layers for St. Croix, St. Thomas, and St. John) provided by Joe Dwyer with Lynker/the NOAA Caribbean Climate Adaptation Program on 3-3-2023 (contact jdwyer@lynker.com for more information)
Mapping Steps
Most mapping steps were completed using QGIS (v 3.22) Graphical Modeler.
Fix geometry errors in the PAD-US PR data using Fix Geometry. This must be done before any analysis is possible.
Merge the terrestrial PR and VI PAD-US layers.
Use the NOAA coastal relief model to restrict marine parks (marine polygons from PAD-US and Puerto Rico Protected Natural Areas) to areas shallower than 10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature.
Merge into one layer the resulting shallow marine parks from marine PAD-US and the Puerto Rico Protected Natural Areas along with the combined terrestrial PAD-US parks, OpenStreetMap, TNC Lands, and USVI beaches. Omit from the Puerto Rico Protected Areas layer the “Zona de Conservación del Carso”, which has some policy protections and conservation incentives but is not formally protected.
Fix geometry errors in the resulting merged layer using Fix Geometry.
Intersect the resulting fixed file with the Caribbean Blueprint subregion.
Process all multipart polygons to single parts (referred to in Arc software as an “explode”). This helps the indicator capture, as much as possible, the discrete units of a protected area that serve urban residents.
Clip the Census urban area to the Caribbean Blueprint subregion.
Select all polygons that intersect the Census urban extent within 1.2 miles (1,931 m). The 1.2 mi threshold is consistent with the average walking trip on a summer day (U.S. DOT 2002) used to define the walking distance threshold used in the greenways and trails indicator. Note: this is further than the 0.5 mi distance used in the continental version of the indicator. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation.
Dissolve all the park polygons that were selected in the previous step.
Process all multipart polygons to single parts (“explode”) again.
Add a unique ID to the selected parks. This value will be used to join the parks to their buffers.
Create a 1.2 mi (1,931 m) buffer ring around each park using the multiring buffer plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 1.2 mi buffer is created for each park.
Assess the amount of overlap between the buffered park and the Census urban area using overlap analysis. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix. This step creates a table that is joined back to the park polygons using the UniqueID.
Remove parks that had ≤2% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: In the continental version of this indicator, we used a threshold of 10%. In the Caribbean version, we lowered this to 2% in order to capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles.
Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.
Join the buffer attribute table to the previously selected parks, retaining only the parks that exceeded the 2% urban area overlap threshold while buffered.
Buffer the selected parks by 15 m. Buffering prevents very small parks and narrow beaches from being left out of the indicator when the polygons are converted to raster.
Reclassify the polygons into 7 classes, seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).
Export the final vector file to a shapefile and import to ArcGIS Pro.
Convert the resulting polygons to raster using the ArcPy Polygon to Raster function. Assign values to the pixels in the resulting raster based on the polygon class sizes of the contiguous park areas.
Clip to the Caribbean Blueprint 2023 subregion.
As a final step, clip to the spatial extent of Southeast Blueprint 2023.
Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator values Indicator values are assigned as follows: 6 = 75+ acre urban park 5 = >50 to <75 acre urban park 4 = 30 to <50 acre urban park 3 = 10 to <30 acre urban park 2 = 5 to <10 acre urban park 1 = <5 acre urban park 0 = Not identified as an urban park Known Issues
This indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.
This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.
This indicator includes parks and beaches from OpenStreetMap, which is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a park) or incorrect tags (e.g., labelling an area as a park that is not actually a park). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new parks to improve the accuracy and coverage of this indicator in the future.
Other Things to Keep in Mind
This indicator calculates the area of each park using the park polygons from the source data. However, simply converting those park polygons to raster results in some small parks and narrow beaches being left out of the indicator. To capture those areas, we buffered parks and beaches by 15 m and applied the original area calculation to the larger buffered polygon, so as not to inflate the area by including the buffer. As a result, when the buffered polygons are rasterized, the final indicator has some areas of adjacent pixels that receive different scores. While these pixels may appear to be part of one contiguous park or suite of parks, they are scored differently because the park polygons themselves are not actually contiguous.
The Caribbean version of this indicator uses a slightly different methodology than the continental Southeast version. It includes parks within a 1.2 mi distance from the Census urban area, compared to 0.5 mi in the continental Southeast. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation. Similarly, this indicator uses a 2% threshold of overlap between buffered parks and the Census urban areas, compared to a 10% threshold in the continental Southeast. This helped capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles. Finally, the Caribbean version does not use the impervious surface cutoff applied in the continental Southeast
This collection contains georeferenced raster images (in GeoTIFF format) of the 'Gewestkaarten' (Regional maps) associated with Jacob van Deventer.
The georeferencing has been accomplished by linking hundreds of locality-pointers in the maps to the respective church towers. Using these pointers, the maps were distorted using Thin Plate Spline (Transformation method) / Nearest Neighbour (Resampling method).
Some regional maps, like the map of the County of Zeeland and surroundings, are so well executed that this method works really well without distorting the raster image too much. The map of the Duchy of Brabant (the oldest 'Gewestkaart' by Jacob van Deventer), is much less precise (with substantial intraregional differences). Only around half of the Brabant localities could be used as pointers in georeferencing in order to keep the distortion at an acceptable level.
The maps included in the dataset are:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This archive contains:
├── classification_dpt64_16_classes.tif : the 16 classes land cover map
├── classification_dpt64_16_classes_confusion_matrix.png : the confusion matrix. Have a look at it, it is performed on a different dataset than the one used for training the classifier.
├── classification_dpt64_21_classes.tif : the 21 classes land cover map including post-treatments (https://framagit.org/Schwaab/projet_predateurs64/-/blob/main/scripts/ClassificationPostProcess.py)
├── colorFile.txt : color file for symbology
├── configfile_iota2.cfg : iota2 configuration file (in case you are already using iota2. If not, what are you waiting for ?)
├── document_methodologique.pdf : technical report (french) for the classification
├── nomenclature.txt : nomenclature file
├── reference_data_2018.shp : the training and validation data set in its 2018 version (for crops)
├── reference_data_2019.shp : the training and validation data set in its 2019 version (for crops)
├── reference_photo_interpretation.shp : the part of the training and validation data set that has been photo interpreted with a field giving the potential species or combinations of associated vegetation
├── reference_tree_nomenclature.png : a visual about the reference data
├── stratification_3_zones.shp : the stratification layer that has helped improve classification results. It is based on landscape entities (https://data.le64.fr/explore/dataset/entite-paysagere/)
├── style_16_classes.qml : the Qgis style layer 16 classes
└── style_21_classes.qml : the Qgis style layer 21 classes
Description:
The land cover map of the French department Pyrénées-Atlantiques (64) is based on Sentinel-2 (L2A level) satellite images performed with Iota² chain (https://framagit.org/iota2-project/iota2/). The algorithm used is Random Forest. The time series used ranges from 2017 to 2018.
During the development phase of this classification, the collection of additional training data on the photo-interpreted classes 'landes basses' (low heath shrublands), 'landes hautes' (high heath shrublands) and 'landes hautes avec arbres' (high heath shrublands with young-growth forest) has led to a remarkable increase of the number of pixels of these classes and with it the visual quality of the map. However, this increase has been linked with only minor to almost no significant improvement of the F-scores on these classes. Some are still massively confused with other land covers like grasslands and broadleaf mature forests. Especially the mixed class 'landes hautes avec arbres' (high heath shrublands with young-growth forest).
We take it as a limit of the reference data that is built from divers data sources and would always beneficiate from more training samples of shrubby classes and a better precision of the class 'forêt de feuillus' (broadleaf mature forests). But this could also show the limit of pixel-oriented classifications for mixed/textured classes (classes with high intra-class heterogeneity). Experimentations using a contextual method – the Auto-context method now being included in Iota2 thanks to Dawa Derksen and Iota2 developers (http://lannister.ups-tlse.fr/oso/donneeswww_TheiaOSO/iota2_documentation/develop/autoContext.html) – has unfortunately not been conclusive on that matter yet.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
There are two types of boundary files: cartographic and digital. Cartographic boundary files portray the geographic areas using only the major land mass of Canada and its coastal islands. Digital boundary files portray the full extent of the geographic areas, including the coastal water area.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The North Carolina State and County Boundary vector polygon data provides location information for North Carolina State and County Boundary lines derived from the best available survey and/or Geographic Information System (GIS) data. Sources for information are the North Carolina Geodetic Survey (NCGS), NC Department of Transportation (NCDOT), United States Geological Survey (USGS), and field surveys conducted by licensed surveyors in North Carolina and neighboring states that have been approved and recorded in their respective counties. North Carolina Geodetic Survey assists counties on a cooperative basis (NC General Statute 153A-18) in defining and monumenting the location of uncertain or disputed boundaries as established by law. Some counties have completed boundary surveys for at least a portion of their county boundary. However, the majority of county boundaries have not been surveyed and are represented by the best currently available data from GIS sources, including NCDOT county maps (which originally came from the USGS) and updated county parcel maps.
A WMS (Web Map Service) is a service that produces maps of spatially referenced data starting from geographic information, and is a technical specification defined by the OGC (Open Geospatial Consortium). This WMS presents the "Real estates and anthropizations" layer of the Reference Territorial Database of Bodies (BDTRE), structured according to the national technical specifications (DPCM November 10, 2011), collects the definition of all those objects that derive from anthropic activity in the territory and that do not constitute transport infrastructure (described instead in the specific layer). The contents of this service are divided into the following levels corresponding to the classes of the BDTRE:- buildings (both of a residential and industrial nature and tertiary activity);- artefacts (works that do not have a stable character in terms of habitability and human location); variously located throughout the territory; - transport works (works such as artefacts but of greater complexity); - soil defense works; - hydraulic defense and hydraulic control works. The maps can be viewed using various software (e.g. QGis)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains video observations by some stations of the Global Meteor Network of the re-entry of the satellite StarLink-1668 above Spain on 2022-02-10 around 19:50 UTC.
There are several types of files:
FF files: these are 10.24 second videos compressed in the four-frame format. They are just FITS files with four frames, containing per pixel 1) the maximum value over 256 frames 2) the frame nr (between 0 and 255) where the maximum occurred 3) the mean value of all 256 frames and 4) the RMS of the 256 values.
FR files: compressed video recordings of detected fireballs. These can be read with the RMS software.
MP4 files: rendered movies of combined FF and FR files for selected stations.
Platepar-files: these contain astrometry corresponding to the FITS files. These can be interpreted by the RMS software.
ECSV files: these contain manually picked points (with SkyFit2.py from RMS) along the track of the reentry. For each point, time and apparent coordinates are recorded. These files can be interpreted by the WesternMeteorPyLib trajectory solver.
trajectory-points.txt: solutions from the trajectory solver.
reentry-map-v2.png: a rendered map of the trajectory (made in QGIS).
The files can be processed with the software in https://github.com/CroatianMeteorNetwork/RMS and https://github.com/wmpg/WesternMeteorPyLib.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contains 2 datasets: * lower and single tier municipalities * upper tier municipalities and districts.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset shows the results of mapping the connectivity of key values (natural heritage, indigenous heritage, social and historic and economic) of the Great Barrier Reef with its neighbouring regions (Torres Strait, Coral Sea and Great Sandy Strait). The purpose of this mapping process was to identify values that need joint management across multiple regions. It contains a spreadsheet containing the connection information obtained from expert elicitation, all maps derived from this information and all GIS files needed to recreate these maps. This dataset contains the connection strength for 59 attributes of the values between 7 regions (GBR Far Northern, GBR Cairns-Cooktown, GBR Whitsunday-Townsville, GBR Mackay-Capricorn, Torres Strait, Coral Sea and Great Sandy Strait) based on expert opinion. Each connection is assessed based on its strength, mechanism and confidence. Where a connection was known to not exist between two regions then this was also explicitly recorded. A video tutorial on this dataset and its maps is available from https://vimeo.com/335053846.
Methods:
The information for the connectivity maps was gathered from experts (~30) during a 3-day workshop in August 2017. Experts were provided with a template containing a map of Queensland and the neighbouring seas, with an overlay of the regions of interest to assess the connectivity. These were Torres Strait, GBR:Far North Queensland, GBR:Cairns to Cooktown, GBC: Townsville to Whitsundays, GBR: Mackay to Capricorn Bunkers and Great Sandy Strait (which includes Hervey bay). A range of reference maps showing locations of the values were provided, where this information could be obtained. As well as the map the template provided 7x7 table for filling in the connectivity strength and connection type between all combinations of these regions. The experts self-organised into groups to discuss and complete the template for each attribute to be mapped. Each expert was asked to estimate the strength of connection between each region as well as the connection mechanism and their confidence in the information. Due to the limited workshop time the experts were asked to focus on initially recording the connections between the GBR and its neighbouring regions and not to worry about the internal connections in the GBR, or long-distance connections along the Queensland coast. In the second half of the workshop the experts were asked to review the maps created and expand on the connections to include those internal to the GBR. After the workshop an initial set of maps were produced and reviewed by the project team and a range of issues were identified and resolved. Additional connectivity maps for some attributes were prepared after the workshop by the subject experts within the project team. The data gathered from these templates was translated into a spreadsheet, then processing into the graphic maps using QGIS to present the connectivity information. The following are the value attributes where their connectivity was mapped: Seagrass meadows: pan-regional species (e.g. Halophila spp. and Halodule spp.) Seagrass meadows: tropical/sub-tropical (Cymodocea serrulata, Syringodium isoetifolium) Seagrass meadows: tropical (Thalassia, Cymodocea, Thalassodendron, Enhalus, Rotundata) Seagrass meadows: Zostera muelleri Mangroves & saltmarsh Hard corals Crustose coralline algae Macroalgae Crown of thorns starfish larval flow Acropora larval flow Casuarina equisetifolia & Pandanus tectorius Argusia argentia Pisonia grandis: cay vegetation Inter-reef gardens (sponges + gorgonians) (Incomplete) Halimeda Upwellings Pelagic foraging seabirds Inshore and offshore foraging seabirds Migratory shorebirds Ornate rock lobster Yellowfin tuna Black marlin Spanish mackerel Tiger shark Grey nurse shark Humpback whales Dugongs Green turtles Hawksbill turtles Loggerhead turtles Flatback turtles Longfin & Shortfin Eels Red-spot king prawn Brown tiger prawn Eastern king prawns Great White Shark Sandfish (H. scabra) Black teatfish (H. whitmaei) Location of sea country Tangible cultural resources Location of place attachment Location of historic shipwrecks Location of places of social significance Location of commercial fishing activity Location of recreational use Location of tourism destinations Australian blacktip shark (C. tilstoni) Barramundi Common black tip shark (C. limbatus) Dogtooth tuna Grey mackerel Mud crab Coral trout (Plectropomus laevis) Coral trout (Plectropomus leopardus) Red throat emperor Reef manta Saucer scallop (Ylistrum balloti) Bull shark Grey reef shark
Limitations of the data:
The connectivity information in this dataset is only rough in nature, capturing the interconnections between 7 regions. The connectivity data is based on expert elicitation and so is limited by the knowledge of the experts that were available for the workshop. In most cases the experts had sufficient knowledge to create robust maps. There were however some cases where the knowledge of the participants was limited, or the available scientific knowledge on the topic was limited (particularly for the ‘inter-reefal gardens’ attribute) or the exact meaning of the value attribute was poorly understood or could not be agreed up on (particularly for the social and indigenous heritage maps). This information was noted with the maps. These connectivity maps should be considered as an initial assessment of the connections between each of the regions and should not be used as authoritative maps without consulting with additional sources of information. Each of the connectivity links between regions was recorded with a level of confidence, however these were self-reported, and each assessment was performed relatively quickly, with little time for reflection or review of all the available evidence. It is likely that in many cases the experts tended to have a bias to mark links with strong confidence. During subsequent revisions of some maps there were substantial corrections and adjustments even for connections with a strong confidence, indicating that there could be significant errors in the maps where the experts were not available for subsequent revisions. Each of the maps were reviewed by several project team members with broad general knowledge. Not all connection combinations were captured in this process due to the limited expert time available. A focus was made on capturing the connections between the GBR and its neighbouring regions. Where additional time was available the connections within 4 regions in the GBR was also captured. The connectivity maps only show connections between immediately neighbouring regions, not far connections such as between Torres Strait and Great Sandy Strait. In some cases the connection information for longer distances was recorded from the experts but not used in the mapping process. The coastline polygon and the region boundaries in the maps are not spatially accurate. They were simplified to make the maps more diagrammatic. This was done to reduce the chance of misinterpreting the connection arrows on the map as being spatially explicit.
Format:
This dataset is made up of a spreadsheet that contains all the connectivity information recorded from the expert elicitation and all the GIS files needed to recreate the generated maps.
original/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_Master_v2018-09-05.xlsx: ‘Values connectivity’: This sheet contains the raw connectivity codes transcribed from the templates produced prepared by the subject experts. This is the master copy of the connection information. Subsequent sheets in the spreadsheet are derived using formulas from this table. 1-Vertical-data: This is a transformation of the ‘Values connectivity’ sheet so that each source and destination connection is represented as a single row. This also has the connection mechanism codes split into individual columns to allow easier processing in the map generation. This sheet pulls in the spatial information for the arrows on the maps (‘LinkGeom’ attribute) or crosses that represent no connections (‘NoLinkGeom’) using lookup tables from the ‘Arrow-Geom-LUT’ and ‘NoConnection-Geom-LUT’ sheets. 2.Point-extract: This contains all the ‘no connection’ points from the ‘Values connectivity’ dataset. This was saved as working/ GBR_NESP-TWQ-3-3-3_Seascape-connectivity_no-con-pt.csv and used by the QGIS maps to draw all the crosses on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘NoLinkGeom’ attribute is used to filter out all line features, by unchecking blank rows in the ‘NoLinkGeom’ filter. 2.Line-extract: This contains all the ‘connections’ between regions from the ‘Values connectivity’ dataset. This was saved as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_arrows.csv and used by the QGIS maps to draw all the arrows on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘LinkGeom’ attribute is used to filter out all point features, by unchecking blank rows in the ‘LinkGeom’ filter. Map-Atlas-Settings: This contains the metadata for each of the maps generated by QGIS. This sheet was exported as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_map-atlas-settings.csv and used by QGIS to drive its Atlas feature to generate one map per row of this table. The AttribID is used to enable and disable the appropriate connections on the map being generated. The WKT attribute (Well Known Text) determines the bounding box of the map to be generated and the other attributes are used to display text on the map. map-image-metadata: This table contains metadata descriptions for each of the value attribute maps. This metadata was exported as a CSV and saved into the final generated JPEG maps using the eAtlas Image Metadata Editor Application