Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. Felton
Date: 10/29/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.
#Code information
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a role:
"01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).
"02_functions.R": This script contains custom functions. Load this using the
`source()` function in the 01_start.R script.
"03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
`source()` function in the 01_start.R script.
"04_figures_tables.R": This is the main workhouse for figure/table production and
supporting analyses. This script generates the key figures and summary statistics
used in the study that then get saved in the manuscript_figures folder. Note that all
maps were produced using Python code found in the "supporting_code"" folder.
"supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.
"supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1102 Global import shipment records of R Tyre with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
The data in this archive in in a zipped R data binary format, https://cran.r-project.org/doc/manuals/r-release/R-data.html. These data can be read by using the open source and free to use statistical software package R, https://www.r-project.org/. The data are organized following the figure numbering in the manuscript, e.g. Figure 1a is fig1a, and contains the same labeling as the figures including units and variable names. For a full explanation of the figure, please see the captions in the manuscript. To open this data file, use the following commands in R. load(‘JKelly_NH4NO3_JGR_2018.rdata’) To list the contents of the file, use the following command in R ls() The data for each figure is contained in the data object with the figures name. To list the data, simply type the name of the figure returned from the ls() command. The original model output and emissions used for this study are located on the ASM archived storage at /asm/ROMO/finescale/sjv2013. These data are in NetCDF format with self contained metadata with descriptive headers containing variable names, units, and simulation times. This dataset is associated with the following publication: Kelly, J., C. Parworth, Q. Zhang, D. Miller, K. Sun, M. Zondlo , K. Baker, A. Wisthaler, J. Nowak , S. Pusede , R. Cohen , A. Weinheimer , A. Beyersdorf , G. Tonnesen, J. Bash, L. Valin, J. Crawford, A. Fried , and J. Walega. Modeling NH4NO3 Over the San Joaquin Valley During the 2013 DISCOVER‐AQ Campaign. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 123(9): 4727-4745, (2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
487 Global import shipment records of R Lubricant with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1110 Global import shipment records of Raw Material For R Battery with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
9970 Global import shipment records of Motorcycle R with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1093 Global import shipment records of R Salt with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
This child page contains a zipped folder which contains all of the items necessary to run load estimation using R-LOADEST to produce results that are published in U.S. Geological Survey Investigations Report 2021-XXXX [Tatge, W.S., Nustad, R.A., and Galloway, J.M., 2021, Evaluation of Salinity and Nutrient Conditions in the Heart River Basin, North Dakota, 1970-2020: U.S. Geological Survey Scientific Investigations Report 2021-XXXX, XX p]. The folder contains an allsiteinfo.table.csv file, a "datain" folder, and a "scripts" folder. The allsiteinfo.table.csv file can be used to cross reference the sites with the main report (Tatge and others, 2021). The "datain" folder contains all the input data necessary to reproduce the load estimation results. The naming convention in the "datain" folder is site_MI_rloadest or site_NUT_rloadest for either the major ion loads or the nutrient loads. The .Rdata files are used in the scripts to run the estimations and the .csv files can be used to look at the data. The "scripts" folder contains the written R scripts to produce the results of the load estimation from the main report. R-LOADEST is a software package for analyzing loads in streams and an accompanying report (Runkel and others, 2004) serves as the formal documentation for R-LOADEST. The package is a collection of functions written in R (R Development Core Team, 2019), an open source language and a general environment for statistical computing and graphics. The following system requirements are necessary for producing results: Windows 10 operating system R (version 3.4 or later; 64-bit recommended) RStudio (version 1.1.456 or later) R-LOADEST program (available at https://github.com/USGS-R/rloadest). Runkel, R.L., Crawford, C.G., and Cohn, T.A., 2004, Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers: U.S. Geological Survey Techniques and Methods Book 4, Chapter A5, 69 p., [Also available at https://pubs.usgs.gov/tm/2005/tm4A5/pdf/508final.pdf.] R Development Core Team, 2019, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing, accessed December 7, 2020, at https://www.r-project.org.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Global trade data of R under 940399, 940399 global trade data, trade data of R from 80+ Countries.
Global trade data of R under 62046900, 62046900 global trade data, trade data of R from 80+ Countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
81 Global import shipment records of R Coat with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Analyses are reproducible using version 3.3.2 or above (R Core Team 2016).
Files needed for reproducing the analyses are:
chond-data.csv: Data frame with 63 rows (species) and 11 variables. Some of these variables are based on the same life history trait but are transformed for ease of interpretation and analysis.
stein-et-al-single.tree: Phylogenetic tree with scaled branch lengths from Stein et al. (2018) used in analyses. These are freely downloadable from http://vertlife.org/sharktree/.
rmax-scaling-analysis.R: R code with minimum working example of how to load data files, fit models phylogenetic linear models using the pgls
function in the caper
package, run information-theoretic comparisons, and check diagnostics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
86 Global import shipment records of R Base Oil with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
434 Global import shipment records of Industrial Machine For R with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Global trade data of R under 844332, 844332 global trade data, trade data of R from 80+ Countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. Felton
Date: 10/29/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.
#Code information
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a role:
"01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).
"02_functions.R": This script contains custom functions. Load this using the
`source()` function in the 01_start.R script.
"03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
`source()` function in the 01_start.R script.
"04_figures_tables.R": This is the main workhouse for figure/table production and
supporting analyses. This script generates the key figures and summary statistics
used in the study that then get saved in the manuscript_figures folder. Note that all
maps were produced using Python code found in the "supporting_code"" folder.
"supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.
"supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.