The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?
And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Creating great teams : how self-selection lets people excel. It features 7 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.
This dataset contains Superstore sales for last three months for three different locations A, B, & C. Project motivation to create visual dashboard for business manager to find out the weak areas where he can work to make each location more profitable. First step, I cleaned dataset to work on it. I changed date column to text. Created 8 pivot tables with graphs, and finally Excel dashboard. Thanks!
Excel Worksheet listing the 15 variables in the Dataset together with a more detailed description and how they have been encoded (e.g., “1 = Yes; 0 = No”).
The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Finding a good data source is the first step toward creating a database. Cardiovascular illnesses (CVDs) are the major cause of death worldwide. CVDs include coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other heart and blood vessel problems. According to the World Health Organization, 17.9 million people die each year. Heart attacks and strokes account for more than four out of every five CVD deaths, with one-third of these deaths occurring before the age of 70 A comprehensive database for factors that contribute to a heart attack has been constructed , The main purpose here is to collect characteristics of Heart Attack or factors that contribute to it. As a result, a form is created to accomplish this. Microsoft Excel was used to create this form. Figure 1 depicts the form which It has nine fields, where eight fields for input fields and one field for output field. Age, gender, heart rate, systolic BP, diastolic BP, blood sugar, CK-MB, and Test-Troponin are representing the input fields, while the output field pertains to the presence of heart attack, which is divided into two categories (negative and positive).negative refers to the absence of a heart attack, while positive refers to the presence of a heart attack.Table 1 show the detailed information and max and min of values attributes for 1319 cases in the whole database.To confirm the validity of this data, we looked at the patient files in the hospital archive and compared them with the data stored in the laboratories system. On the other hand, we interviewed the patients and specialized doctors. Table 2 is a sample for 1320 cases, which shows 44 cases and the factors that lead to a heart attack in the whole database,After collecting this data, we checked the data if it has null values (invalid values) or if there was an error during data collection. The value is null if it is unknown. Null values necessitate special treatment. This value is used to indicate that the target isn’t a valid data element. When trying to retrieve data that isn't present, you can come across the keyword null in Processing. If you try to do arithmetic operations on a numeric column with one or more null values, the outcome will be null. An example of a null values processing is shown in Figure 2.The data used in this investigation were scaled between 0 and 1 to guarantee that all inputs and outputs received equal attention and to eliminate their dimensionality. Prior to the use of AI models, data normalization has two major advantages. The first is to avoid overshadowing qualities in smaller numeric ranges by employing attributes in larger numeric ranges. The second goal is to avoid any numerical problems throughout the process.After completion of the normalization process, we split the data set into two parts - training and test sets. In the test, we have utilized1060 for train 259 for testing Using the input and output variables, modeling was implemented.
This is a small dataset over a number of bike sales from a bike shop. It includes columns such as the customer's income, marital status, education, etc. Afterwards, a dashboard was created to filter a number of different categories.
The Home Office has changed the format of the published data tables for a number of areas (asylum and resettlement, entry clearance visas, extensions, citizenship, returns, detention, and sponsorship). These now include summary tables, and more detailed datasets (available on a separate page, link below). A list of all available datasets on a given topic can be found in the ‘Contents’ sheet in the ‘summary’ tables. Information on where to find historic data in the ‘old’ format is in the ‘Notes’ page of the ‘summary’ tables.
The Home Office intends to make these changes in other areas in the coming publications. If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
Immigration statistics, year ending September 2020
Immigration Statistics Quarterly Release
Immigration Statistics User Guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/602bab69e90e070562513e35/asylum-summary-dec-2020-tables.xlsx">Asylum and resettlement summary tables, year ending December 2020 (MS Excel Spreadsheet, 359 KB)
Detailed asylum and resettlement datasets
https://assets.publishing.service.gov.uk/media/602bab8fe90e070552b33515/sponsorship-summary-dec-2020-tables.xlsx">Sponsorship summary tables, year ending December 2020 (MS Excel Spreadsheet, 67.7 KB)
https://assets.publishing.service.gov.uk/media/602bf8708fa8f50384219401/visas-summary-dec-2020-tables.xlsx">Entry clearance visas summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.3 KB)
Detailed entry clearance visas datasets
https://assets.publishing.service.gov.uk/media/602bac148fa8f5037f5d849c/passenger-arrivals-admissions-summary-dec-2020-tables.xlsx">Passenger arrivals (admissions) summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.6 KB)
Detailed Passengers initially refused entry at port datasets
https://assets.publishing.service.gov.uk/media/602bac3d8fa8f50383c41f7c/extentions-summary-dec-2020-tables.xlsx">Extensions summary tables, year ending December 2020 (MS Excel Spreadsheet, 41.5 KB)
<a href="https://www.gov.uk/governmen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset for the article "The current utilization status of wearable devices in clinical research".Analyses were performed by utilizing the JMP Pro 16.10, Microsoft Excel for Mac version 16 (Microsoft).The file extension "jrp" is a file of the statistical analysis software JMP, which contains both the analysis code and the data set.In case JMP is not available, a "csv" file as a data set and JMP script, the analysis code, are prepared in "rtf" format.The "xlsx" file is a Microsoft Excel file that contains the data set and the data plotted or tabulated using Microsoft Excel functions.Supplementary Figure 1. NCT number duplication frequencyIncludes Excel file used to create the figure (Supplemental Figure 1).・Sfig1_NCT number duplication frequency.xlsxSupplementary Figure 2-5 Simple and annual time series aggregationIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 2-5).・Sfig2-5 Annual time series aggregation.xlsx・Sfig2 Study Type.jrp・Sfig4device type.jrp・Sfig3 Interventions Type.jrp・Sfig5Conditions type.jrp・Sfig2, 3 ,5_database.csv・Sfig2_JMP script_Study type.rtf・Sfig3_JMP script Interventions type.rtf・Sfig5_JMP script Conditions type.rtf・Sfig4_dataset.csv・Sfig4_JMP script_device type.rtfSupplementary Figures 6-11 Mosaic diagram of intervention by conditionSupplementary tables 4-9 Analysis of contingency table for intervention by condition JMP repot files used to create the figures(Supplementary Figures 6-11 ) and tables(Supplementary Tablea 4-9) , including the csv dataset of JMP repot files and JMP scripts.・Sfig6-11 Stable4-9 Intervention devicetype_conditions.jrp・Sfig6-11_Stable4-9_dataset.csv・Sfig6-11_Stable4-9_JMP script.rtfSupplementary Figure 12. Distribution of enrollmentIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 12).・Sfig12_Distribution of enrollment.jrp・Sfig12_Distribution of enrollment.csv・Sfig12_JMP script.rtf
With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.
There is a requirement that public authorities, like Ofsted, must publish updated versions of datasets which are disclosed as a result of Freedom of Information requests.
Some information which is requested is exempt from disclosure to the public under the Freedom of Information Act; it is therefore not appropriate for this information to be made available. Examples of information which it is not appropriate to make available includes the locations of women’s refuges, some military bases and all children’s homes and the personal data of providers and staff. Ofsted also considers that the names and addresses of registered childminders are their personal data which it is not appropriate to make publicly available unless those individuals have given their explicit consent to do so. This information has therefore not been included in the datasets.
Data for both childcare and childminders are included in the excel file.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">16.6 MB</span></p>
<p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
<details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
Request an accessible format.
If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@ofsted.gov.uk" target="_blank" class="govuk-link">enquiries@ofsted.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1.Introduction
Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.
One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.
This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.
Please cite the following papers when using this dataset:
I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted
The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.
3.1 Data Collection
The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.
The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.
Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.
It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.
The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).
File
Period
Number of Samples (days)
product 1 2020.xlsx
01/01/2020–31/12/2020
363
product 1 2021.xlsx
01/01/2021–31/12/2021
364
product 1 2022.xlsx
01/01/2022–31/12/2022
365
product 2 2020.xlsx
01/01/2020–31/12/2020
363
product 2 2021.xlsx
01/01/2021–31/12/2021
364
product 2 2022.xlsx
01/01/2022–31/12/2022
365
product 3 2020.xlsx
01/01/2020–31/12/2020
363
product 3 2021.xlsx
01/01/2021–31/12/2021
364
product 3 2022.xlsx
01/01/2022–31/12/2022
365
product 4 2020.xlsx
01/01/2020–31/12/2020
363
product 4 2021.xlsx
01/01/2021–31/12/2021
364
product 4 2022.xlsx
01/01/2022–31/12/2022
364
product 5 2020.xlsx
01/01/2020–31/12/2020
363
product 5 2021.xlsx
01/01/2021–31/12/2021
364
product 5 2022.xlsx
01/01/2022–31/12/2022
365
product 6 2020.xlsx
01/01/2020–31/12/2020
362
product 6 2021.xlsx
01/01/2021–31/12/2021
364
product 6 2022.xlsx
01/01/2022–31/12/2022
365
product 7 2020.xlsx
01/01/2020–31/12/2020
362
product 7 2021.xlsx
01/01/2021–31/12/2021
364
product 7 2022.xlsx
01/01/2022–31/12/2022
365
3.2 Dataset Overview
The following table enumerates and explains the features included across all of the included files.
Feature
Description
Unit
Day
day of the month
-
Month
Month
-
Year
Year
-
daily_unit_sales
Daily sales - the amount of products, measured in units, that during that specific day were sold
units
previous_year_daily_unit_sales
Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year
units
percentage_difference_daily_unit_sales
The percentage difference between the two above values
%
daily_unit_sales_kg
The amount of products, measured in kilograms, that during that specific day were sold
kg
previous_year_daily_unit_sales_kg
Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year
kg
percentage_difference_daily_unit_sales_kg
The percentage difference between the two above values
kg
daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned
%
previous_year_daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned the previous year
%
points_of_distribution
The amount of sales representatives through which the product was sold to the market for this year
previous_year_points_of_distribution
The amount of sales representatives through which the product was sold to the market for the same day for the previous year
Table 1 – Dataset Feature Description
4.1 Dataset Structure
The provided dataset has the following structure:
Where:
Name
Type
Property
Readme.docx
Report
A File that contains the documentation of the Dataset.
product X
Folder
A folder containing the data of a product X.
product X YYYY.xlsx
Data file
An excel file containing the sales data of product X for year YYYY.
Table 2 - Dataset File Description
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).
References
[1] MEVGAL is a Greek dairy production company
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Excel population by race and ethnicity. The dataset can be utilized to understand the racial distribution of Excel.
The dataset will have the following datasets when applicable
Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary Material: Dataset S1: Excel spreadsheet with bathymetric analysis of Lake Victoria and model for present Lake Victoria using Sutcliffe and Parks (1999) and Howell et al. (1988) datasets. Dataset S2: Excel spreadsheet with water budget model to drain paleo-Lake Victoria. Dataset S3: Excel spreadsheet used to develop model to fill Lake Victoria during the late Pleistocene. Dataset S4: Excel spreadsheet used to develop model to predict future of Lake Victoria.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains information of 213 cancer patients undergoing clinical or surgical treatment characterized on sociodemographic and clinical data as well as data from the Care Transition Measure (CTM 15-Brazil). Data collection was carried out 7 to 30 days after their discharge from hospital from June to August 2019. Understanding these data can contribute to improving quality of care transitions and avoiding hospital readmissions. To this end, this dataset contains a broad array of variables:
*gender
*age group
*place of residence
*race
*marital status
*schooling
*paid work activity
*type of treatment
*cancer staging
*metastasis
*comorbidities
*main complaint
*continue use medication
*diagnosis
*cancer type
*diagnostic year
*oncology treatment
*first hospitalization
*readmission in the last 30 days
*number of hospitalizations in the last 30 days
*readmission in the last 6 months
*number of hospitalizations in the last 6 months
*readmission in the last year
*number of hospitalizations in the last year
*questions 1-15 from CTM 15-Brazil
The data are presented as a single Excel XLSX file: cancer patient´s care transitions dataset.xlsx.
The analyses of the present dataset have the potential to generate hospital readmission prevention strategies to be implemented by the hospital team. Researchers who are interested in CTs of cancer patients can extensively explore the variables described here.
The project from which these data were extracted was approved by the institution’s research ethics committee (approval n. 3.266.259/2019) at Associação Hospital de Caridade Ijuí, Rio Grande do Sul, Brazil.
The USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel