21 datasets found
  1. 3

    3D Mapping Modelling Market Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). 3D Mapping Modelling Market Report [Dataset]. https://www.promarketreports.com/reports/3d-mapping-modelling-market-10299
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global 3D mapping and modeling market is expected to grow significantly in the next few years as demand increases for detailed and accurate representations of physical environments in three-dimensional space. Estimated to be valued at USD 38.62 billion in the year 2025, the market was expected to grow at a CAGR of 14.5% from 2025 to 2033 and was estimated to reach an amount of USD 90.26 billion by the end of 2033. The high growth rate is because of improvement in advanced technologies with the development of high-resolution sensors and methods of photogrammetry that make possible higher-resolution realistic and immersive 3D models.Key trends in the market are the adoption of virtual and augmented reality (VR/AR) applications, 3D mapping with smart city infrastructure, and increased architecture, engineering, and construction utilization of 3D models. Other factors are driving the growing adoption of cloud-based 3D mapping and modeling solutions. The solutions promise scalability, cost-effectiveness, and easy access to 3D data, thus appealing to business and organizations of all sizes. Recent developments include: Jun 2023: Nomoko (Switzerland), a leading provider of real-world 3D data technology, announced that it has joined the Overture Maps Foundation, a non-profit organization committed to fostering collaboration and innovation in the geospatial domain. Nomoko will collaborate with Meta, Amazon Web Services (AWS), TomTom, and Microsoft, to create interoperable, accessible 3D datasets, leveraging its real-world 3D modeling capabilities., May 2023: The Sanborn Map Company (Sanborn), an authority in 3D models, announced the development of a powerful new tool, the Digital Twin Base Map. This innovative technology sets a new standard for urban analysis, implementation of Digital Cities, navigation, and planning with a fundamental transformation from a 2D map to a 3D environment. The Digital Twin Base Map is a high-resolution 3D map providing unprecedented detail and accuracy., Feb 2023: Bluesky Geospatial launched the MetroVista, a 3D aerial mapping program in the USA. The service employs a hybrid imaging-Lidar airborne sensor to capture highly detailed 3D data, including 360-degree views of buildings and street-level features, in urban areas to create digital twins, visualizations, and simulations., Feb 2023: Esri, a leading global provider of geographic information system (GIS), location intelligence, and mapping solutions, released new ArcGIS Reality Software to capture the world in 3D. ArcGIS Reality enables site, city, and country-wide 3D mapping for digital twins. These 3D models and high-resolution maps allow organizations to analyze and interact with a digital world, accurately showing their locations and situations., Jan 2023: Strava, a subscription-based fitness platform, announced the acquisition of FATMAP, a 3D mapping platform, to integrate into its app. The acquisition adds FATMAP's mountain-focused maps to Strava's platform, combining with the data already within Strava's products, including city and suburban areas for runners and other fitness enthusiasts., Jan 2023: The 3D mapping platform FATMAP is acquired by Strava. FATMAP applies the concept of 3D visualization specifically for people who like mountain sports like skiing and hiking., Jan 2022: GeoScience Limited (the UK) announced receiving funding from Deep Digital Cornwall (DDC) to develop a new digital heat flow map. The DDC project has received grant funding from the European Regional Development Fund. This study aims to model the heat flow in the region's shallower geothermal resources to promote its utilization in low-carbon heating. GeoScience Ltd wants to create a more robust 3D model of the Cornwall subsurface temperature through additional boreholes and more sophisticated modeling techniques., Aug 2022: In order to create and explore the system's possibilities, CGTrader worked with the online retailer of dietary supplements Hello100. The system has the ability to scale up the generation of more models, and it has enhanced and improved Hello100's appearance on Amazon Marketplace.. Key drivers for this market are: The demand for 3D maps and models is growing rapidly across various industries, including architecture, engineering, and construction (AEC), manufacturing, transportation, and healthcare. Advances in hardware, software, and data acquisition techniques are making it possible to create more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations.

    . Potential restraints include: The acquisition and processing of 3D data can be expensive, especially for large-scale projects. There is a lack of standardization in the 3D mapping modeling industry, which can make it difficult to share and exchange data between different software and systems. There is a shortage of skilled professionals who are able to create and use 3D maps and models effectively.. Notable trends are: 3D mapping and modeling technologies are becoming essential for a wide range of applications, including urban planning, architecture, construction, environmental management, and gaming. Advancements in hardware, software, and data acquisition techniques are enabling the creation of more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations..

  2. a

    India: Terrain 3D

    • hub.arcgis.com
    • up-state-observatory-esriindia1.hub.arcgis.com
    Updated Mar 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Terrain 3D [Dataset]. https://hub.arcgis.com/maps/80ffd6e3dd4a4be2bf49766a920a9c23
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Description

    The Terrain 3D layer provides global elevation for your work in 3D.What can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage of various datasets comprising this service, click here.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  3. OpenStreetMap 3D Buildings

    • esriaustraliahub.com.au
    • uneca.africageoportal.com
    • +4more
    Updated Jun 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Buildings [Dataset]. https://www.esriaustraliahub.com.au/maps/ca0470dbbddb4db28bad74ed39949e25
    Explore at:
    Dataset updated
    Jun 4, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) buildings data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  4. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • oregonwaterdata.org
    • +4more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  5. OpenStreetMap

    • cacgeoportal.com
    • data.baltimorecity.gov
    • +35more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). OpenStreetMap [Dataset]. https://www.cacgeoportal.com/maps/1c071fcf8ff2448599b0547116e2de55
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This 3D basemap presents OpenStreetMap (OSM) data and other data sources and is hosted by Esri using the OpenStreetMap style.Esri created the Places and Labels, Trees, and OpenStreetMap layers from the Daylight map distribution of OSM data, which is supported by Facebook and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.The Buildings layer (beta) presents open buildings data that has been processed and hosted by Esri. Esri created this buildings scene layer using data from the Overture Maps Foundation (OMF) which is supported by Meta, Microsoft, Amazon, TomTom, Esri and other members. Overture includes data from many sources, including OpenStreetMap (OSM). The 3D buildings layer will be updated each month with the latest version of Overture data, which includes the latest updates from OSM, Esri Community Maps, and other sources.Overture Maps is a collaborative project to create reliable, easy-to-use, and interoperable open map data. Member companies work to bring together the best available open datasets, and the resulting data can be downloaded from Microsoft Azure or Amazon S3. Esri is a member of the OMF project and is excited to make this 3D web scene available to the ArcGIS user community.

  6. C

    National Hydrography Data - NHD and 3DHP

    • data.cnra.ca.gov
    • data.ca.gov
    • +2more
    Updated Jul 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). National Hydrography Data - NHD and 3DHP [Dataset]. https://data.cnra.ca.gov/dataset/national-hydrography-dataset-nhd
    Explore at:
    zip(39288832), pdf, pdf(1436424), zip(578260992), zip(13901824), zip(128966494), zip(10029073), arcgis geoservices rest api, pdf(1175775), zip(972664), website, zip(1647291), pdf(437025), zip(15824984), zip(73817620), pdf(3684753), csv(12977), pdf(9867020), web videos, pdf(4856863), zip(4657694), pdf(1634485), pdf(182651), pdf(3932070)Available download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    California Department of Water Resources
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

    DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.

    For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.

    In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.

    The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).

    Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.

  7. G

    High Resolution Digital Elevation Model (HRDEM) - CanElevation Series

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, geotif +5
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2025). High Resolution Digital Elevation Model (HRDEM) - CanElevation Series [Dataset]. https://open.canada.ca/data/en/dataset/957782bf-847c-4644-a757-e383c0057995
    Explore at:
    shp, geotif, html, pdf, esri rest, json, kmzAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.

  8. Terrain 3D

    • hub.arcgis.com
    • cacgeoportal.com
    • +5more
    Updated Dec 9, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Terrain 3D [Dataset]. https://hub.arcgis.com/datasets/7029fb60158543ad845c7e1527af11e4
    Explore at:
    Dataset updated
    Dec 9, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Terrain 3D layer provides global elevation surface to use in ArcGIS 3D applicationsWhat can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  9. d

    4D visualization

    • datadiscoverystudio.org
    resource url v.0.0
    Updated Sep 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). 4D visualization [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f635ed70bec24fb9b70becabe40449dd/html
    Explore at:
    resource url v.0.0Available download formats
    Dataset updated
    Sep 13, 2016
    Area covered
    Description

    To develop and build four-dimensional geologic models that are of use to researchers in diverse;communities within the geosciences. Main CI Challenges: - The big challenge is the software necessary to undertake 4D visualizations to this point. There aren? really any killer applications currently, and all of it has become quite cumbersome--we?e kludging together data sources. ArcGIS is designed for application specialists, not for the needs of geologists;- Need an environment for data management - An industry/academic partnership to do that? A facility that stores sophisticated maps? A library Data Discovery Challenges: Data is on people's computers, not accessible;And when you do assemble, resulting data is large;Also the detail level of the data can be very variable.;USGS isn't addressing the needs Data Types and Formats: ;?ata Source;? Geochronology;?ield data;?tratigraphic data, including fossil;?bscure things that are hard to quantify: x is older than y, in a way that is built into geologic thinking?omparative sources;;?ata Format;? Map info that is input into GIS and then adapted into a 3D GIS database ;?imple paper map scanned as a raster.;?eochronology sources;?tratigraphic formats from available software ;?atellite imagery, including LIDAR formats Additional Information: Formats for the 4D visualization use several different formats. Midland Valley makes a software called Move you can? get out into other formats. Google Collada can be adapted for Google Earth for 3D visualization, but not 4D.

  10. d

    Buildings 3D Scene - 2022

    • opendata.dc.gov
    • gimi9.com
    • +3more
    Updated Dec 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2022). Buildings 3D Scene - 2022 [Dataset]. https://opendata.dc.gov/maps/ef1ae182e09c42a9a6ceac8c1185bb8a
    Explore at:
    Dataset updated
    Dec 5, 2022
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    3D buildings. This dataset is a 3D building multipatch created using lidar point cloud bare earth points and building points to create a normalized data surface. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. All data returns were removed from the dataset within the United States Secret Service redaction boundary except for classified ground points and classified water points.The scene layer complies with the Indexed 3D Scene layer (I3S) format. The I3S format is an open 3D content delivery format used to disseminate 3D GIS data to mobile, web, and desktop clients.

  11. USA Soils Map Units

    • ngda-portfolio-community-geoplatform.hub.arcgis.com
    • historic-cemeteries.lthp.org
    • +9more
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Soils Map Units [Dataset]. https://ngda-portfolio-community-geoplatform.hub.arcgis.com/maps/06e5fd61bdb6453fb16534c676e1c9b9
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -

  12. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    geojson, csv, kml, esri rest, html, zipAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  13. s

    San Bernardino County Map Viewer

    • open.sbcounty.gov
    Updated Feb 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of San Bernardino (2024). San Bernardino County Map Viewer [Dataset]. https://open.sbcounty.gov/datasets/san-bernardino-county-map-viewer
    Explore at:
    Dataset updated
    Feb 16, 2024
    Dataset authored and provided by
    County of San Bernardino
    Area covered
    San Bernardino County
    Description

    The San Bernardino County map viewer is a collection of maps and apps related to various administrative boundaries in San Bernardino County. All data is publicly available. The San Bernardino County map viewer contains the following maps:Parcels: Find and identify parcels by APN or address.Flood Control: Find and identify Flood Control facilities within San Bernardino CountyBoundaries: Explore various administrative boundaries in San Bernardino County, such as Supervisor districts, city limits, US Senate districts and moreHistorical Imagery: Imagery archives for the years 2008 - 2023Power Outages: Power outage data from CalOES showing power outages within San Bernardino County3D Scene: Interactively explore San Bernardino County geographic data in 3D.DIY Map Viewer: Create your own map using a variety of provided datasets, or add your ownThe San Bernardino County Map viewer was created by San Bernardino County's Information Services Department. For more information please contact the Information Services Department (ISD) Help Desk at (909)884-4884.

  14. D

    Geographic Information System Software Market Report | Global Forecast From...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Geographic Information System Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-geographic-information-system-software-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Geographic Information System Software Market Outlook



    The global Geographic Information System (GIS) Software market size was valued at approximately USD 7.8 billion in 2023 and is projected to reach USD 15.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3% during the forecast period. This impressive growth can be attributed to the increasing demand for efficient data management tools across various industries, which rely on spatial data for decision-making and strategic planning. The rapid advancements in technology, such as the integration of AI and IoT with GIS software, have further propelled the market, enabling organizations to harness the full potential of geographic data in innovative ways.



    One of the primary growth drivers of the GIS Software market is the burgeoning need for urban planning and smart city initiatives worldwide. As urbanization trends escalate, cities are increasingly relying on GIS technology to manage resources more effectively, optimize transportation networks, and enhance public safety. The ability of GIS software to provide real-time data and spatial analysis is vital for city planners and administrators faced with the challenges of modern urban environments. Furthermore, the trend towards digital transformation in governmental organizations is boosting the adoption of GIS solutions, as they seek to improve operational efficiency and service delivery.



    The agricultural sector is also experiencing significant transformations due to the integration of GIS software, which is another pivotal growth factor for the market. Precision agriculture, which involves the use of GIS technologies to monitor and manage farming practices, is enabling farmers to increase crop yields while reducing resource consumption. By leveraging spatial data, farmers can make informed decisions about planting, irrigation, and harvesting, ultimately leading to more sustainable agricultural practices. This trend is particularly prominent in regions where agriculture forms a substantial portion of the economy, encouraging the adoption of advanced GIS tools to maintain competitive advantage.



    Another influential factor contributing to the growth of the GIS Software market is the increasing importance of environmental management and disaster response. GIS technology plays a crucial role in assessing environmental changes, managing natural resources, and planning responses to natural disasters. The ability to overlay various data sets onto geographic maps allows for better analysis and understanding of environmental phenomena, making GIS indispensable in tackling issues such as climate change and resource depletion. Moreover, governments and organizations are investing heavily in GIS tools that aid in disaster preparedness and response, ensuring timely and effective action during emergencies.



    The evolution of GIS Mapping Software has been instrumental in transforming how spatial data is utilized across various sectors. These software solutions offer robust tools for visualizing, analyzing, and interpreting geographic data, enabling users to make informed decisions based on spatial insights. With the ability to integrate multiple data sources, GIS Mapping Software provides a comprehensive platform for conducting spatial analysis, which is crucial for applications ranging from urban planning to environmental management. As technology continues to advance, the capabilities of GIS Mapping Software are expanding, offering more sophisticated features such as 3D visualization and real-time data processing. These advancements are not only enhancing the utility of GIS tools but also making them more accessible to a wider range of users, thereby driving their adoption across different industries.



    Regionally, North America and Europe have traditionally dominated the GIS Software market, thanks to their robust technological infrastructure and higher adoption rates of advanced technologies. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid urbanization, increased government spending on infrastructure development, and the expanding telecommunications sector. The growing awareness and adoption of GIS solutions in countries like China and India are significant contributors to this regional growth. Furthermore, Latin America and the Middle East & Africa regions are slowly catching up, with ongoing investments in smart city projects and infrastructure development driving the demand for GIS software.



    Component Analysis</h2&

  15. u

    Landscape Change Monitoring System (LCMS) CONUS Cause of Change (Image...

    • agdatacommons.nal.usda.gov
    • datasets.ai
    • +3more
    bin
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) CONUS Cause of Change (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Cause_of_Change_Image_Service_/26885563
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  16. r

    EARTH OBSERVATION

    • researchdata.edu.au
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nsw.gov.au (2025). EARTH OBSERVATION [Dataset]. https://researchdata.edu.au/earth-observation/3664711
    Explore at:
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    data.nsw.gov.au
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This is a landing page. To access the datasets, expand the RELATED DATASETS section below, and follow the link to the dataset you require. \r \r --------------------------------------\r \r The Remote Sensing Organisational Unit as part of the Water Group, within the NSW Department of Climate Change, Energy, the Environment and Water (NSW DCCEEW) is dedicated to harnessing the power of satellite earth observations, aerial imagery, in-situ data, and advanced modelling techniques to produce cutting-edge remote sensing information products. Our team employs a multi-faceted approach, integrating remote sensing data captured by satellites operating at various temporal and spatial scales with on-the-ground observations and key spatial datasets, including land-use mapping, weather data, and ancillary verification datasets. This synthesis of diverse information sources enables us to derive critical insights that significantly contribute to water resource planning, policy formulation, and advancements in scientific research.\r \r Drawing upon satellite imagery from reputable sources such as NASA, the European Space Agency, and commercial providers like Planet and SPOT, our team places a special emphasis on leveraging Landsat and Sentinel satellite imagery. Renowned for their archived, calibrated, and consistent datasets, these sources provide a significant advantage in our pursuit of delivering accurate and reliable information. To ensure the robustness of our information products, we implement thorough validation processes, incorporating semi-automation techniques that facilitate rapid turnaround times.\r \r Our operational efficiency is further enhanced through strategic interventions in our workflows, including the automation of processes through efficient computing scripts and the utilization of Google Earth Engine for cloud computing. This integrated approach allows us to maintain high standards of data quality while meeting the increasing demand for timely and accurate information.\r \r Our commitment to providing high-quality, professional, and technically accurate Remote Sensing - Geographic Information System (RS-GIS) data packages, maps, and information is underscored by our recognition of the growing role of technology in information transfer and the promotion of information sharing. Moreover, our dedication to ensuring the currency of RS-GIS methods, interpretation techniques, and 3D modelling enables us to continually deliver innovative products that align with evolving client expectations. Through these efforts, our team strives to contribute meaningfully to the advancement of remote sensing applications for improved environmental understanding and informed decision-making.\r \r -----------------------------------\r \r Note: If you would like to ask a question, make any suggestions, or tell us how you are using this dataset, please visit the NSW Water Hub which has an online forum you can join.\r \r \r \r \r

  17. a

    Connecticut 3D Lidar Viewer

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • +1more
    Updated Jan 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 8, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

  18. USA Flood Hazard Areas

    • gis-calema.opendata.arcgis.com
    Updated Jul 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Jul 11, 2020
    Dataset provided by
    California Governor's Office of Emergency Services
    Authors
    CA Governor's Office of Emergency Services
    Area covered
    Description

    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American SamoaVisible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.Source: Federal Emergency Management AgencyPublication Date: April 1, 2019This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.A web map featuring this layer is available for you to use.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas. Add labels and set their propertiesCustomize the pop-upUse in analysis tools to discover patterns in the dataArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  19. USA Wetlands (Mature Support)

    • hub.arcgis.com
    • czm-moris-mass-eoeea.hub.arcgis.com
    Updated Apr 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA Wetlands (Mature Support) [Dataset]. https://hub.arcgis.com/maps/1f2cb14aa91b41efbd01d676a6e289b4
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of April 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.Wetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands and the Northern Mariana IslandsVisible Scale: The data is visible at scales from 1:144,000 to 1:1,000. An imagery layer created from this dataset is also available which you can also use to quickly draw wetlands at scales smaller than 1:144,000.Resolution/Tolerance: 0.0001 meters/0.001 metersNumber of Features: 34,482,400 diced, after applying a 50,000 vertex limit.Feature Limit: 10,000Source: U.S. Fish and Wildlife ServicePublication Date: November 29, 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the November 29, 2021 version of the NWI. The original NWI features were downloaded from USFWS on January 25, 2022. They were then converted to a single part feature class using the Multipart To Singlepart tool. After that, the Dice tool was used to break up features larger than 50,000 vertices. The Repair Geometry tool was run on the features, using tool defaults.This layer includes attributes from the original dataset as well as attributes added by Esri for use in the default pop-up and to allow the user to query and filter the data. NWI derived attributes:Wetland Code - a code that identifies specific attributes of the wetlandWetland Type - one of 8 wetland typesArea - area of the wetland in acresEsri created attributes:System - code indicating the system and subsystem of the wetlandClass - code indicating the class and subclass of the wetlandModifier 1, Modifier 2, Modifier 3, Modifier 4 - these four fields contain letter codes for modifiers applied to the wetland descriptionSystem Name - the name of the system (Marine, Estuarine, Riverine, Lacustrine, or Palustrine)Subsystem Name - the name of the subsystemClass Name - the name of the classSubclass Name - the name of the subclassModifier 1 Name, Modifier 2 Name, Modifier 3 Name , Modifier 4 Name - these four fields contain names for modifiers applied to the wetland descriptionPopup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for System Text = 'Palustrine' to create a map of palustrine wetlands only.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  20. a

    Gelman Site of 1,4-Dioxane Contamination - All Bore Locations Layer Group...

    • gis-egle.hub.arcgis.com
    • hub.arcgis.com
    Updated May 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan Dept. of Environment, Great Lakes, and Energy (2021). Gelman Site of 1,4-Dioxane Contamination - All Bore Locations Layer Group (2020 Data) [Dataset]. https://gis-egle.hub.arcgis.com/maps/egle::gelman-site-of-14-dioxane-contamination-all-bore-locations-layer-group-2020-data/about?layer=3
    Explore at:
    Dataset updated
    May 28, 2021
    Dataset authored and provided by
    Michigan Dept. of Environment, Great Lakes, and Energy
    Description

    To improve EGLE's data visualizations of the Gelman Site project data and to develop an interactive 3D virtual conceptual site model (VCSM), EGLE utilizes RockWorks, an integrated geological database, analysis, and visualization software developed by RockWare, Inc. The locations included in this feature layer include all bore and sample locations that are in the current RockWorks project database (Gelman3.sqlite v20210429). Data tied to each location includes lithological information, 1,4-dioxane sample results, and groundwater level measurements. The custom pop-up displays the standardized bore location name and the following information: Well Type: includes one of the following: Monitoring Well, Residential Well, Extraction Well, Injection Well, Horizontal Well, Test Boring, Seismic Interpolation Point, Surface Water, or other. Ground Elevation: elevation in feet at the point extracted from the March 2019 LiDAR digital elevation model from Southeast Michigan Council of Governments (SEMCOG). Units are in feet referenced to the North American Vertical Datum 1988 (Geoid12B).Collar Elevation: the top of well casing elevation used for reference when collecting groundwater level measurements. Source of information includes the EGLE Access database and supplemented with boring log or well construction records if available. Total Depth: feet below ground surface to the well or boring terminus. Source of information includes the EGLE Access database and supplemented with boring log or well construction records if available. Screen Interval: depth below ground surface to the top and bottom of the well screen. Source of information includes the EGLE Access database and supplemented with boring log or well construction records if available. Used for Lithology Model: yes/no field indicating if the location has associated lithological information that was used for input into the RockWorks lithology 3d solid voxel model.Used for Max Groundwater Elevation Model: yes/no field indicating if the location has associated groundwater level measurements that were was used as input for the Maximum Groundwater Elevation Model.Used for Geochem Models: yes/no field indicating the location has associated 1,4-dioxane results used as input to create the annual (1986 - 2020) 3d solid voxel models and 2d grid surface files. Additional fields specifying source of information, such as source of northing and eastings, can be viewed within the attribute table. Boring logs and well construction documents, if available, are stored as attachments and can be viewed by clicking on the hyperlink.At the bottom of the pop-up, the "Show Related Records" link will open up separate windows showing the lithology, water level measurements, or 1,4-dioxane results that are associated with the selected location. This is a previous version of the bore locations data. The newest vintage is available at: Gelman Site of 1,4-Dioxane Contamination - All Bore Locations Layer Group (2023 Data).This data is used in the Gelman Site of 1,4-Dioxane Contamination web map (item details). If you have questions regarding the Gelman Sciences, Inc site of contamination contact Chris Svoboda at 517-256-2849 or svobodac@michigan.gov. Report problems or data functionality suggestions to EGLE-Maps@Michigan.gov.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Pro Market Reports (2025). 3D Mapping Modelling Market Report [Dataset]. https://www.promarketreports.com/reports/3d-mapping-modelling-market-10299

3D Mapping Modelling Market Report

Explore at:
doc, pdf, pptAvailable download formats
Dataset updated
Feb 1, 2025
Dataset authored and provided by
Pro Market Reports
License

https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The global 3D mapping and modeling market is expected to grow significantly in the next few years as demand increases for detailed and accurate representations of physical environments in three-dimensional space. Estimated to be valued at USD 38.62 billion in the year 2025, the market was expected to grow at a CAGR of 14.5% from 2025 to 2033 and was estimated to reach an amount of USD 90.26 billion by the end of 2033. The high growth rate is because of improvement in advanced technologies with the development of high-resolution sensors and methods of photogrammetry that make possible higher-resolution realistic and immersive 3D models.Key trends in the market are the adoption of virtual and augmented reality (VR/AR) applications, 3D mapping with smart city infrastructure, and increased architecture, engineering, and construction utilization of 3D models. Other factors are driving the growing adoption of cloud-based 3D mapping and modeling solutions. The solutions promise scalability, cost-effectiveness, and easy access to 3D data, thus appealing to business and organizations of all sizes. Recent developments include: Jun 2023: Nomoko (Switzerland), a leading provider of real-world 3D data technology, announced that it has joined the Overture Maps Foundation, a non-profit organization committed to fostering collaboration and innovation in the geospatial domain. Nomoko will collaborate with Meta, Amazon Web Services (AWS), TomTom, and Microsoft, to create interoperable, accessible 3D datasets, leveraging its real-world 3D modeling capabilities., May 2023: The Sanborn Map Company (Sanborn), an authority in 3D models, announced the development of a powerful new tool, the Digital Twin Base Map. This innovative technology sets a new standard for urban analysis, implementation of Digital Cities, navigation, and planning with a fundamental transformation from a 2D map to a 3D environment. The Digital Twin Base Map is a high-resolution 3D map providing unprecedented detail and accuracy., Feb 2023: Bluesky Geospatial launched the MetroVista, a 3D aerial mapping program in the USA. The service employs a hybrid imaging-Lidar airborne sensor to capture highly detailed 3D data, including 360-degree views of buildings and street-level features, in urban areas to create digital twins, visualizations, and simulations., Feb 2023: Esri, a leading global provider of geographic information system (GIS), location intelligence, and mapping solutions, released new ArcGIS Reality Software to capture the world in 3D. ArcGIS Reality enables site, city, and country-wide 3D mapping for digital twins. These 3D models and high-resolution maps allow organizations to analyze and interact with a digital world, accurately showing their locations and situations., Jan 2023: Strava, a subscription-based fitness platform, announced the acquisition of FATMAP, a 3D mapping platform, to integrate into its app. The acquisition adds FATMAP's mountain-focused maps to Strava's platform, combining with the data already within Strava's products, including city and suburban areas for runners and other fitness enthusiasts., Jan 2023: The 3D mapping platform FATMAP is acquired by Strava. FATMAP applies the concept of 3D visualization specifically for people who like mountain sports like skiing and hiking., Jan 2022: GeoScience Limited (the UK) announced receiving funding from Deep Digital Cornwall (DDC) to develop a new digital heat flow map. The DDC project has received grant funding from the European Regional Development Fund. This study aims to model the heat flow in the region's shallower geothermal resources to promote its utilization in low-carbon heating. GeoScience Ltd wants to create a more robust 3D model of the Cornwall subsurface temperature through additional boreholes and more sophisticated modeling techniques., Aug 2022: In order to create and explore the system's possibilities, CGTrader worked with the online retailer of dietary supplements Hello100. The system has the ability to scale up the generation of more models, and it has enhanced and improved Hello100's appearance on Amazon Marketplace.. Key drivers for this market are: The demand for 3D maps and models is growing rapidly across various industries, including architecture, engineering, and construction (AEC), manufacturing, transportation, and healthcare. Advances in hardware, software, and data acquisition techniques are making it possible to create more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations.

. Potential restraints include: The acquisition and processing of 3D data can be expensive, especially for large-scale projects. There is a lack of standardization in the 3D mapping modeling industry, which can make it difficult to share and exchange data between different software and systems. There is a shortage of skilled professionals who are able to create and use 3D maps and models effectively.. Notable trends are: 3D mapping and modeling technologies are becoming essential for a wide range of applications, including urban planning, architecture, construction, environmental management, and gaming. Advancements in hardware, software, and data acquisition techniques are enabling the creation of more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations..

Search
Clear search
Close search
Google apps
Main menu