46 datasets found
  1. d

    Data from: Introduction to Planetary Image Analysis and Geologic Mapping in...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  2. a

    National Hydrography Data Set

    • gis-foleyal.hub.arcgis.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Foley, AL (2025). National Hydrography Data Set [Dataset]. https://gis-foleyal.hub.arcgis.com/maps/43212cf0ef1f438aa0848e83526c791d
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset authored and provided by
    City of Foley, AL
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Coordinate System: Web Mercator Auxiliary Sphere Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Resolution/Tolerance: 1 meter/2 meters Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinksFeature Request Limit: 5,000Source: EPA and USGSPublication Date: March 13, 2019ArcGIS Server URL: https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/NHDPlusV21/FeatureServerPrior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  3. Digital Geologic-GIS Map of Eisenhower National Historic Site, Pennsylvania...

    • catalog.data.gov
    • datasets.ai
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Eisenhower National Historic Site, Pennsylvania (NPS, GRD, GRI, GETT, EISE, EISE digital map) adapted from a U.S. Geological Survey Geologic Atlas of the United States Folio map by Stose and Bascom (1929) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-eisenhower-national-historic-site-pennsylvania-nps-grd-gri-get
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    United States, Pennsylvania
    Description

    The Digital Geologic-GIS Map of Eisenhower National Historic Site, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (eise_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (eise_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (eise_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (gett_eise_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (gett_eise_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (eise_geology_metadata_faq.pdf). Please read the gett_eise_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (eise_geology_metadata.txt or eise_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands (NPS, GRD, GRI, VIIS, VIIS digital map) adapted from a U.S. Geological Survey Professional Paper map by Rankin (2002) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-virgin-islands-national-park-virgin-islands-nps-grd-gri-viis-v
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    U.S. Virgin Islands
    Description

    The Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (viis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (viis_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (viis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (viis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (viis_geology_metadata_faq.pdf). Please read the viis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (viis_geology_metadata.txt or viis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  5. Geology of North America

    • hub.arcgis.com
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Geology of North America [Dataset]. https://hub.arcgis.com/maps/esri::geology-of-north-america
    Explore at:
    Dataset updated
    Mar 12, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer maps the geology of North America, Central America, and portions of the Pacific and Atlantic Oceans symbolized by geologic time. The data used to create this layer was the Geology Units layer described in the publication: Garrity, C.P., and Soller, D.R., 2009, Database of the Geologic Map of North America; adapted from the map by J.C. Reed, Jr. and others (2005): U.S. Geological Survey Data Series 424 The field used for symbolgy (Esri Symbology) was created from the Maximum Age field. Time prefixes were removed and other changes made to the values to simplify the symbology. Colors were taken from the Geologic Society of America's Geologic Time Scale.Prior to publication geometry errors were repaired and the data were projected into Web Mercator.Dataset SummaryPhenomenon Mapped: GeologyCoordinate System: Web Mercator Auxiliary SphereExtent: North America, Central America, and portions of the Pacific and Atlantic OceansVisible Scale: All ScalesSource: Database of the Geologic Map of North AmericaPublication Date: 2009AttributesAttributes included in this layer include:Rock TypeLithologyMinimum AgeMaximum AgeUnit UncertaintyAge UncertaintyMap NotesWhat can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.

  6. G

    Geological map of South and South-West Greenland 1:100 000

    • dataverse.geus.dk
    pdf, txt, zip
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Find Kokfelt; Nynke Keulen; Katja Tandrup Walentin; Eva Willerslev; Thomas Find Kokfelt; Nynke Keulen; Katja Tandrup Walentin; Eva Willerslev (2025). Geological map of South and South-West Greenland 1:100 000 [Dataset]. http://doi.org/10.22008/FK2/C45WZU
    Explore at:
    zip(177103427), txt(131), zip(149902), zip(23008), pdf(8261203)Available download formats
    Dataset updated
    Nov 28, 2025
    Dataset provided by
    GEUS Dataverse
    Authors
    Thomas Find Kokfelt; Nynke Keulen; Katja Tandrup Walentin; Eva Willerslev; Thomas Find Kokfelt; Nynke Keulen; Katja Tandrup Walentin; Eva Willerslev
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Greenland
    Description

    The seamless digital geological map is based on the digitisation and harmonisation of 21 geological map sheets at 1:100 000 scale, originally published by GGU/GEUS between 1966 and 2011. This edition updates and expands the 2019 version, which included 16 sheets, by integrating five additional 1:100 000 sheets and selected information from 1:500 000 scale maps in areas lacking detailed coverage. The map also incorporates a simplified geological interpretation of Bjørneøen and Storeø in Godthåbsfjorden based on detailed mapping by Claus Østergaard (2005). The dataset provides a consistent, seamless geological framework optimised for digital display at the 1:100 000 scale. One GEUS font is enclosed. In order to symbolise the data correct the font need to be installed on the local machine. (see Readme.txt file) The maps are delivered in ArcGIS Pro and QGIS formats.

  7. National Hydrography Dataset Plus High Resolution

    • oregonwaterdata.org
    • dangermondpreserve-tnc.hub.arcgis.com
    • +1more
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://www.oregonwaterdata.org/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  8. a

    Flowlines

    • pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pend Oreille County (2024). Flowlines [Dataset]. https://pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com/datasets/flowlines
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    Pend Oreille County
    Area covered
    Description

    *This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  9. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hot Springs, Arkansas
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  10. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. Watershed Boundary Dataset HUC 8s

    • anrgeodata.vermont.gov
    • resilience.climate.gov
    • +6more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 8s [Dataset]. https://anrgeodata.vermont.gov/maps/5bbefdcd2511472ea9abd0afedb85c7e_0/about
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  12. Watershed Boundary Dataset HUC 6s

    • anrgeodata.vermont.gov
    • resilience.climate.gov
    • +4more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 6s [Dataset]. https://anrgeodata.vermont.gov/maps/esri::watershed-boundary-dataset-huc-6s/about
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  13. v

    Mines and Prospects of Idaho

    • anrgeodata.vermont.gov
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2025). Mines and Prospects of Idaho [Dataset]. https://anrgeodata.vermont.gov/content/8657bdc29f50474b8180cd3526c1826c
    Explore at:
    Dataset updated
    Sep 24, 2025
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    Idaho Geological Survey's publication in the Digital Database series DD-1: Database of the Mines and Prospects of Idaho (version 1.2025) is a relational database of Idaho mines and prospects locations and attributes compatible with Access 2000, SQL Server, and ArcGIS Pro. Also published on ArcGIS Online as an interactive web map application. Mines table was used to create spatial point feature classes (shapefile, geodatabase feature classes, KMZ) included in the downloadable data package for this release. All related data in other tables. Mines contains information on over 9,400 known sites of mineral extraction and exploration activities in Idaho. This inventory and supplemental files, documents, videos, and other media and derivative resources are valuable research tools. Available sources have been used to compile and correct these data including published and unpublished reference materials. Every effort has been made to make the database complete and accurate; however, any additions or corrections should be directed to the Idaho Geological Survey. Periodic revisions of this database will be issued as new information is added.

  14. U

    Maps of the USGS Climate Adaptation Science Centers (May 2024)

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated May 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kate Malpeli (2024). Maps of the USGS Climate Adaptation Science Centers (May 2024) [Dataset]. http://doi.org/10.5066/P1DVRDH3
    Explore at:
    Dataset updated
    May 29, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Kate Malpeli
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2024
    Description

    The Climate Adaptation Science Centers (CASCs) partner with natural and cultural resource managers, tribes and indigenous communities, and university researchers to provide science that helps fish, wildlife, ecosystems, and the communities they support adapt to climate change. The CASCs provide managers and stakeholders with information and decision-making tools to respond to the effects of climate change. While each CASC works to address specific research priorities within their respective region, CASCs also collaborate across boundaries to address issues within shared ecosystems, watersheds, and landscapes. These shapefiles represent the 9 CASC regions and the national CASC that comprise the CASC network, highlighting the consortium institutions that make up each region.The shapefiles were produced in ArcGIS Pro but any geospatial software can be used to view the shapefiles (ArcGIS, QGIS, etc).

  15. i

    HUC6 Boundaries of Indiana 2025

    • indianamap.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2025). HUC6 Boundaries of Indiana 2025 [Dataset]. https://www.indianamap.org/datasets/INMap::huc6-boundaries-of-indiana-2025/about
    Explore at:
    Dataset updated
    Jun 4, 2025
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.

  16. c

    Watershed Boundary Dataset HUC 4s

    • resilience.climate.gov
    • ltar-usdaars.hub.arcgis.com
    • +1more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 4s [Dataset]. https://resilience.climate.gov/items/b92b73b36ef74c5cba1e3035fce94623
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  17. c

    Data from: Inventory of rock avalanches in the central Chugach Mountains,...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Inventory of rock avalanches in the central Chugach Mountains, northern Prince William Sound, Alaska, 1984-2024 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/inventory-of-rock-avalanches-in-the-central-chugach-mountains-northern-prince-william-1984
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Chugach Mountains, Prince William Sound, Chugach Census Area, Alaska
    Description

    In the Prince William Sound region of Alaska, recent glacier retreat started in the mid-1800s and began to accelerate in the mid-2000s in response to warming air temperatures (Maraldo and others, 2020). Prince William Sound is surrounded by the central Chugach Mountains and consists of numerous ocean-terminating glaciers, with rapid deglaciation increasingly exposing oversteepened bedrock walls of fiords. Deglaciation may accelerate the occurrence of rapidly moving rock avalanches (RAs), which have the potential to generate tsunamis and adversely impact maritime vessels, marine activities, and coastal infrastructure and populations in the Prince William Sound region. RAs have been documented in the Chugach Mountains in the past (Post, 1967; McSaveney, 1978; Uhlmann and others, 2013), but a time series of RAs in the Chugach Mountains is not currently available. A systematic inventory of RAs in the Chugach is needed as a baseline to evaluate any future changes in RA frequency, magnitude, and mobility. This data release presents a comprehensive historical inventory of RAs in a 4600 km2 area of the Prince William Sound. The inventory was generated from: (1) visual inspection of 30-m resolution Landsat satellite images collected between July 1984 and August 2024; and (2) the use of an automated image classification script (Google earth Engine supRaglAciaL Debris INput dEtector (GERALDINE, Smith and others, 2020)) designed to detect new rock-on-snow events from repeat Landsat images from the same time period. RAs were visually identified and mapped in a Geographic Information System (GIS) from the near-infrared (NIR) band of Landsat satellite images. This band provides significant contrast between rock and snow to detect newly deposited rock debris. A total of 252 Landsat images were visually examined, with more images available in recent years compared to earlier years (Figure 1). Calendar year 1984 was the first year when 30-m resolution Landsat data were available, and thus provided a historical starting point from which RAs could be detected with consistent certainty. By 2017, higher resolution (<5-m) daily Planet satellite images became consistently available and were used to better constrain RA timing and extent. Figure 1. Diagram showing the number of usable Landsat images per year. This inventory reveals 118 RAs ranging in size from 0.1 km2 to 2.3 km2. All of these RAs occurred during the months of May through September (Figure 2). The data release includes three GIS feature classes (polygons, points, and polylines), each with its own attribute information. The polygon feature class contains the entire extent of individual RAs and does not differentiate the source and deposit areas. The point feature class contains headscarp and toe locations, and the polyline feature class contains curvilinear RA travel distance lines that connect the headscarp and toe points. Additional attribute information includes the following: _location of headscarp and toe points, date of earliest identified occurrence, if and when the RA was sequestered into the glacier, presence and delineation confidence levels (see Table 1 for definition of A, B, and C confidence levels), identification method (visual inspection versus automated detection), image platform, satellite, estimated cloud cover, if the RA is lobate, image ID, image year, image band, affected area in km2, length, height, length/height, height/length, notes, minimum and maximum elevation, aspect at the headscarp point, slope at the headscarp point, and geology at the headscarp point. Topographic information was derived from 5-m interferometric synthetic aperture radar (IfSAR) Digital Elevation Models (DEMs) that were downloaded from the USGS National Elevation Dataset website (U.S. Geological Survey, 2015) and were mosaicked together in ArcGIS Pro. The aspect and slope layers were generated from the downloaded 5-m DEM with the “Aspect” and “Slope” tools in ArcGIS Pro. Aspect and slope at the headscarp mid-point were then recorded in the attribute table. A shapefile of Alaska state geology was downloaded from Wilson and others (2015) and was used to determine the geology at the headscarp _location. The 118 identified RAs have the following confidence level breakdown for presence: 66 are A-level, 51 are B-level, and 1 is C-level. The 118 identified RAs have the following confidence level breakdown for delineation: 39 are A-level and 79 are B-level. Please see the provided attribute table spreadsheet for more detailed information. Figure 2. Diagram showing seasonal timing of mapped rock avalanches. Table 1. Rock avalanche presence and delineation confidence levels Category Grade Justification Presence A Feature is clearly visible in one or more satellite images. B Feature is clearly visible in one or more satellite images but has low contrast with the surroundings and may be surficial debris from rock fall, rather than from a rock avalanche. C Feature presence is possible but uncertain due to poor quality of imagery (e.g., heavy cloud cover or shadows) or lack of multiple views. Delineation A Exact outline of the feature from headscarp to toe is clear. B General shape of the feature is clear but the exact headscarp or toe _location is unclear (e.g., due to clouds or shadows). Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. References Maraldo, D.R., 2020, Accelerated retreat of coastal glaciers in the Western Prince William Sound, Alaska: Arctic, Antarctic, and Alpine Research, v. 52, p. 617-634, https://doi.org/10.1080/15230430.2020.1837715 McSaveney, M.J., 1978, Sherman glacier rock avalanche, Alaska, U.S.A. in Voight, B., ed., Rockslides and Avalanches, Developments in Geotechnical Engineering, Amsterdam, Elsevier, v. 14, p. 197–258. Post, A., 1967, Effects of the March 1964 Alaska earthquake on glaciers: U.S. Geological Survey Professional Paper 544-D, Reston, Virgina, p. 42, https://pubs.usgs.gov/pp/0544d/ Smith, W. D., Dunning, S. A., Brough, S., Ross, N., and Telling, J., 2020, GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): A new tool for identifying and monitoring supraglacial landslide inputs: Earth Surface Dynamics, v. 8, p. 1053-1065, https://doi.org/10.5194/esurf-8-1053-2020 Uhlmann, M., Korup, O., Huggel, C., Fischer, L., and Kargel, J. S., 2013, Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-central Alaska: Earth Surface Processes and Landforms, v. 38, p. 675–682, https://doi.org/10.1002/esp.3311 U.S. Geological Survey, 2015, USGS NED Digital Surface Model AK IFSAR-Cell37 2010 TIFF 2015: U.S. Geological Survey, https://elevation.alaska.gov/#60.67183:-147.68372:8 Wilson, F.H., Hults, C.P., Mull, C.G, and Karl, S.M, compilers, 2015, Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet p. 196, 2 sheets, scale 1:1,584,000, https://pubs.usgs.gov/publication/sim3340

  18. c

    Watershed Boundary Dataset HUC 2s

    • resilience.climate.gov
    • anrgeodata.vermont.gov
    • +4more
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 2s [Dataset]. https://resilience.climate.gov/datasets/esri::watershed-boundary-dataset-huc-2s
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "subsidence" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "subsidence" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  19. u

    USA NLCD Impervious Surface Time Series

    • colorado-river-portal.usgs.gov
    • sal-urichmond.hub.arcgis.com
    • +1more
    Updated Sep 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA NLCD Impervious Surface Time Series [Dataset]. https://colorado-river-portal.usgs.gov/datasets/1fdbb561c58b45c58f8f966c00c78ae6
    Explore at:
    Dataset updated
    Sep 26, 2019
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Impervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. Phenomenon Mapped: The proportion of the landscape that is impervious to water.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the lower 48 conterminous US states. A small portion of Alaska around Anchorage displays a time series of 2001, 2011, and 2016. Hawaii, Puerto Rico, and the US Virgin Islands unfortunately only have data for 2001 so there is only one image in the series. This information may be used in conjunction with the USA NLCD Land Cover layer.Units: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: CONUS, Hawaii, A portion of Alaska around Anchorage, District of Columbia, Puerto RicoNoData Value: 127Source: Multi-Resolution Land Characteristics ConsortiumPublication Date: June 30, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every few years in the lower 48 states, in 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are produced with a different methodology, and are not set up to be directly compared the way the CONUS time series is. To analyze change between the latest two data years for this portion of Alaska, be sure to use the NLCD 2011 to 2016 Developed Impervious Change raster. For Hawaii and Puerto Rico, only the year 2001 is available for download at the MRLC.North America Albers ProjectionAll NLCD layers in the Living Atlas are projected into the North America Albers Projection before serving in the Living Atlas. This allows the coterminous USA, Puerto Rico, Hawaii, and Alaska to be served from a common projection and analyzed together. In tests performed by esri, the NLCD land cover classes after projection to North America Albers had the exact same number of pixels in input as output, but pixels had been slightly rearranged after projection. Processing TemplatesThis layer comes with two color schemes, cool and warm. The default is a cool gray color scheme, designed to look good on light and dark gray web maps. To choose a warm color scheme which was the default until 2021, change the processing template to the Impervious Surface Warm Renderer in your map client.Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  20. c

    Watershed Boundary Dataset HUC 10s

    • resilience.climate.gov
    • sal-urichmond.hub.arcgis.com
    • +3more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 10s [Dataset]. https://resilience.climate.gov/datasets/esri::watershed-boundary-dataset-huc-10s
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro

Data from: Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

Related Article
Explore at:
Dataset updated
Nov 20, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Description

GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

Search
Clear search
Close search
Google apps
Main menu