Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Facebook
Twitterminimizes errors
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. Felton
Date: 10/29/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.
#Code information
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a role:
"01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).
"02_functions.R": This script contains custom functions. Load this using the
`source()` function in the 01_start.R script.
"03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
`source()` function in the 01_start.R script.
"04_figures_tables.R": This is the main workhouse for figure/table production and
supporting analyses. This script generates the key figures and summary statistics
used in the study that then get saved in the manuscript_figures folder. Note that all
maps were produced using Python code found in the "supporting_code"" folder.
"supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.
"supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.
Facebook
TwitterPython International Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wiens, S., van Berlekom, E., Szychowska, M., & Eklund, R. (2019). Visual Perceptual Load Does Not Affect the Frequency Mismatch Negativity. Frontiers in Psychology, 10(1970). doi:10.3389/fpsyg.2019.01970We manipulated visual perceptual load (high and low load) while we recorded electroencephalography. Event-related potentials (ERPs) were computed from these data.OSF_*.pdf contains the preregistration at open science framework (osf).https://doi.org/10.17605/OSF.IO/EWG9XERP_2019_rawdata_bdf.zip contains the raw eeg data files that were recorded with a biosemi system (www.biosemi.com). The files can be opened in matlab with the fieldtrip toolbox. https://www.mathworks.com/products/matlab.htmlhttp://www.fieldtriptoolbox.org/ERP_2019_visual_load_fieldtrip_scripts.zip contains all the matlab scripts that were used to process the ERP data with the toolbox fieldtrip. http://www.fieldtriptoolbox.org/ERP_2019_fieldtrip_mat_*.zip contain the final, preprocessed individual data files. They can be opened with matlab.ERP_2019_visual_load_python_scripts.zip contains the python scripts for the main task. They need python (https://www.python.org/) and psychopy (http://www.psychopy.org/)ERP_2019_visual_load_wmc_R_scripts.zip contains the R scripts to process the working memory capacity (wmc) data. https://www.r-project.org/.ERP_2019_visual_load_R_scripts.zip contains the R scripts to analyze the data and the output files with figures (eg scatterplots). https://www.r-project.org/.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
High-density multi-channel neurophysiology data were collected from primary (A1) and secondary (PEG) fields of auditory cortex of passively listening ferrets during presentation of a large natural sound library. Single unit spikes were sorted using Kilosort. This dataset includes spike times for 849 A1 units and 398 PEG units. Stimulus waveforms were transformed to log-spaced spectrograms for analysis (18 channels, 10 ms time bins). Data set includes raw sound waveforms as well.
The authors request that any publication using this data cite the following work: https://www.biorxiv.org/content/10.1101/2022.06.10.495698v2
Data format/description
Neural data are stored in two files. All recordings were performed during presentation of the same natural sound library.
recordings/A1_NAT4_ozgf.fs100.ch18.tgz - data from 849 A1 single units and log spectrogram of stimuli aligned with spike times.
recordings/PEG_NAT4_ozgf.fs100.ch18.tgz - data from 398 PEG single units and log spectrogram of stimuli aligned with spike times.
wav.zip - raw wav files. Note: Only first 1-sec of each wav file was presented during experiments. Recordings have longer duration
Example scripts
Python scripts included with this dataset demonstrate how to load the neural data and perform a CNN model fit. Running the scripts requires the NEMS0 python library, which is available open source at https://github.com/lbhb/NEMS0.
Quick install
Create and activate a new conda environment:
conda create -n NEMS0 python=3.7 conda activate NEMS0
Download NEMS0:
git clone https://github.com/lbhb/NEMS0
Install NEMS0:
pip install -e NEMS0
Detailed instructions for installing NEMS0 are available in the Github repository (https://github.com/lbhb/NEMS0).
Demo scripts
Once NEMS0 is installed and the data are downloaded, move to the directory where the data and demo scripts are stored and run them in a NEMS0 environment.
pop_cnn_load.py - Load the A1 data and compare predictions for two neurons (Fig 3) by two population models (stage 1 fit complete). Illustrates how to load the data using Python.
pop_cnn_fit.py - Load a pre-fit A1 population model (stage 1) and complete stage 2 fit (refinement) for a single neuron. Illustrates use of NEMS0 for CNN model fitting.
Funding
Data collection, software development and processing were supported by funding from the NIH (R01DC014950, R01EB028155).
Facebook
TwitterDataset Card for Python-DPO
This dataset is the larger version of Python-DPO dataset and has been created using Argilla.
Load with datasets
To load this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code: from datasets import load_dataset
ds = load_dataset("NextWealth/Python-DPO")
Data Fields
Each data instance contains:
instruction: The problem description/requirements chosen_code:… See the full description on the dataset page: https://huggingface.co/datasets/NextWealth/Python-DPO-Large.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file contains the raw data as well as the Python code used to generate the results and plots shown in the main manuscript.
Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
QUT Research Data Respository Dataset Resource available for download
Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.
This repository contains two files:
The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.
The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:
In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.
Reproducing the Analysis
This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:
Ubuntu 18.04.1 LTS
PostgreSQL 10.6
Conda 4.5.11
Python 3.7.2
PdfCrop 2012/11/02 v1.38
First, download dump.tar.bz2 and extract it:
tar -xjf dump.tar.bz2
It extracts the file db2019-03-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:
psql jupyter < db2019-03-13.dump
It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Create a conda environment with Python 3.7:
conda create -n analyses python=3.7
conda activate analyses
Go to the analyses folder and install all the dependencies of the requirements.txt
cd jupyter_reproducibility/analyses
pip install -r requirements.txt
For reproducing the analyses, run jupyter on this folder:
jupyter notebook
Execute the notebooks on this order:
Reproducing or Expanding the Collection
The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.
Requirements
This time, we have extra requirements:
All the analysis requirements
lbzip2 2.5
gcc 7.3.0
Github account
Gmail account
Environment
First, set the following environment variables:
export JUP_MACHINE="db"; # machine identifier
export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
export JUP_COMPRESSION="lbzip2"; # compression program
export JUP_VERBOSE="5"; # verbose level
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
export JUP_GITHUB_USERNAME="github_username"; # your github username
export JUP_GITHUB_PASSWORD="github_password"; # your github password
export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
export JUP_WITH_EXECUTION="1"; # run execute python notebooks
export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
export JUP_EXECUTION_MODE="-1"; # run following the execution order
export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
# Frequenci of log report
export JUP_ASTROID_FREQUENCY="5";
export JUP_IPYTHON_FREQUENCY="5";
export JUP_NOTEBOOKS_FREQUENCY="5";
export JUP_REQUIREMENT_FREQUENCY="5";
export JUP_CRAWLER_FREQUENCY="1";
export JUP_CLONE_FREQUENCY="1";
export JUP_COMPRESS_FREQUENCY="5";
export JUP_DB_IP="localhost"; # postgres database IP
Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf
Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.
Scripts
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):
Conda 2.7
conda create -n raw27 python=2.7 -y
conda activate raw27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 2.7
conda create -n py27 python=2.7 anaconda -y
conda activate py27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.4
It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.
conda create -n raw34 python=3.4 -y
conda activate raw34
conda install jupyter -c conda-forge -y
conda uninstall jupyter -y
pip install --upgrade pip
pip install jupyter
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
pip install pathlib2
Anaconda 3.4
conda create -n py34 python=3.4 anaconda -y
conda activate py34
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.5
conda create -n raw35 python=3.5 -y
conda activate raw35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.5
It requires the manual installation of other anaconda packages.
conda create -n py35 python=3.5 anaconda -y
conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
conda activate py35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.6
conda create -n raw36 python=3.6 -y
conda activate raw36
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.6
conda create -n py36 python=3.6 anaconda -y
conda activate py36
conda install -y anaconda-navigator jupyterlab_server navigator-updater
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.7
<code
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains 1,004 labeled images from the classic NES game "Duck Hunt" (1984), specifically prepared for YOLO (You Only Look Once) object detection training. The dataset includes sprites of the iconic hunting dog and ducks in various states, augmented to provide a balanced and comprehensive training set for computer vision models.
Perfect for: - Object detection model training - Computer vision research - Retro gaming AI projects - YOLO algorithm benchmarking - Educational purposes
| Metric | Value |
|---|---|
| Total Images | 1,004 |
| Dataset Size | 12 MB |
| Image Format | PNG |
| Annotation Format | YOLO (.txt) |
| Classes | 4 |
| Train/Val Split | 711/260 (73%/27%) |
| Class ID | Class Name | Count | Description |
|---|---|---|---|
| 0 | dog | 252 | The hunting dog in various poses (jumping, laughing, sniffing, etc.) |
| 1 | duck_dead | 256 | Dead ducks (both black and red variants) |
| 2 | duck_shot | 248 | Ducks in the moment of being shot |
| 3 | duck_flying | 248 | Flying ducks in all directions (left, right, diagonal) |
yolo_dataset_augmented/
├── images/
│ ├── train/ # 711 training images
│ └── val/ # 260 validation images
├── labels/
│ ├── train/ # 711 YOLO annotation files
│ └── val/ # 260 YOLO annotation files
├── classes.txt # Class names mapping
├── dataset.yaml # YOLO configuration file
└── augmented_dataset_stats.json # Detailed statistics
The original 47 images were enhanced using advanced data augmentation techniques to create a balanced dataset:
{
'rotation_range': (-15, 15), # Small rotations for game sprites
'brightness_range': (0.7, 1.3), # Brightness variations
'contrast_range': (0.8, 1.2), # Contrast adjustments
'saturation_range': (0.8, 1.2), # Color saturation
'noise_intensity': 0.02, # Gaussian noise
'horizontal_flip_prob': 0.5, # 50% chance horizontal flip
'scaling_range': (0.8, 1.2), # Scale variations
}
from ultralytics import YOLO
# Load and train
model = YOLO('yolov8n.pt') # Load pretrained model
results = model.train(data='dataset.yaml', epochs=100, imgsz=640)
# Validate
metrics = model.val()
# Predict
results = model('path/to/test/image.png')
import torch
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os
class DuckHuntDataset(Dataset):
def _init_(self, images_dir, labels_dir, transform=None):
self.images_dir = images_dir
self.labels_dir = labels_dir
self.transform = transform
self.images = os.listdir(images_dir)
def _len_(self):
return len(self.images)
def _getitem_(self, idx):
img_path = os.path.join(self.images_dir, self.images[idx])
label_path = os.path.join(self.labels_dir,
self.images[idx].replace('.png', '.txt'))
image = Image.open(img_path)
# Load YOLO annotations
with open(label_path, 'r') as f:
labels = f.readlines()
if self.transform:
image = self.transform(image)
return image, labels
# Usage
dataset = DuckHuntDataset('images/train', 'labels/train')
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
Each .txt file contains one line per object:
class_id center_x center_y width height
Example annotation:
0 0.492 0.403 0.212 0.315
Where values are normalized (0-1) relative to image dimensions.
This dataset is based on sprites from the iconic 1984 NES game "Duck Hunt," one of the most recognizable video games in history. The game featured:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Context (https://opencontext.org) publishes free and open access research data for archaeology and related disciplines. An open source (but bespoke) Django (Python) application supports these data publishing services. The software repository is here: https://github.com/ekansa/open-context-py
The Open Context team runs ETL (extract, transform, load) workflows to import data contributed by researchers from various source relational databases and spreadsheets. Open Context uses PostgreSQL (https://www.postgresql.org) relational database to manage these imported data in a graph style schema. The Open Context Python application interacts with the PostgreSQL database via the Django Object-Relational-Model (ORM).
This database dump includes all published structured data organized used by Open Context (table names that start with 'oc_all_'). The binary media files referenced by these structured data records are stored elsewhere. Binary media files for some projects, still in preparation, are not yet archived with long term digital repositories.
These data comprehensively reflect the structured data currently published and publicly available on Open Context. Other data (such as user and group information) used to run the Website are not included.
IMPORTANT
This database dump contains data from roughly 190+ different projects. Each project dataset has its own metadata and citation expectations. If you use these data, you must cite each data contributor appropriately, not just this Zenodo archived database dump.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open data: Visual load does not decrease the auditory steady state response to 40-Hz amplitude-modulated tones The main results files are saved separately: - ASSR_study1.html: R output of the main analyses- ASSR_study1_subset_subjects.html: R output of the main analyses- ASSR_study2.html: R output of the main analyses The studies were preregistered:Study 1: https://doi.org/10.17605/OSF.IO/UYJVAStudy 2: https://doi.org/10.17605/OSF.IO/JVMFD DATA & FILE OVERVIEW File List:The files contain the raw data, scripts, and results of main and supplementary analyses of two electroencephalography (EEG) studies (Study1, Study2). Links to the hardware and software are provided under methodological information. ASSR_study1_experiment_scripts.zip: contains the Python files to run the experiment. ASSR_study1_rawdata.zip: contains raw datafiles for each subject - data_EEG: EEG data in bdf format (generated by Biosemi)- data_log: logfiles of the EEG session (generated by Python)- data_WMC: logfiles of the working memory capacity task (generated by Python) ASSR_study1_EEG_scripts.zip: Python-MNE scripts to process the EEG data ASSR_study1_EEG_preprocessed.zip: Preprocessed EEG data from Python-MNE ASSR_study1_analysis_scripts.zip: R scripts to analyze the data together with the main datafiles. The main files in the folder are: - ASSR_study1.html: R output of the main analyses- ASSR_study1_subset_subjects.html: R output of the main analyses but after excluding five subjects who were excluded because of stricter, preregistered artifact rejection criteria ASSR_study1_figures.zip: contains all figures and tables that are created by Python-MNE and R. ASSR_study2_experiment_scripts.zip: contains the Python files to run the experiment ASSR_study2_rawdata.zip: contains raw datafiles for each subject - data_EEG: EEG data in bdf format (generated by Biosemi)- data_log: logfiles of the EEG session (generated by Python)- data_WMC: logfiles of the working memory capacity task (generated by Python) ASSR_study2_EEG_scripts.zip: Python-MNE scripts to process the EEG data ASSR_study2_EEG_preprocessed.zip: Preprocessed EEG data from Python-MNE ASSR_study2_analysis_scripts.zip: R scripts to analyze the data together with the main datafiles. The main files in the folder are: - ASSR_study2.html: R output of the main analyses- ASSR_compare_performance_between_studies.html: R output of analyses that compare behavioral performance between study 1 and study 2. ASSR_study2_figures.zip: contains all figures and tables that are created by Python-MNE and R. Instrument- or software-specific information needed to interpret the data:MNE-Python (Gramfort A., et al., 2013): https://mne.tools/stable/index.html#Rstudio used with R (R Core Team, 2016): https://rstudio.com/products/rstudio/Wiens, S. (2017). Aladins Bayes Factor in R (Version 3). https://www.doi.org/10.17045/sthlmuni.4981154.v3
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
3D skeletons UP-Fall Dataset
Different between Fall and Impact detection
Overview
This dataset aims to facilitate research in fall detection, particularly focusing on the precise detection of impact moments within fall events. The 3D skeletons data accuracy and comprehensiveness make it a valuable resource for developing and benchmarking fall detection algorithms. The dataset contains 3D skeletal data extracted from fall events and daily activities of 5 subjects performing fall scenarios
Data Collection
The skeletal data was extracted using a pose estimation algorithm, which processes images frames to determine the 3D coordinates of each joint. Sequences with less than 100 frames of extracted data were excluded to ensure the quality and reliability of the dataset. As a result, some subjects may have fewer CSV files.
CSV Structure
The data is organized by subjects, and each subject contains CSV files named according to the pattern C1S1A1T1, where:
C: Camera (1 or 2)
S: Subject (1 to 5)
A: Activity (1 to N, representing different activities)
T: Trial (1 to 3)
subject1/`: Contains CSV files for Subject 1.
C1S1A1T1.csv: Data from Camera 1, Activity 1, Trial 1 for Subject 1
C1S1A2T1.csv: Data from Camera 1, Activity 2, Trial 1 for Subject 1
C1S1A3T1.csv: Data from Camera 1, Activity 3, Trial 1 for Subject 1
C2S1A1T1.csv: Data from Camera 2, Activity 1, Trial 1 for Subject 1
C2S1A2T1.csv: Data from Camera 2, Activity 2, Trial 1 for Subject 1
C2S1A3T1.csv: Data from Camera 2, Activity 3, Trial 1 for Subject 1
subject2/`: Contains CSV files for Subject 2.
C1S2A1T1.csv: Data from Camera 1, Activity 1, Trial 1 for Subject 2
C1S2A2T1.csv: Data from Camera 1, Activity 2, Trial 1 for Subject 2
C1S2A3T1.csv: Data from Camera 1, Activity 3, Trial 1 for Subject 2
C2S2A1T1.csv: Data from Camera 2, Activity 1, Trial 1 for Subject 2
C2S2A2T1.csv: Data from Camera 2, Activity 2, Trial 1 for Subject 2
C2S2A3T1.csv: Data from Camera 2, Activity 3, Trial 1 for Subject 2
subject3/, subject4/, subject5/: Similar structure as above, but may contain fewer CSV files due to the data extraction criteria mentioned above.
Column Descriptions
Each CSV file contains the following columns representing different skeletal joints and their respective coordinates in 3D space:
Column Name
Description
joint_1_x
X coordinate of joint 1
joint_1_y
Y coordinate of joint 1
joint_1_z
Z coordinate of joint 1
joint_2_x
X coordinate of joint 2
joint_2_y
Y coordinate of joint 2
joint_2_z
Z coordinate of joint 2
...
...
joint_n_x
X coordinate of joint n
joint_n_y
Y coordinate of joint n
joint_n_z
Z coordinate of joint n
LABEL
Label indicating impact (1) or non-impact (0)
Example
Here is an example of what a row in one of the CSV files might look like:
joint_1_x
joint_1_y
joint_1_z
joint_2_x
joint_2_y
joint_2_z
...
joint_n_x
joint_n_y
joint_n_33
LABEL
0.123
0.456
0.789
0.234
0.567
0.890
...
0.345
0.678
0.901
0
Usage
This data can be used for developing and benchmarking impact fall detection algorithms. It provides detailed information on human posture and movement during falls, making it suitable for machine learning and deep learning applications in impact fall detection and prevention.
Using github
Clone the repository:
-bash git clone
https://github.com/Tresor-Koffi/3D_skeletons-UP-Fall-Dataset
Navigate to the directory:
-bash -cd 3D_skeletons-UP-Fall-Dataset
Examples
Here's a simple example of how to load and inspect a sample data file using Python:```pythonimport pandas as pd
data = pd.read_csv('subject1/C1S1A1T1.csv')print(data.head())
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials
Background
This dataset contains data from monotonic and cyclic loading experiments on structural metallic materials. The materials are primarily structural steels and one iron-based shape memory alloy is also included. Summary files are included that provide an overview of the database and data from the individual experiments is also included.
The files included in the database are outlined below and the format of the files is briefly described. Additional information regarding the formatting can be found through the post-processing library (https://github.com/ahartloper/rlmtp/tree/master/protocols).
Usage
Included Files
File Format: Downsampled Data
These are the "LP_
These data files can be easily loaded using the pandas library in Python through:
import pandas
data = pandas.read_csv(data_file, index_col=0)
The data is formatted so it can be used directly in RESSPyLab (https://github.com/AlbanoCastroSousa/RESSPyLab). Note that the column names "e_true" and "Sigma_true" were kept for backwards compatibility reasons with RESSPyLab.
File Format: Unreduced Data
These are the "LP_
The data can be loaded and used similarly to the downsampled data.
File Format: Overall_Summary
The overall summary file provides data on all the test specimens in the database. The columns include:
File Format: Summarized_Mechanical_Props_Campaign
Meant to be loaded in Python as a pandas DataFrame with multi-indexing, e.g.,
tab1 = pd.read_csv('Summarized_Mechanical_Props_Campaign_' + date + version + '.csv',
index_col=[0, 1, 2, 3], skipinitialspace=True, header=[0, 1],
keep_default_na=False, na_values='')
Caveats
Facebook
TwitterThis dataset contains materials from the Coalition for Community-Supported Affordable Geothermal Energy Systems (C2SAGES) project, which evaluated the techno-economic feasibility of a community geothermal system for a residential development in Hinesburg, VT. The dataset includes detailed soil conductivity test reports, energy models, borehole design reports, hourly energy loads for heating, cooling, and hot water, and design layouts. EnergyPlus was used to model building energy loads, and Modelica software was applied for geothermal loop sizing based on these loads and soil conductivity results. Python scripts for network design further refined the models. Key files include PDF reports on borehole design (with projections for 1-year, 15-year, and 30-year systems), soil conductivity test results, EnergyPlus modeling outputs, and 2D/3D design drawings in PDF, DWG, and DXF formats. Python notebooks for network design and OnePipe model files are also provided, with Modelica required for viewing certain files. Outputs and modeling data are in various formats including CSV, JPG, HTML, and IDF, with units and data clearly labeled to support understanding of system design and performance for the proposed geothermal solution.
Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main results file are saved separately:
FIGSHARE METADATA
Categories
Keywords
References
GENERAL INFORMATION
Title of Dataset: Open data: Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones
Author Information A. Principal Investigator Contact Information Name: Stefan Wiens Institution: Department of Psychology, Stockholm University, Sweden Internet: https://www.su.se/profiles/swiens-1.184142 Email: sws@psychology.su.se
B. Associate or Co-investigator Contact Information Name: Malina Szychowska Institution: Department of Psychology, Stockholm University, Sweden Internet: https://www.researchgate.net/profile/Malina_Szychowska Email: malina.szychowska@psychology.su.se
Date of data collection: Subjects (N = 33) were tested between 2019-11-15 and 2020-03-12.
Geographic location of data collection: Department of Psychology, Stockholm, Sweden
Information about funding sources that supported the collection of the data: Swedish Research Council (Vetenskapsrådet) 2015-01181
SHARING/ACCESS INFORMATION
Licenses/restrictions placed on the data: CC BY 4.0
Links to publications that cite or use the data: Szychowska M., & Wiens S. (2020). Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Submitted manuscript.
The study was preregistered: https://doi.org/10.17605/OSF.IO/6FHR8
Links to other publicly accessible locations of the data: N/A
Links/relationships to ancillary data sets: N/A
Was data derived from another source? No
Recommended citation for this dataset: Wiens, S., & Szychowska M. (2020). Open data: Visual load effects on the auditory steady-state responses to 20-, 40-, and 80-Hz amplitude-modulated tones. Stockholm: Stockholm University. https://doi.org/10.17045/sthlmuni.12582002
DATA & FILE OVERVIEW
File List: The files contain the raw data, scripts, and results of main and supplementary analyses of an electroencephalography (EEG) study. Links to the hardware and software are provided under methodological information.
ASSR2_experiment_scripts.zip: contains the Python files to run the experiment.
ASSR2_rawdata.zip: contains raw datafiles for each subject
ASSR2_EEG_scripts.zip: Python-MNE scripts to process the EEG data
ASSR2_EEG_preprocessed_data.zip: EEG data in fif format after preprocessing with Python-MNE scripts
ASSR2_R_scripts.zip: R scripts to analyze the data together with the main datafiles. The main files in the folder are:
ASSR2_results.zip: contains all figures and tables that are created by Python-MNE and R.
METHODOLOGICAL INFORMATION
The EEG data were recorded with an Active Two BioSemi system (BioSemi, Amsterdam, Netherlands; www.biosemi.com) and saved in .bdf format. For more information, see linked publication.
Methods for processing the data: We conducted frequency analyses and computed event-related potentials. See linked publication
Instrument- or software-specific information needed to interpret the data: MNE-Python (Gramfort A., et al., 2013): https://mne.tools/stable/index.html# Rstudio used with R (R Core Team, 2020): https://rstudio.com/products/rstudio/ Wiens, S. (2017). Aladins Bayes Factor in R (Version 3). https://www.doi.org/10.17045/sthlmuni.4981154.v3
Standards and calibration information, if appropriate: For information, see linked publication.
Environmental/experimental conditions: For information, see linked publication.
Describe any quality-assurance procedures performed on the data: For information, see linked publication.
People involved with sample collection, processing, analysis and/or submission:
DATA-SPECIFIC INFORMATION: All relevant information can be found in the MNE-Python and R scripts (in EEG_scripts and analysis_scripts folders) that process the raw data. For example, we added notes to explain what different variables mean.
Facebook
TwitterSubscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.