Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Author: Titus, Maxwell (mtitus@esri.com)Last Updated: 3/4/2025Intended Environment: ArcGIS ProPurpose: This Notebook was designed to automate updates for Hosted Feature Services hosted in ArcGIS Online (or ArcGIS Portal) from ArcGIS Pro and a spatial join of two live datasets.Description: This Notebook was designed to automate updates for Hosted Feature Services hosted in ArcGIS Online (or ArcGIS Portal) from ArcGIS Pro. An associated ArcGIS Dashboard would then reflect these updates. Specifically, this Notebook would:First, pull two datasets - National Weather Updates and Public Schools - from the Living Atlas and add them to an ArcGIS Pro map.Then, the Notebook would perform a spatial join on two layers to give Public Schools features information on whether they fell within an ongoing weather event or alert. Next, the Notebook would truncate the Hosted Feature Service in ArcGIS Online - that is, delete all the data - and then append the new data to the Hosted Feature ServiceAssociated Resources: This Notebook was used as part of the demo for FedGIS 2025. Below are the associated resources:Living Atlas Layer: NWS National Weather Events and AlertsLiving Atlas Layer: U.S. Public SchoolsArcGIS Demo Dashboard: Demo Impacted Schools Weather DashboardUpdatable Hosted Feature Service: HIFLD Public Schools with Event DataNotebook Requirements: This Notebook has the following requirements:This notebook requires ArcPy and is meant for use in ArcGIS Pro. However, it could be adjusted to work with Notebooks in ArcGIS Online or ArcGIS Portal with the advanced runtime.If running from ArcGIS Pro, connect ArcGIS Pro to the ArcGIS Online or ArcGIS Portal environment.Lastly, the user should have editable access to the hosted feature service to update.
Facebook
TwitterThe dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2023 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually. These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 12/08/2023 from data collected in 2022-2023. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.CAMA Notes:The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,353,595 entries and information on property assessments and other relevant attributes.CAMA was provided by the towns.Canaan parcels are viewable, but no additional information is available since no CAMA data was submitted.Spatial Data Notes:Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,247,506 parcels.No alteration has been made to the spatial geometry of the data.Fields that are associated with CAMA data were provided by towns.The data fields that have information from the CAMA were sourced from the towns’ CAMA data.If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.Linking fields were renamed to "Link".All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.Field names for town (Muni, Municipality) were renamed to "Town Name".
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This ArcGIS Online hosted feature service displays perimeters from the National Incident Feature Service (NIFS) that meet ALL of the following criteria:
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually. The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2025 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on September 2025 from data collected in 2024-2025. Data was processed using Python scripts and ArcGIS Pro for standardization and integration of the data. To learn more about Parcel and CAMA in CT visit our Parcels Page in the Geodata Portal.Coordinate system: This dataset is provided in NAD 83 Connecticut State Plane (2011) (EPSG 2234) projection as it was for 2024. Prior versions were provided at WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857). Ownership Suppression: The updated dataset includes parcel data for all towns across the state, with some towns featuring fully suppressed ownership information. In these instances, the owner’s name was replaced with the label "Current Owner," the co-owner’s name will be listed as "Current Co-Owner," and the mailing address will appear as the property address itself. For towns with fully suppressed ownership data, please note that no "Suppression" field was included in the submission to confirm these details and this labeling approach was implemented as the solution.New Data Fields:The new dataset introduces the “Property Zip” and “Mailing Zip” fields, which will display the zip codes for the owner and property.Service URL:In 2024, we implemented a stable URL to maintain public access to the most up-to-date data layer. Users are strongly encouraged to transition to the new service as soon as possible to ensure uninterrupted workflows. This URL will remain persistent, providing long-term stability for your applications and integrations. Once you’ve transitioned to the new service, no further URL changes will be necessary.CAMA Notes:The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,354,720 entries and information on property assessments and other relevant attributes.CAMA was provided by the towns.Spatial Data Notes:Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,282,833 parcels.No alteration has been made to the spatial geometry of the data.Fields that are associated with CAMA data were provided by towns.The data fields that have information from the CAMA were sourced from the towns’ CAMA data.If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.Linking fields were renamed to "Link".All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.Field names for town (Muni, Municipality) were renamed to "Town Name".Attributes included in the data: Town Name OwnerCo-OwnerLinkEditorEdit DateCollection year – year the parcels were submittedLocationProperty ZipMailing AddressMailing CityMailing StateMailing ZipAssessed TotalAssessed LandAssessed BuildingPre-Year Assessed Total Appraised LandAppraised BuildingAppraised OutbuildingConditionModelValuationZoneState UseState Use DescriptionLand Acre Living AreaEffective AreaTotal roomsNumber of bedroomsNumber of BathsNumber of Half-BathsSale PriceSale DateQualifiedOccupancyPrior Sale PricePrior Sale DatePrior Book and PagePlanning RegionFIPS Code *Please note that not all parcels have a link to a CAMA entry.*If any discrepancies are discovered within the data, whether pertaining to geographical inaccuracies or attribute inaccuracy, please directly contact the respective municipalities to request any necessary amendmentsAdditional information about the specifics of data availability and compliance will be coming soon.If you need a WFS service for use in specific applications : Please Click HereContact: opm.giso@ct.gov
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Facebook
TwitterMature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) buildings data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.
Facebook
TwitterCoordinate system Update:
Notably, this dataset will be provided in NAD 83 Connecticut State Plane (2011) (EPSG 2234) projection, instead of WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857) which is the coordinate system of the 2023 dataset and will remain in Connecticut State Plane moving forward.
Ownership Suppression and Data Access:
The updated dataset now includes parcel data for all towns across the state, with some towns featuring fully suppressed ownership information. In these instances, the owner’s name will be replaced with the label "Current Owner," the co-owner’s name will be listed as "Current Co-Owner," and the mailing address will appear as the property address itself. For towns with suppressed ownership data, users should be aware that there was no "Suppression" field in the submission to verify specific details. This measure was implemented this year to help verify compliance with Suppression.
New Data Fields:
The new dataset introduces the "Land Acres" field, which will display the total acreage for each parcel. This additional field allows for more detailed analysis and better supports planning, zoning, and property valuation tasks. An important new addition is the FIPS code field, which provides the Federal Information Processing Standards (FIPS) code for each parcel’s corresponding block. This allows users to easily identify which block the parcel is in.
Updated Service URL:
The new parcel service URL includes all the updates mentioned above, such as the improved coordinate system, new data fields, and additional geospatial information. Users are strongly encouraged to transition to the new service as soon as possible to ensure that their workflows remain uninterrupted. The URL for this service will remain persistent moving forward. Once you have transitioned to the new service, the URL will remain constant, ensuring long term stability.
For a limited time, the old service will continue to be available, but it will eventually be retired. Users should plan to switch to the new service well before this cutoff to avoid any disruptions in data access.
The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2024 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually.
These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 10/31/2024 from data collected in 2023-2024. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.
CAMA Notes:
The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,353,595 entries and information on property assessments and other relevant attributes.
CAMA was provided by the towns.
Spatial Data Notes:
Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,290,196 parcels.
No alteration has been made to the spatial geometry of the data.
Fields that are associated with CAMA data were provided by towns.
The data fields that have information from the CAMA were sourced from the towns’ CAMA data.
If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.
Linking fields were renamed to "Link".
All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.
Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.
Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.
Field names for town (Muni, Municipality) were renamed to "Town Name".
The attributes included in the data:
Town Name
Owner
Co-Owner
Link
Editor
Edit Date
Collection year – year the parcels were submitted
Location
Mailing Address
Mailing City
Mailing State
Assessed Total
Assessed Land
Assessed Building
Pre-Year Assessed Total
Appraised Land
Appraised Building
Appraised Outbuilding
Condition
<span
Facebook
TwitterReason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0 national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code. Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Author: Titus, Maxwell (mtitus@esri.com)Last Updated: 3/4/2025Intended Environment: ArcGIS ProPurpose: This Notebook was designed to automate updates for Hosted Feature Services hosted in ArcGIS Online (or ArcGIS Portal) from ArcGIS Pro and a spatial join of two live datasets.Description: This Notebook was designed to automate updates for Hosted Feature Services hosted in ArcGIS Online (or ArcGIS Portal) from ArcGIS Pro. An associated ArcGIS Dashboard would then reflect these updates. Specifically, this Notebook would:First, pull two datasets - National Weather Updates and Public Schools - from the Living Atlas and add them to an ArcGIS Pro map.Then, the Notebook would perform a spatial join on two layers to give Public Schools features information on whether they fell within an ongoing weather event or alert. Next, the Notebook would truncate the Hosted Feature Service in ArcGIS Online - that is, delete all the data - and then append the new data to the Hosted Feature ServiceAssociated Resources: This Notebook was used as part of the demo for FedGIS 2025. Below are the associated resources:Living Atlas Layer: NWS National Weather Events and AlertsLiving Atlas Layer: U.S. Public SchoolsArcGIS Demo Dashboard: Demo Impacted Schools Weather DashboardUpdatable Hosted Feature Service: HIFLD Public Schools with Event DataNotebook Requirements: This Notebook has the following requirements:This notebook requires ArcPy and is meant for use in ArcGIS Pro. However, it could be adjusted to work with Notebooks in ArcGIS Online or ArcGIS Portal with the advanced runtime.If running from ArcGIS Pro, connect ArcGIS Pro to the ArcGIS Online or ArcGIS Portal environment.Lastly, the user should have editable access to the hosted feature service to update.