85 datasets found
  1. a

    Catholic Carbon Footprint Story Map Map

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Story Map Map [Dataset]. https://hub.arcgis.com/maps/8c3112552bdd4bd3962ab8b94bcf6ee5
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  2. Introduction and ArcGIS Online Map Viewer Basics

    • lecture-with-gis-esriukeducation.hub.arcgis.com
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2025). Introduction and ArcGIS Online Map Viewer Basics [Dataset]. https://lecture-with-gis-esriukeducation.hub.arcgis.com/datasets/introduction-and-arcgis-online-map-viewer-basics-
    Explore at:
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    All the maps in the 'Black Saturday' - The Beginning of the Blitz StoryMap have been created using the same dataset. This dataset is accessed through a Google Sheet on bombsight.org and includes fields that provide information on the order in which the bombs fell, the time they fell on September 7th, 1940, the closest address to where the bomb fell, the type of bomb, and details about the damage caused by each bomb.In these exercises, we will teach you how to create these maps and then use Story Maps to narrate the events of the first night of the Blitz using this data.An quick overview of the steps we will take today are:

  3. Energy Equity Indicators – Interactive Story Map

    • catalog.data.gov
    • data.cnra.ca.gov
    • +2more
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2025). Energy Equity Indicators – Interactive Story Map [Dataset]. https://catalog.data.gov/dataset/energy-equity-indicators-interactive-story-map-6e9cc
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    Description

    These interactive energy equity indicators are designed to help identify opportunities to improve access to clean energy technologies for low-income customers and disadvantaged communities; increase clean energy investment in those communities; and improve community resilience to grid outages and extreme events. A summary report of these indicators will be updated each year to track progress on implementation of the recommendations put forth by the Energy Commission’s December 2016 Low-Income Barriers Study mandated by Senate Bill 350 (de León, Chapter547, Statutes of 2015), and monitor performance of state-administered clean energy programs in low-income and disadvantaged communities across the state.Selected energy equity indicators are highlighted on the following California map. The base map highlights areas with median household income of $37,000 or less (60 percent of statewide median income for 2011-2015) and disadvantaged communities eligible for greenhouse gas reduction fund programs. The map also identifies tribal areas. Click to view data for low-income areas with low energy efficiency investments, low solar capacity per capita, or low clean vehicle rebate incentive investments. Additional data layers include high-density low-income areas and low-income areas that have many older buildings, as well as counties with high levels of asthma-related emergency room visit. This information can help identify opportunities for improving clean energy access, investment, and resilience in low-income and disadvantaged communities in California. Additional indicators are available by clicking on the Story Map or Tracking Progress Report links provided above.

  4. s

    Tuvalu Environmental Issues on Story Maps

    • tuvalu-data.sprep.org
    • pacific-data.sprep.org
    html
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Environment, Tuvalu (2022). Tuvalu Environmental Issues on Story Maps [Dataset]. https://tuvalu-data.sprep.org/dataset/tuvalu-environmental-issues-story-maps
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    Department of Environment, Tuvalu
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Tuvalu, -178.82080167532 -4.496111804279, POLYGON ((-185.03173828125 -11.7132034389, -178.82080167532 -11.7132034389)), -185.03173828125 -4.496111804279
    Description

    'Story Maps' allows an individual to combine authoritative maps with narrative text, images, and multimedia content to make it easy to harness the power of maps and geography to tell a story. An insight into Tuvalu's environmental issues is featuring on the story map website with images and ArcGIS contents.

  5. a

    Atlas for a Changing Planet

    • sdgs.amerigeoss.org
    • sdg-template-cat-sdgs.opendata.arcgis.com
    Updated Nov 29, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). Atlas for a Changing Planet [Dataset]. https://sdgs.amerigeoss.org/datasets/Story::atlas-for-a-changing-planet
    Explore at:
    Dataset updated
    Nov 29, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    Understanding natural and human systems is an essential first step toward reducing the severity of climate change and adapting to a warmer future. Maps and geographic information systems are the primary tools by which scientists, policymakers, planners, and activists visualize and understand our rapidly changing world. Spatial information informs decisions about how to build a better future. This Story Map Journal was created by Esri's story maps team. For more information on story maps, visit storymaps.arcgis.com.

  6. d

    Telecommunications Projects in Loudoun County - Interactive Map

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Nov 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2025). Telecommunications Projects in Loudoun County - Interactive Map [Dataset]. https://catalog.data.gov/dataset/telecommunications-projects-in-loudoun-county-interactive-map-20a76
    Explore at:
    Dataset updated
    Nov 15, 2025
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    This interactive map includes build telecommunication facilities, dark fiber (both future and in progress), and other telecommunication-related data. In September 2020, the Loudoun County Board of Supervisors directed staff to document telecommunication projects completed, in-progress, and future projects, using the 2014 Wireless GAP Analysis and the Segra Dark Fiber Area Network. Staff mapped the data identified by the Board, as well as other information related to telecommunication projects. This information was then used to identify select unserved or underserved geographic areas of the county.The companion Story Map steps through each dataset used in the project.

  7. a

    Use express maps to help tell your story

    • sal-urichmond.hub.arcgis.com
    Updated Jun 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2020). Use express maps to help tell your story [Dataset]. https://sal-urichmond.hub.arcgis.com/datasets/Story::use-express-maps-to-help-tell-your-story
    Explore at:
    Dataset updated
    Jun 22, 2020
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    All stories happen somewhere. Place explains where things happened, which can then explain why or how things happened the way that they did. To help storytellers add this spatial context to their stories, express maps were one of the first features incorporated when ArcGIS StoryMaps was rolled out in July of 2019. Storytellers of all cartographic experience levels can populate an express map with features, pop-ups, text labels, and more, injecting slick, effective, interactive cartography into any story.On top of that, express maps also serve as a "Trojan horse" of sorts that allows storytellers to create interactive image experiences as well as maps. Thanks to a capability added in August, 2024, you can now upload an image to serve as the base of an express map. This means that you can apply the same drawing, pop-up, and annotation tools to that image as you can to a map.

  8. c

    Most Effective Basins Story Map 2024

    • data.chesapeakebay.net
    • gsat-chesbay.hub.arcgis.com
    • +1more
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Geoplatform (2024). Most Effective Basins Story Map 2024 [Dataset]. https://data.chesapeakebay.net/documents/54426e40ee0c4386afd3e6d5ded00220
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Chesapeake Geoplatform
    Description

    Open the Data Resource:https://gis.chesapeakebay.net/wip/meboverview/ This story map provides more information about the 2024 Most Effective Basins mapping project. It complements an interactive map and downloadable dataset. A total of $23 million has been directed to support Most Effective Basins (MEB) implementation in FY2024. MEBs targeted for this funding were identified based on load effectiveness, which is a measure of the ability of management practices implemented in each area (basin) to have a positive effect on dissolved oxygen in the Chesapeake Bay. Unless otherwise approved, implementation activities are expected to occur within these areas.

  9. g

    Wicklow Mountains National Park Story Map Data | gimi9.com

    • gimi9.com
    Updated Oct 20, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Wicklow Mountains National Park Story Map Data | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_1ee94bdc-c026-472c-93f4-c975e4f3f75b/
    Explore at:
    Dataset updated
    Oct 20, 2015
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Wicklow Mountains
    Description

    This dataset shows points of interest around Wicklow Mountains National Park, which have been included in an online mapping application - Wicklow Mountains Story Map Tour. CSV file contains points of interest in Wicklow Mountains National Park, along with descriptions and coordinates (Irish Transverse Mercator, Irish Grid and WGS84). Zip folder contains the images used in the Story Map.

  10. w

    Ballycroy National Park Story Map Data

    • data.wu.ac.at
    • data.europa.eu
    csv, html, zip
    Updated Mar 5, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Culture, Heritage and the Gaeltacht (2018). Ballycroy National Park Story Map Data [Dataset]. https://data.wu.ac.at/schema/data_gov_ie/YjNhYjE5NmItOGEwNi00N2FmLWFlN2ItMWM1ZDk4ZmVlYmI4
    Explore at:
    html, csv, zipAvailable download formats
    Dataset updated
    Mar 5, 2018
    Dataset provided by
    Department of Culture, Heritage and the Gaeltacht
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ballycroy, d0fe17e3ed9d21a0428683ec708af02ab233f12c
    Description

    This dataset shows points of interest around Ballycroy National Park, which have been included in an online mapping application - Ballycroy Story Map Tour.

    CSV file contains points of interest in Ballycroy National Park, along with descriptions and coordinates (Irish Transverse Mercator, Irish Grid and WGS84). Zip folder contains the images used in the Story Map.

  11. p

    Data from: World Terrestrial Ecosystems

    • pacificgeoportal.com
    • cacgeoportal.com
    • +4more
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). World Terrestrial Ecosystems [Dataset]. https://www.pacificgeoportal.com/datasets/926a206393ec40a590d8caf29ae9a93e
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Esri
    Area covered
    World,
    Description

    The World Terrestrial Ecosystems map classifies the world into areas of similar climate, landform, and land cover, which form the basic components of any terrestrial ecosystem structure. This map is important because it uses objectively derived and globally consistent data to characterize the ecosystems at a much finer spatial resolution (250-m) than existing ecoregionalizations, and a much finer thematic resolution (431 classes) than existing global land cover products. This item was updated on Apr 14, 2023 to distinguish between Boreal and Polar climate regions in the terrestrial ecosystems. Cell Size: 250-meter Source Type: ThematicPixel Type: 16 Bit UnsignedData Projection: GCS WGS84Extent: GlobalSource: USGS, The Nature Conservancy, EsriUpdate Cycle: NoneAnalysis: Optimized for analysis What can you do with this layer?This map allows you to query the land surface pixels and returns the values of all the input parameters (landform type, landcover/vegetation type, climate region) and the name of the terrestrial ecosystem at that location. This layer can be used in analysis at global and local regions. However, for large scale spatial analysis, we have also provided an ArcGIS Pro Package that contains the original raster data with multiple table attributes. For simple mapping applications, there is also a raster tile layer. This layer can be combined with the World Protected Areas Database to assess the types of ecosystems that are protected, and progress towards meeting conservation goals. The WDPA layer updates monthly from the United Nations Environment Programme. Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See the Living Atlas Imagery Layers Optimized for Analysis Group for a complete list of imagery layers optimized for analysis. Developing the World Terrestrial EcosystemsWorld Terrestrial Ecosystems map was produced by adopting and modifying the Intergovernmental Panel on Climate Change (IPCC) approach on the definition of Terrestrial Ecosystems and development of standardized global climate regions using the values of environmental moisture regime and temperature regime. We then combined the values of Global Climate Regions, Landforms and matrix-forming vegetation assemblage or land use, using the ArcGIS Combine tool (Spatial Analyst) to produce World Ecosystems Dataset. This combination resulted of 431 World Ecosystems classes. Each combination was assigned a color using an algorithm that blended traditional color schemes for each of the three components. Every pixel in this map is symbolized by a combination of values for each of these fields. The work from this collaboration is documented in the publication:Sayre et al. 2020. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems - Global Ecology and Conservation More information about World Terrestrial Ecosystems can be found in this Story Map.

  12. Watershed Boundary Dataset HUC 8s

    • anrgeodata.vermont.gov
    • resilience.climate.gov
    • +6more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 8s [Dataset]. https://anrgeodata.vermont.gov/maps/5bbefdcd2511472ea9abd0afedb85c7e_0/about
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  13. Watershed Boundary Dataset HUC 6s

    • anrgeodata.vermont.gov
    • resilience.climate.gov
    • +4more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 6s [Dataset]. https://anrgeodata.vermont.gov/maps/esri::watershed-boundary-dataset-huc-6s/about
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  14. a

    Jordan River Segments

    • utahdnr.hub.arcgis.com
    Updated Nov 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah DNR Online Maps (2016). Jordan River Segments [Dataset]. https://utahdnr.hub.arcgis.com/datasets/utahDNR::jrcmp-storymap-intro?layer=1
    Explore at:
    Dataset updated
    Nov 16, 2016
    Dataset authored and provided by
    Utah DNR Online Maps
    Area covered
    Description

    This dataset was digitized from 2009 HRO aerial photography. It is to be used to create bird survey points along the Jordan River.

  15. a

    African Development Bank Project Report

    • sdgs.amerigeoss.org
    • sdg-template-sdgs.hub.arcgis.com
    • +1more
    Updated Oct 5, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri National Government (2015). African Development Bank Project Report [Dataset]. https://sdgs.amerigeoss.org/datasets/esrifederal::african-development-bank-project-report
    Explore at:
    Dataset updated
    Oct 5, 2015
    Dataset authored and provided by
    Esri National Government
    Description

    To create this app:Make a map of the AfDB projects CSV file in the Training Materials group.Download the CSV file, click Map (at the top of the page), and drag and drop the file onto your mapFrom the layer menu on your Projects layer choose Change Symbols and show the projects using Unique Symbols and the Status of field.Make a second map of the AfDB projects shown using Unique Symbols and the Sector field.HINT: Create a copy of your first map using Save As... and modify the copy.Assemble your story map on the Esri Story Maps websiteGo to storymaps.arcgis.comAt the top of the site, click AppsFind the Story Map Tabbed app and click Build a Tabbed Story MapFollow the instructions in the app builder. Add the maps you made in previous steps and copy the text from this sample app to your app. Explore and experiment with the app configuration settings.=============OPTIONAL - Make a third map of the AFDB projects summarized by country and add it to your story map.Add the World Countries layer to your map (Add > Search for Layers)From the layer menu on your Projects layer choose Perform Analysis > Summarize Data > Aggregate Points and run the tool to summarize the projects in each country.HINT: UNCHECK "Keep areas with no points"Experiment with changing the symbols and settings on your new layer and remove other unnecessary layers.Save AS... a new map.At the top of the site, click My Content.Find your story map application item, open its Details page, and click Configure App.Use the builder to add your third map and a description to the app and save it.

  16. D

    Disclaimer

    • data.nsw.gov.au
    • researchdata.edu.au
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Sydney (2025). Disclaimer [Dataset]. https://data.nsw.gov.au/data/dataset/5-cityofsydney--disclaimer
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset authored and provided by
    City of Sydney
    Description

    General Accessibility Creative Commons All data products available from the data hub are provided on an 'as is' basis. The City of Sydney (City) makes no warranty, representation or guarantee of any type as to any errors and omissions, or as to the content, accuracy, timeliness, completeness or fitness for any particular purpose or use of any data product available from the data hub. If you find any information that you believe may be inaccurate, please email the City. In addition, please note that the data products available from the data hub are not intended to constitute advice and must not be used as a substitute for professional advice. The City may modify the data products available from the data hub and/or discontinue providing any or all of data products at any time and for any reason, without notice. Accordingly, the City recommends that you regularly check the data hub to ensure that the latest version of data products is used. The City recommends that when accessing data sets, you use APIs. We are committed to making our website as accessible and user-friendly as possible. Web Content Accessibility Guidelines (WCAG) cover a wide set of recommendations to make websites accessible. For more information on WCAG please visit https://www.w3.org/TR/WCAG21/ . This site is built using Esri's ArcGIS Hubs template, and their Accessibility status report is available online at https://hub.arcgis.com/pages/a11y. We create the maps and stories on this site using ArcGIS templates, each template having accessibility features. Examples include Instant Apps, Story maps, and Webapp builder. If you would like to request alternative formats for data products on this site please email the City. We encourage developers using our data to deliver maps and applications with consideration to accessibility for all. Design elements can include colour, contrast, symbol size and style, font size and style, basemap style, alternate text for images, and captions for video and audio. Alternative content such as static maps may sometimes be required. Unless otherwise stated, data products available from the data hub are published under Creative Commons licences. Creative Commons licences include terms and conditions about how licensed data products may be used, shared and/or adapted. Depending on the applicable licence, licensed data products may or may not be used for commercial purposes. The applicable Creative Commons licence for specific data is specified in the "Licence" section of the data description. By accessing, sharing and/or adapting licensed data products, you are deemed to have accepted the terms and conditions of the applicable Creative Common licence. For more information about Creative Commons licences, please visit https://creativecommons.org.au/ and https://creativecommons.org/faq/ If you believe that the applicable Creative Commons licence for the data product that you wish to use is overly restrictive for how you would like to use the data product, please email the City. Contact If you have a question, comments, or requests for interactive maps and data, we would love to hear from you. Council business For information on rates, development applications, strategies, reports and other council business, see the City of Sydney's main website.

  17. A

    Take Action: Tools to Understand and Prepare for Extreme Heat

    • data.amerigeoss.org
    esri rest, html
    Updated Feb 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEO ArcGIS (2019). Take Action: Tools to Understand and Prepare for Extreme Heat [Dataset]. https://data.amerigeoss.org/ro/dataset/take-action-tools-to-understand-and-prepare-for-extreme-heat
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Feb 8, 2019
    Dataset provided by
    AmeriGEO ArcGIS
    Description

    This story map journal highlights some apps, web maps, and databases to understand and prepare for extreme heat. Some of the apps contained in this story map are:

  18. c

    Counties

    • data.chesapeakebay.net
    • hamhanding-dcdev.opendata.arcgis.com
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Geoplatform (2024). Counties [Dataset]. https://data.chesapeakebay.net/datasets/ChesBay::counties/explore
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Chesapeake Geoplatform
    Area covered
    Description

    This data resource includes layers in a map service. To download it, please go to the "Layers" section of this page and click the name of the dataset. This will open a new page that features a download button. Open the Map Service: https://gis.chesapeakebay.net/ags/rest/services/WIP/MEB_DEIJ_07082024/MapServer This downloadable dataset complements an interactive map and story map. A total of $23 million has been directed to support Most Effective Basins (MEB) implementation in FY2024. MEBs targeted for this funding were identified based on load effectiveness, which is a measure of the ability of management practices implemented in each area (basin) to have a positive effect on dissolved oxygen in the Chesapeake Bay. Unless otherwise approved, implementation activities are expected to occur within these areas.

  19. c

    Watershed Boundary Dataset HUC 4s

    • resilience.climate.gov
    • ltar-usdaars.hub.arcgis.com
    • +1more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 4s [Dataset]. https://resilience.climate.gov/items/b92b73b36ef74c5cba1e3035fce94623
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  20. c

    Watershed Boundary Dataset HUC 2s

    • resilience.climate.gov
    • anrgeodata.vermont.gov
    • +4more
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 2s [Dataset]. https://resilience.climate.gov/datasets/esri::watershed-boundary-dataset-huc-2s
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "subsidence" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "subsidence" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
burhansm2 (2019). Catholic Carbon Footprint Story Map Map [Dataset]. https://hub.arcgis.com/maps/8c3112552bdd4bd3962ab8b94bcf6ee5

Catholic Carbon Footprint Story Map Map

Explore at:
Dataset updated
Oct 7, 2019
Dataset authored and provided by
burhansm2
License

Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically

Area covered
Description

Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

Search
Clear search
Close search
Google apps
Main menu