Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
2,121,458 records
I used Google Colab to check out this dataset and pull the column names using Pandas.
Sample code example: Python Pandas read csv file compressed with gzip and load into Pandas dataframe https://pastexy.com/106/python-pandas-read-csv-file-compressed-with-gzip-and-load-into-pandas-dataframe
Columns: ['Date received', 'Product', 'Sub-product', 'Issue', 'Sub-issue', 'Consumer complaint narrative', 'Company public response', 'Company', 'State', 'ZIP code', 'Tags', 'Consumer consent provided?', 'Submitted via', 'Date sent to company', 'Company response to consumer', 'Timely response?', 'Consumer disputed?', 'Complaint ID']
I did not modify the dataset.
Use it to practice with dataframes - Pandas or PySpark on Google Colab:
!unzip complaints.csv.zip
import pandas as pd df = pd.read_csv('complaints.csv') df.columns
df.head() etc.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials
Background
This dataset contains data from monotonic and cyclic loading experiments on structural metallic materials. The materials are primarily structural steels and one iron-based shape memory alloy is also included. Summary files are included that provide an overview of the database and data from the individual experiments is also included.
The files included in the database are outlined below and the format of the files is briefly described. Additional information regarding the formatting can be found through the post-processing library (https://github.com/ahartloper/rlmtp/tree/master/protocols).
Usage
Included Files
File Format: Downsampled Data
These are the "LP_
These data files can be easily loaded using the pandas library in Python through:
import pandas
data = pandas.read_csv(data_file, index_col=0)
The data is formatted so it can be used directly in RESSPyLab (https://github.com/AlbanoCastroSousa/RESSPyLab). Note that the column names "e_true" and "Sigma_true" were kept for backwards compatibility reasons with RESSPyLab.
File Format: Unreduced Data
These are the "LP_
The data can be loaded and used similarly to the downsampled data.
File Format: Overall_Summary
The overall summary file provides data on all the test specimens in the database. The columns include:
File Format: Summarized_Mechanical_Props_Campaign
Meant to be loaded in Python as a pandas DataFrame with multi-indexing, e.g.,
tab1 = pd.read_csv('Summarized_Mechanical_Props_Campaign_' + date + version + '.csv',
index_col=[0, 1, 2, 3], skipinitialspace=True, header=[0, 1],
keep_default_na=False, na_values='')
Caveats
Facebook
TwitterLibraries Import:
Importing necessary libraries such as pandas, seaborn, matplotlib, scikit-learn's KMeans, and warnings. Data Loading and Exploration:
Reading a dataset named "Mall_Customers.csv" into a pandas DataFrame (df). Displaying the first few rows of the dataset using df.head(). Conducting univariate analysis by calculating descriptive statistics with df.describe(). Univariate Analysis:
Visualizing the distribution of the 'Annual Income (k$)' column using sns.distplot. Looping through selected columns ('Age', 'Annual Income (k$)', 'Spending Score (1-100)') and plotting individual distribution plots. Bivariate Analysis:
Creating a scatter plot for 'Annual Income (k$)' vs 'Spending Score (1-100)' using sns.scatterplot. Generating a pair plot for selected columns with gender differentiation using sns.pairplot. Gender-Based Analysis:
Grouping the data by 'Gender' and calculating the mean for selected columns. Computing the correlation matrix for the grouped data and visualizing it using a heatmap. Univariate Clustering:
Applying KMeans clustering with 3 clusters based on 'Annual Income (k$)' and adding the 'Income Cluster' column to the DataFrame. Plotting the elbow method to determine the optimal number of clusters. Bivariate Clustering:
Applying KMeans clustering with 5 clusters based on 'Annual Income (k$)' and 'Spending Score (1-100)' and adding the 'Spending and Income Cluster' column. Plotting the elbow method for bivariate clustering and visualizing the cluster centers on a scatter plot. Displaying a normalized cross-tabulation between 'Spending and Income Cluster' and 'Gender'. Multivariate Clustering:
Performing multivariate clustering by creating dummy variables, scaling selected columns, and applying KMeans clustering. Plotting the elbow method for multivariate clustering. Result Saving:
Saving the modified DataFrame with cluster information to a CSV file named "Result.csv". Saving the multivariate clustering plot as an image file ("Multivariate_figure.png").
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LifeSnaps Dataset Documentation
Ubiquitous self-tracking technologies have penetrated various aspects of our lives, from physical and mental health monitoring to fitness and entertainment. Yet, limited data exist on the association between in the wild large-scale physical activity patterns, sleep, stress, and overall health, and behavioral patterns and psychological measurements due to challenges in collecting and releasing such datasets, such as waning user engagement, privacy considerations, and diversity in data modalities. In this paper, we present the LifeSnaps dataset, a multi-modal, longitudinal, and geographically-distributed dataset, containing a plethora of anthropological data, collected unobtrusively for the total course of more than 4 months by n=71 participants, under the European H2020 RAIS project. LifeSnaps contains more than 35 different data types from second to daily granularity, totaling more than 71M rows of data. The participants contributed their data through numerous validated surveys, real-time ecological momentary assessments, and a Fitbit Sense smartwatch, and consented to make these data available openly to empower future research. We envision that releasing this large-scale dataset of multi-modal real-world data, will open novel research opportunities and potential applications in the fields of medical digital innovations, data privacy and valorization, mental and physical well-being, psychology and behavioral sciences, machine learning, and human-computer interaction.
The following instructions will get you started with the LifeSnaps dataset and are complementary to the original publication.
Data Import: Reading CSV
For ease of use, we provide CSV files containing Fitbit, SEMA, and survey data at daily and/or hourly granularity. You can read the files via any programming language. For example, in Python, you can read the files into a Pandas DataFrame with the pandas.read_csv() command.
Data Import: Setting up a MongoDB (Recommended)
To take full advantage of the LifeSnaps dataset, we recommend that you use the raw, complete data via importing the LifeSnaps MongoDB database.
To do so, open the terminal/command prompt and run the following command for each collection in the DB. Ensure you have MongoDB Database Tools installed from here.
For the Fitbit data, run the following:
mongorestore --host localhost:27017 -d rais_anonymized -c fitbit
For the SEMA data, run the following:
mongorestore --host localhost:27017 -d rais_anonymized -c sema
For surveys data, run the following:
mongorestore --host localhost:27017 -d rais_anonymized -c surveys
If you have access control enabled, then you will need to add the --username and --password parameters to the above commands.
Data Availability
The MongoDB database contains three collections, fitbit, sema, and surveys, containing the Fitbit, SEMA3, and survey data, respectively. Similarly, the CSV files contain related information to these collections. Each document in any collection follows the format shown below:
{
_id:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains aggregated and sub-metered power consumption data from a two-person apartment in Germany. Data was collected from March 5 to September 4, 2025, spanning 6 months. It includes an aggregate reading from a main smart meter and individual readings from 40 smart plugs, smart relays, and smart power meters monitoring various appliances.
The dataset can be downloaded here: https://doi.org/10.5281/zenodo.17159850
As it contains longer off periods with zeros, the CSV file is nicely compressible.
To extract it use: xz -d DARCK.csv.xz.
The compression leads to a 97% smaller file size (From 4GB to 90.9MB).
To use the dataset in python, you can, e.g., load the csv file into a pandas dataframe.
pythonimport pandas as pd
df = pd.read_csv("DARCK.csv", parse_dates=["time"])
The main meter was monitored using an infrared reading head magnetically attached to the infrared interface of the meter. An ESP8266 flashed with Tasmota decodes the binary datagrams and forwards the Watt readings to the MQTT broker. Individual appliances were monitored using a combination of Shelly Plugs (for outlets), Shelly 1PM (for wired-in devices like ceiling lights), and Shelly PM Mini (for each of the three phases of the oven). All devices reported to a central InfluxDB database via Home Assistant running in docker on a Dell OptiPlex 3020M.
DARCK.csv)The dataset is provided as a single comma-separated value (CSV) file.
Column Name |
Data Type |
Unit |
Description |
time | datetime | - | Timestamp for the reading in YYYY-MM-DD HH:MM:SS |
main | float | Watt | Total aggregate power consumption for the apartment, measured at the main electrical panel. |
[appliance_name] | float | Watt | Power consumption of an individual appliance (e.g., lightbathroom, fridge, sherlockpc). See Section 8 for a full list. |
| Aggregate Columns | |||
aggr_chargers | float | Watt | The sum of sherlockcharger, sherlocklaptop, watsoncharger, watsonlaptop, watsonipadcharger, kitchencharger. |
aggr_stoveplates | float | Watt | The sum of stoveplatel1 and stoveplatel2. |
aggr_lights | float | Watt | The sum of lightbathroom, lighthallway, lightsherlock, lightkitchen, lightlivingroom, lightwatson, lightstoreroom, fcob, sherlockalarmclocklight, sherlockfloorlamphue, sherlockledstrip, livingfloorlamphue, sherlockglobe, watsonfloorlamp, watsondesklamp and watsonledmap. |
| Analysis Columns | |||
inaccuracy | float | Watt | As no electrical device bypasses a power meter, the true inaccuracy can be assessed. It is the absolute error between the sum of individual measurements and the mains reading. A 30W offset is applied to the sum since the measurement devices themselves draw power which is otherwise unaccounted for. |
The final dataset was generated from two raw data sources (meter.csv and shellies.csv) using a comprehensive postprocessing pipeline.
main) PostprocessingThe aggregate power data required several cleaning steps to ensure accuracy.
shellies) PostprocessingThe Shelly devices are not prone to the same burst issue as the ESP8266 is. They push a new reading at every change in power drawn. If no power change is observed or the one observed is too small (less than a few Watt), the reading is pushed once a minute, together with a heartbeat. When a device turns on or off, intermediate power values are published, which leads to sub-second values that need to be handled.
.resample('1s').last().ffill(). time index.NaN values (e.g., from before a device was installed) were filled with 0.0, assuming zero consumption.During analysis, two significant unmetered load events were identified and manually corrected to improve the accuracy of the aggregate reading. The error column (inaccuracy) was recalculated after these corrections.
The following table lists the column names with an explanation where needed. As Watson moved at the beginning of June, some metering plugs changed their appliance.
Facebook
TwitterDescriptor Prediction Dataset
This dataset is part of the Deep Principle Bench collection.
Files
descriptor_prediction.csv: Main dataset file
Usage
import pandas as pd from datasets import load_dataset
dataset = load_dataset("yhqu/descriptor_prediction")
df = pd.read_csv("hf://datasets/yhqu/descriptor_prediction/descriptor_prediction.csv")
Citation
Please cite this work if you use… See the full description on the dataset page: https://huggingface.co/datasets/yhqu/descriptor_prediction.
Facebook
TwitterProperty Based Matching Dataset
This dataset is part of the Deep Principle Bench collection.
Files
property_based_matching.csv: Main dataset file
Usage
import pandas as pd from datasets import load_dataset
dataset = load_dataset("yhqu/property_based_matching")
df = pd.read_csv("hf://datasets/yhqu/property_based_matching/property_based_matching.csv")
Citation
Please cite this work if… See the full description on the dataset page: https://huggingface.co/datasets/yhqu/property_based_matching.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
3D skeletons UP-Fall Dataset
Different between Fall and Impact detection
Overview
This dataset aims to facilitate research in fall detection, particularly focusing on the precise detection of impact moments within fall events. The 3D skeletons data accuracy and comprehensiveness make it a valuable resource for developing and benchmarking fall detection algorithms. The dataset contains 3D skeletal data extracted from fall events and daily activities of 5 subjects performing fall scenarios
Data Collection
The skeletal data was extracted using a pose estimation algorithm, which processes images frames to determine the 3D coordinates of each joint. Sequences with less than 100 frames of extracted data were excluded to ensure the quality and reliability of the dataset. As a result, some subjects may have fewer CSV files.
CSV Structure
The data is organized by subjects, and each subject contains CSV files named according to the pattern C1S1A1T1, where:
C: Camera (1 or 2)
S: Subject (1 to 5)
A: Activity (1 to N, representing different activities)
T: Trial (1 to 3)
subject1/`: Contains CSV files for Subject 1.
C1S1A1T1.csv: Data from Camera 1, Activity 1, Trial 1 for Subject 1
C1S1A2T1.csv: Data from Camera 1, Activity 2, Trial 1 for Subject 1
C1S1A3T1.csv: Data from Camera 1, Activity 3, Trial 1 for Subject 1
C2S1A1T1.csv: Data from Camera 2, Activity 1, Trial 1 for Subject 1
C2S1A2T1.csv: Data from Camera 2, Activity 2, Trial 1 for Subject 1
C2S1A3T1.csv: Data from Camera 2, Activity 3, Trial 1 for Subject 1
subject2/`: Contains CSV files for Subject 2.
C1S2A1T1.csv: Data from Camera 1, Activity 1, Trial 1 for Subject 2
C1S2A2T1.csv: Data from Camera 1, Activity 2, Trial 1 for Subject 2
C1S2A3T1.csv: Data from Camera 1, Activity 3, Trial 1 for Subject 2
C2S2A1T1.csv: Data from Camera 2, Activity 1, Trial 1 for Subject 2
C2S2A2T1.csv: Data from Camera 2, Activity 2, Trial 1 for Subject 2
C2S2A3T1.csv: Data from Camera 2, Activity 3, Trial 1 for Subject 2
subject3/, subject4/, subject5/: Similar structure as above, but may contain fewer CSV files due to the data extraction criteria mentioned above.
Column Descriptions
Each CSV file contains the following columns representing different skeletal joints and their respective coordinates in 3D space:
Column Name
Description
joint_1_x
X coordinate of joint 1
joint_1_y
Y coordinate of joint 1
joint_1_z
Z coordinate of joint 1
joint_2_x
X coordinate of joint 2
joint_2_y
Y coordinate of joint 2
joint_2_z
Z coordinate of joint 2
...
...
joint_n_x
X coordinate of joint n
joint_n_y
Y coordinate of joint n
joint_n_z
Z coordinate of joint n
LABEL
Label indicating impact (1) or non-impact (0)
Example
Here is an example of what a row in one of the CSV files might look like:
joint_1_x
joint_1_y
joint_1_z
joint_2_x
joint_2_y
joint_2_z
...
joint_n_x
joint_n_y
joint_n_33
LABEL
0.123
0.456
0.789
0.234
0.567
0.890
...
0.345
0.678
0.901
0
Usage
This data can be used for developing and benchmarking impact fall detection algorithms. It provides detailed information on human posture and movement during falls, making it suitable for machine learning and deep learning applications in impact fall detection and prevention.
Using github
Clone the repository:
-bash git clone
https://github.com/Tresor-Koffi/3D_skeletons-UP-Fall-Dataset
Navigate to the directory:
-bash -cd 3D_skeletons-UP-Fall-Dataset
Examples
Here's a simple example of how to load and inspect a sample data file using Python:```pythonimport pandas as pd
data = pd.read_csv('subject1/C1S1A1T1.csv')print(data.head())
Facebook
Twitterhttps://entrepot.recherche.data.gouv.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.57745/VCALE0https://entrepot.recherche.data.gouv.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.57745/VCALE0
Dataset Description Dataset Description This dataset is associated with the publication titled "A Distraction Knee-Brace and a Robotic Testbed for Tibiofemoral Load Reduction during Squatting" in IEEE Transactions on Medical Robotics and Bionics. It provides comprehensive data supporting the development and evaluation of a knee distraction brace designed to reduce tibiofemoral contact forces during flexion. Contents Cam Profiles STL files of the initial cam profiles designed based on averaged tibiofemoral contact force data collected from 5 squats of a patient with an instrumented prosthesis (K7L) from the CAMS Knee dataset (accessible via https://orthoload.com/). Optimized cam profiles, corrected based on experimental results, are also included. These profiles enable patient-specific adjustments to account for the non-linear evolution of tibiofemoral contact forces with flexion angles. Experimental Results CSV files containing raw results from robotic testbed experiments, testing the knee brace under various initial pneumatic pressures in the actuators. Data is provided for tests conducted: Without the brace, With the initial cam profiles, With the optimized cam profiles. Each CSV file corresponds to a specific test condition, detailing forces and kinematics observed during squatting. 3D Models of Bones and Testbed Components Geometries of the femur head and tibial plateau used in the robotic testbed experiments, provided in STEP, STL, and SLDPRT/SLDASM formats. A README file describes the biomechanical coordinate systems used for: Force and kinematic control of the robotic testbed, Result interpretation and visualization. How to Open and Read the Provided Files The dataset includes files in CSV, SLDPRT, SLDASM, STL, and IGES formats. Below are recommended software solutions, with a preference for open-source options: CSV (Comma-Separated Values): Can be opened with Microsoft Excel, Google Sheets, or open-source software like LibreOffice Calc or Python (using pandas). SLDPRT & SLDASM (SolidWorks Parts and Assemblies): These files are native to SolidWorks. For viewing without SolidWorks, use eDrawings Viewer (free) or FreeCAD (limited compatibility). STL (3D Model Format): Can be opened with MeshLab, FreeCAD, or Blender. Most 3D printing software (like Cura or PrusaSlicer) also support STL. IGES (3D CAD Exchange Format): Can be read with FreeCAD, Fusion 360 (free for personal use), or OpenCascade-based software like CAD Assistant. For full compatibility, commercial software like SolidWorks or CATIA may be required for SLDPRT and SLDASM files. However, FreeCAD and other open-source tools provide partial support. See the associated publication and the README files included in the dataset for more information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset containing measurements of Linux Kernel binary size after compilation. The reported size, in the column "perf", is the size in bytes of the vmlinux file. In contains also a column "active_options" reporting the number of activated options (set at "y"). All other columns, the list being reported in the file "Linux_options.json", are Linux kernel options. The sampling have been made using randconfig. The version of Linux used is 4.13.3.
Not all available options are present. First, it only contains options about the x86 and 64 bits version. Then, all non-tristate options have been ignored. Finally, options not having multiple value through the whole dataset, due to not enough variability in the sampling, are ignored. All options are encoded as 0 for "n" and "m" options value, and 1 for "y".
In python, importing the dataset using pandas will attribute all columns to int64, which will lead to a great consumption of memory (~50GB). We provide this way to import it using less than 1 GB of memory by setting options columns to int8.
import pandas as pd import json import numpy
with open("Linux_options.json","r") as f: linux_options = json.load(f)
return pd.read_csv("Linux.csv", dtype={f:numpy.int8 for f in linux_options})
Facebook
Twitter[!NOTE] Dataset origin: https://www.kaggle.com/datasets/adewoleakorede/english-french-translation
Dataset
I used this dataset for my project on translating from English to French using the transformer architecture. To load the CSV file with pandas, use the parameter encoding_errors='ignore' - I couldn't fix the issues with the encoding.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Use this dataset with Misra's Pandas tutorial: How to use the Pandas GroupBy function | Pandas tutorial
The original dataset came from this site: https://data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t/data
I used Google Colab to filter the columns with the following Pandas commands. Here's a Colab Notebook you can use with the commands listed below: https://colab.research.google.com/drive/17Jpgeytc075CpqDnbQvVMfh9j-f4jM5l?usp=sharing
Once the csv file is uploaded to Google Colab, use these commands to process the file.
import pandas as pd # load the file and create a pandas dataframe df = pd.read_csv('/content/NYC_Jobs.csv') # keep only these columns df = df[['Job ID', 'Civil Service Title', 'Agency', 'Posting Type', 'Job Category', 'Salary Range From', 'Salary Range To' ]] # save the csv file without the index column df.to_csv('/content/NYC_Jobs_filtered_cols.csv', index=False)
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
📦 Ecommerce Dataset (Products & Sizes Included)
🛍️ Essential Data for Building an Ecommerce Website & Analyzing Online Shopping Trends 📌 Overview This dataset contains 1,000+ ecommerce products, including detailed information on pricing, ratings, product specifications, seller details, and more. It is designed to help data scientists, developers, and analysts build product recommendation systems, price prediction models, and sentiment analysis tools.
🔹 Dataset Features
Column Name Description product_id Unique identifier for the product title Product name/title product_description Detailed product description rating Average customer rating (0-5) ratings_count Number of ratings received initial_price Original product price discount Discount percentage (%) final_price Discounted price currency Currency of the price (e.g., USD, INR) images URL(s) of product images delivery_options Available delivery methods (e.g., standard, express) product_details Additional product attributes breadcrumbs Category path (e.g., Electronics > Smartphones) product_specifications Technical specifications of the product amount_of_stars Distribution of star ratings (1-5 stars) what_customers_said Customer reviews (sentiments) seller_name Name of the product seller sizes Available sizes (for clothing, shoes, etc.) videos Product video links (if available) seller_information Seller details, such as location and rating variations Different variants of the product (e.g., color, size) best_offer Best available deal for the product more_offers Other available deals/offers category Product category
📊 Potential Use Cases
📌 Build an Ecommerce Website: Use this dataset to design a functional online store with product listings, filtering, and sorting. 🔍 Price Prediction Models: Predict product prices based on features like ratings, category, and discount. 🎯 Recommendation Systems: Suggest products based on user preferences, rating trends, and customer feedback. 🗣 Sentiment Analysis: Analyze what_customers_said to understand customer satisfaction and product popularity. 📈 Market & Competitor Analysis: Track pricing trends, popular categories, and seller performance. 🔍 Why Use This Dataset? ✅ Rich Feature Set: Includes all necessary ecommerce attributes. ✅ Realistic Pricing & Rating Data: Useful for price analysis and recommendations. ✅ Multi-Purpose: Suitable for machine learning, web development, and data visualization. ✅ Structured Format: Easy-to-use CSV format for quick integration.
📂 Dataset Format
CSV file (ecommerce_dataset.csv)
1000+ samples
Multi-category coverage
🔗 How to Use?
Download the dataset from Kaggle.
Load it in Python using Pandas:
python
Copy
Edit
import pandas as pd
df = pd.read_csv("ecommerce_dataset.csv")
df.head()
Explore trends & patterns using visualization tools (Seaborn, Matplotlib).
Build models & applications based on the dataset!
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Project Description:
Title: Pandas Data Manipulation and File Conversion
Overview: This project aims to demonstrate the basic functionalities of Pandas, a powerful data manipulation library in Python. In this project, we will create a DataFrame, perform some data manipulation operations using Pandas, and then convert the DataFrame into both Excel and CSV formats.
Key Objectives:
Tools and Libraries Used:
Project Implementation:
DataFrame Creation:
Data Manipulation:
File Conversion:
to_excel() function.to_csv() function.Expected Outcome:
Upon completion of this project, you will have gained a fundamental understanding of how to work with Pandas DataFrames, perform basic data manipulation tasks, and convert DataFrames into different file formats. This knowledge will be valuable for data analysis, preprocessing, and data export tasks in various data science and analytics projects.
Conclusion:
The Pandas library offers powerful tools for data manipulation and file conversion in Python. By completing this project, you will have acquired essential skills that are widely applicable in the field of data science and analytics. You can further extend this project by exploring more advanced Pandas functionalities or integrating it into larger data processing pipelines.in this data we add number of data and make that data a data frame.and save in single excel file as different sheet name and then convert that excel file in csv file .
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset consists of four years of technical language annotations from two paper machines in northern Sweden, structured as a Pandas dataframe. The same data is also available as a semicolon-separated .csv file. The data consists of two columns, where the first column corresponds to annotation note contents, and the second column corresponds to annotation titles. The annotations are in Swedish, and processed so that all mentions of personal information are replaced with the string ‘egennamn’, meaning “personal name” in Swedish. Each row corresponds to one annotation with the corresponding title. Data can be accessed in Python with: import pandas as pd annotations_df = pd.read_pickle("Technical_Language_Annotations.pkl") annotation_contents = annotations_df['noteComment'] annotation_titles = annotations_df['title']
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
F-DATA is a novel workload dataset containing the data of around 24 million jobs executed on Supercomputer Fugaku, over the three years of public system usage (March 2021-April 2024). Each job data contains an extensive set of features, such as exit code, duration, power consumption and performance metrics (e.g. #flops, memory bandwidth, operational intensity and memory/compute bound label), which allows for a multitude of job characteristics prediction. The full list of features can be found in the file feature_list.csv.
The sensitive data appears both in anonymized and encoded versions. The encoding is based on a Natural Language Processing model and retains sensitive but useful job information for prediction purposes, without violating data privacy. The scripts used to generate the dataset are available in the F-DATA GitHub repository, along with a series of plots and instruction on how to load the data.
F-DATA is composed of 38 files, with each YY_MM.parquet file containing the data of the jobs submitted in the month MM of the year YY.
The files of F-DATA are saved as .parquet files. It is possible to load such files as dataframes by leveraging the pandas APIs, after installing pyarrow (pip install pyarrow). A single file can be read with the following Python instrcutions:
import pandas as pd
df = pd.read_parquet("21_01.parquet")
df.head()
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Benchmark Dataset for Deep Learning for 3D Topology Optimization
This dataset represents voxelized 3D topology optimization problems and solutions. The solutions have been generated in cooperation with the Ariane Group and Synera using the Altair OptiStruct implementation of SIMP within the Synera software. The SELTO dataset consists of four different 3D datasets for topology optimization, called disc simple, disc complex, sphere simple and sphere complex. Each of these datasets is further split into a training and a validation subset.
The following paper provides full documentation and examples:
Dittmer, S., Erzmann, D., Harms, H., Maass, P., SELTO: Sample-Efficient Learned Topology Optimization (2022) https://arxiv.org/abs/2209.05098.
The Python library DL4TO (https://github.com/dl4to/dl4to) can be used to download and access all SELTO dataset subsets. Each TAR.GZ file container consists of multiple enumerated pairs of CSV files. Each pair describes a unique topology optimization problem and contains an associated ground truth solution. Each problem-solution pair consists of two files, where one contains voxel-wise information and the other file contains scalar information. For example, the i-th sample is stored in the files i.csv and i_info.csv, where i.csv contains all voxel-wise information and i_info.csv contains all scalar information. We define all spatially varying quantities at the center of the voxels, rather than on the vertices or surfaces. This allows for a shape-consistent tensor representation.
For the i-th sample, the columns of i_info.csv correspond to the following scalar information:
E - Young's modulus [Pa]
ν - Poisson's ratio [-]
σ_ys - a yield stress [Pa]
h - discretization size of the voxel grid [m]
The columns of i.csv correspond to the following voxel-wise information:
x, y, z - the indices that state the location of the voxel within the voxel mesh
Ω_design - design space information for each voxel. This is a ternary variable that indicates the type of density constraint on the voxel. 0 and 1 indicate that the density is fixed at 0 or 1, respectively. -1 indicates the absence of constraints, i.e., the density in that voxel can be freely optimized
Ω_dirichlet_x, Ω_dirichlet_y, Ω_dirichlet_z - homogeneous Dirichlet boundary conditions for each voxel. These are binary variables that define whether the voxel is subject to homogeneous Dirichlet boundary constraints in the respective dimension
F_x, F_y, F_z - floating point variables that define the three spacial components of external forces applied to each voxel. All forces are body forces given in [N/m^3]
density - defines the binary voxel-wise density of the ground truth solution to the topology optimization problem
How to Import the Dataset
with DL4TO: With the Python library DL4TO (https://github.com/dl4to/dl4to) it is straightforward to download and access the dataset as a customized PyTorch torch.utils.data.Dataset object. As shown in the tutorial this can be done via:
from dl4to.datasets import SELTODataset
dataset = SELTODataset(root=root, name=name, train=train)
Here, root is the path where the dataset should be saved. name is the name of the SELTO subset and can be one of "disc_simple", "disc_complex", "sphere_simple" and "sphere_complex". train is a boolean that indicates whether the corresponding training or validation subset should be loaded. See here for further documentation on the SELTODataset class.
without DL4TO: After downloading and unzipping, any of the i.csv files can be manually imported into Python as a Pandas dataframe object:
import pandas as pd
root = ... file_path = f'{root}/{i}.csv' columns = ['x', 'y', 'z', 'Ω_design','Ω_dirichlet_x', 'Ω_dirichlet_y', 'Ω_dirichlet_z', 'F_x', 'F_y', 'F_z', 'density'] df = pd.read_csv(file_path, names=columns)
Similarly, we can import a i_info.csv file via:
file_path = f'{root}/{i}_info.csv' info_column_names = ['E', 'ν', 'σ_ys', 'h'] df_info = pd.read_csv(file_path, names=info_columns)
We can extract PyTorch tensors from the Pandas dataframe df using the following function:
import torch
def get_torch_tensors_from_dataframe(df, dtype=torch.float32): shape = df[['x', 'y', 'z']].iloc[-1].values.astype(int) + 1 voxels = [df['x'].values, df['y'].values, df['z'].values]
Ω_design = torch.zeros(1, *shape, dtype=int)
Ω_design[:, voxels[0], voxels[1], voxels[2]] = torch.from_numpy(data['Ω_design'].values.astype(int))
Ω_Dirichlet = torch.zeros(3, *shape, dtype=dtype)
Ω_Dirichlet[0, voxels[0], voxels[1], voxels[2]] = torch.tensor(df['Ω_dirichlet_x'].values, dtype=dtype)
Ω_Dirichlet[1, voxels[0], voxels[1], voxels[2]] = torch.tensor(df['Ω_dirichlet_y'].values, dtype=dtype)
Ω_Dirichlet[2, voxels[0], voxels[1], voxels[2]] = torch.tensor(df['Ω_dirichlet_z'].values, dtype=dtype)
F = torch.zeros(3, *shape, dtype=dtype)
F[0, voxels[0], voxels[1], voxels[2]] = torch.tensor(df['F_x'].values, dtype=dtype)
F[1, voxels[0], voxels[1], voxels[2]] = torch.tensor(df['F_y'].values, dtype=dtype)
F[2, voxels[0], voxels[1], voxels[2]] = torch.tensor(df['F_z'].values, dtype=dtype)
density = torch.zeros(1, *shape, dtype=dtype)
density[:, voxels[0], voxels[1], voxels[2]] = torch.tensor(df['density'].values, dtype=dtype)
return Ω_design, Ω_Dirichlet, F, density
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains NYC Yellow Taxi trip records for the full year 2024, consolidated into three CSV files for easier loading, analysis, and modeling. The data originates from the official NYC Taxi & Limousine Commission (TLC) Trip Record Data releases, which provide detailed information about every yellow taxi trip recorded in New York City.
Each trip includes fields such as pickup and dropoff timestamps, locations, distances, fares, taxes, surcharges, passenger counts, and payment information.
The original TLC files are provided as monthly Parquet files. They have been cleaned and consolidated into three manageable CSV files for ease of use in Kaggle kernels, pandas, SQL, and Spark workflows.
Source: NYC Taxi & Limousine Commission (TLC) Original Data Link: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
This is public data provided by NYC TLC and may be used freely under open data guidelines.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
# Baghdad VANET BSM-Based
Attack Dataset (F2MD Scenarios) — Raw CSVs (File-level by Attack ID)
## Overview
This package groups the original raw CSV files by attack type at the file level. No content changes were made to the CSVs—files are copied as-is into family folders.
## Dataset Summary
Total files: 17
Total records (all files): 35830975
Attack records (label=1): 2359250
Benign records (label=0): 33471725
Other/unknown labels: 0
## Attack Families
- ConstPos — Frozen constant position
- ConstPosOffset — Constant offset to coordinates
- RandomPos — Random fake positions
- RandomPosOffset — Random offset to the true position
- ConstSpeedOffset — Constant speed bias
- RandomSpeed — Random implausible speeds
- EventualStop — Gradual or sudden stop spoofing
- Disruptive — Protocol fields/values deliberately disruptive
- DataReplay — Replay of past data
- StaleMessages — Old or delayed messages
- DoS — High-rate flooding
- DoSRandom — Randomly fluctuating flooding
- DoSDisruptive — Intermittent aggressive flooding
- GridSybil — Coordinated fake identities (Sybil)
- DoSRandomSybil — Random DoS with Sybil identities
- DoSDisruptiveSybil — Aggressive DoS with Sybil identities
- Unknown — Files not mapped to a specific family
## Per-family Totals
| Family | Files | Records | Attack (label=1) | Benign (label=0) | Other |
|:--|--:|--:|--:|--:|--:|
| ConstPos | 1 | 1327217 | 63504 | 1263713 | 0 |
| ConstPosOffset | 1 | 1305206 | 62749 | 1242457 | 0 |
| ConstSpeedOffset | 1 | 2150356 | 102707 | 2047649 | 0 |
| DataReplay | 1 | 922481 | 43916 | 878565 | 0 |
| Disruptive | 1 | 1063416 | 52038 | 1011378 | 0 |
| DoS | 1 | 1241649 | 167490 | 1074159 | 0 |
| DoSDisruptive | 1 | 705817 | 97649 | 608168 | 0 |
| DoSDisruptiveSybil | 1 | 2113005 | 24365 | 2088640 | 0 |
| DoSRandom | 1 | 6440583 | 867983 | 5572600 | 0 |
| DoSRandomSybil | 1 | 2499578 | 30382 | 2469196 | 0 |
| EventualStop | 1 | 2124546 | 101617 | 2022929 | 0 |
| GridSybil | 1 | 622012 | 108728 | 513284 | 0 |
| RandomPos | 1 | 1087145 | 53253 | 1033892 | 0 |
| RandomPosOffset | 1 | 3258131 | 158686 | 3099445 | 0 |
| RandomSpeed | 1 | 3676823 | 176305 | 3500518 | 0 |
| StaleMessages | 1 | 770026 | 36645 | 733381 | 0 |
| Unknown | 1 | 4522984 | 211233 | 4311751 | 0 |
## Per-file Details
| Family | File | Records | Attack (1) | Benign (0) | Other | Label column present |
|:--|:--|--:|--:|--:|--:|:--:|
| ConstPos | 1.csv | 1327217 | 63504 | 1263713 | 0 | yes |
| ConstPosOffset | 2.csv | 1305206 | 62749 | 1242457 | 0 | yes |
| ConstSpeedOffset | 6.csv | 2150356 | 102707 | 2047649 | 0 | yes |
| DataReplay | 11.csv | 922481 | 43916 | 878565 | 0 | yes |
| Disruptive | 10.csv | 1063416 | 52038 | 1011378 | 0 | yes |
| DoS | 13.csv | 1241649 | 167490 | 1074159 | 0 | yes |
| DoSDisruptive | 15.csv | 705817 | 97649 | 608168 | 0 | yes |
| DoSDisruptiveSybil | 19.csv | 2113005 | 24365 | 2088640 | 0 | yes |
| DoSRandom | 14.csv | 6440583 | 867983 | 5572600 | 0 | yes |
| DoSRandomSybil | 18.csv | 2499578 | 30382 | 2469196 | 0 | yes |
| EventualStop | 9.csv | 2124546 | 101617 | 2022929 | 0 | yes |
| GridSybil | 16.csv | 622012 | 108728 | 513284 | 0 | yes |
| RandomPos | 3.csv | 1087145 | 53253 | 1033892 | 0 | yes |
| RandomPosOffset | 4.csv | 3258131 | 158686 | 3099445 | 0 | yes |
| RandomSpeed | 7.csv | 3676823 | 176305 | 3500518 | 0 | yes |
| StaleMessages | 12.csv | 770026 | 36645 | 733381 | 0 | yes |
| Unknown | 5.csv | 4522984 | 211233 | 4311751 | 0 | yes |
## How to Load (Python)
Use pandas to read any CSV under data/
Facebook
TwitterCrispr Delivery Dataset
This dataset is part of the Deep Principle Bench collection.
Files
crispr_delivery.csv: Main dataset file
Usage
import pandas as pd from datasets import load_dataset
dataset = load_dataset("yhqu/crispr_delivery")
df = pd.read_csv("hf://datasets/yhqu/crispr_delivery/crispr_delivery.csv")
Citation
Please cite this work if you use this dataset in your research.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
2,121,458 records
I used Google Colab to check out this dataset and pull the column names using Pandas.
Sample code example: Python Pandas read csv file compressed with gzip and load into Pandas dataframe https://pastexy.com/106/python-pandas-read-csv-file-compressed-with-gzip-and-load-into-pandas-dataframe
Columns: ['Date received', 'Product', 'Sub-product', 'Issue', 'Sub-issue', 'Consumer complaint narrative', 'Company public response', 'Company', 'State', 'ZIP code', 'Tags', 'Consumer consent provided?', 'Submitted via', 'Date sent to company', 'Company response to consumer', 'Timely response?', 'Consumer disputed?', 'Complaint ID']
I did not modify the dataset.
Use it to practice with dataframes - Pandas or PySpark on Google Colab:
!unzip complaints.csv.zip
import pandas as pd df = pd.read_csv('complaints.csv') df.columns
df.head() etc.