Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Facebook
TwitterThe goal of this tool is to facilitate project screening. For a given point or road segment, for instance, the user can view TCP or STIP project identifiers, traffic volumes, bridge data, level of service, and other information. Any information within this map should be verified by area experts prior to decision making. Please contact Brian Andersen at 406-444-6103 with any questions.Note: Several layers in this map have symbology that is drawn with an applied transparency or a scale set to appear at a certain level of zoom (i.e., visibility range). If you are unable to see features in a layer, zoom in closer, or check the symbology or visibility scale and adjust as needed. Help: http://doc.arcgis.com/en/arcgis-online/use-maps/change-transparency.htm http://doc.arcgis.com/en/arcgis-online/create-maps/change-symbols.htm http://doc.arcgis.com/en/arcgis-online/use-maps/apply-filters.htm
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Facebook
TwitterThis layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020.By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter.1. Click the filter button.2. Next, click add expression.3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button.5. Under unique values click style options.6. Click the symbol next to No Change at the bottom of the legend.7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro.1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties.2. In the dialogue that comes up, choose the tab that says processing templates.3. On the right where it says processing template, choose the pair of years you would like to display.The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer:Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe.Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes.Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map.Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Facebook
TwitterLand cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or
Facebook
TwitterThe Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasCoordinate System: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American Samoa.Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.Source: Federal Emergency Management AgencyPublication Date: October 13, 2021This layer is derived from the October 13, 2021 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer.The layer was projected to Web Mercator Auxiliary Sphere, then the repair geometry geoprocessing tool was run on it. Its resolution was set to 0.0001 meter.To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.A web map featuring this layer is available for you to use.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas. Add labels and set their propertiesCustomize the pop-upUse in analysis tools to discover patterns in the dataArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThe ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:Find a location of interest.View the maps.Compare the maps.Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location. Save the maps in an ArcGIS Online web map.
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.
Facebook
TwitterThis layer is an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.This layer assesses and identifies communities that are disadvantaged according to updated Justice40 Initiative criteria. Census tracts in the U.S. and its territories that meet the Version 1.0 criteria are shaded in semi-transparent blue colors to work with a variety of basemaps. See this web map for use in your dashboards, story maps, and apps.Details of the assessment are provided in the popup for every census tract in the United States and its territories American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands. This map uses 2010 census tracts from Version 1.0 of the source data downloaded November 22, 2022.If you have been using a previous version of the Justice40 data, please know that this Version 1.0 differs in many ways. See the updated Justice40 Initiative criteria for current specifics. Use this layer to help plan for grant applications, to perform spatial analysis, and to create informative dashboards and web applications. See this blog post for more information.From the source:This data "highlights disadvantaged census tracts across all 50 states, the District of Columbia, and the U.S. territories. Communities are considered disadvantaged:If they are in census tracts that meet the thresholds for at least one of the tool’s categories of burden, orIf they are on land within the boundaries of Federally Recognized TribesCategories of BurdensThe tool uses datasets as indicators of burdens. The burdens are organized into categories. A community is highlighted as disadvantaged on the CEJST map if it is in a census tract that is (1) at or above the threshold for one or more environmental, climate, or other burdens, and (2) at or above the threshold for an associated socioeconomic burden.In addition, a census tract that is completely surrounded by disadvantaged communities and is at or above the 50% percentile for low income is also considered disadvantaged.Census tracts are small units of geography. Census tract boundaries for statistical areas are determined by the U.S. Census Bureau once every ten years. The tool utilizes the census tract boundaries from 2010. This was chosen because many of the data sources in the tool currently use the 2010 census boundaries."PurposeThe goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening tool"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40The layer has some transparency applied to allow it to work sufficiently well on top of many basemaps. For optimum map display where streets and labels are clearly shown on top of this layer, try one of the Human Geography basemaps and set transparency to 0%, as is done in this example web map.Browse the DataView the Data tab in the top right of this page to browse the data in a table and view the metadata available for each field, including field name, field alias, and a field description explaining what the field represents.Symbology updated 2/19/2023 to show additional tracts whose overlap with tribal lands is greater than 0% but less than 1%, to be designated as "Partially Disadvantaged" alongside tracts whose overlap with tribal lands is 1% or more.
Facebook
Twitter*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterFor the the best source of the Daily Wildfire Perimeter - see this new item https://www.arcgis.com/home/item.html?id=5da472c6d27b4b67970acc7b5044c862This is a public feed from the NIFC ArcGIS Online Organization that contains the Daily Perimeter (i.e. National Interagency Feature Service ) for wildland fire incidents. This feed is publicly accessible but may experience issues during peak loads. This should be resolved later in 2019 when the data source is moved to ArcGIS Online. Update: this feed is also now available via the NIFC Open Data site.Audience: GIS Specialists supporting emergency management agencies. If you are a wildland fire GISSer, you should already be a member of the NIFC ArcGIS Online Organization.How do I add this to my own web map? Open your web map Click +AddSearch for layer in ArcGIS OnlineSearch for this item (*tip - use the item id in your search 0218edad774445ee8542b69fb0f325c5)Add to your mapAlternatively, you can add this REST URL directly to your web map https://utility.arcgis.com/usrsvcs/servers/462761b6f1a0415e850a779902d42b3d/rest/services/GISS/Event_Public/MapServer but you will have to configure symbology, popups, labels, etc.For more help on this step, see documentationHow was this layer configured?- This utility service REST URL was added to a web map, and then saved as a layer in ArcGIS Online.- This live copy shows only the Daily Perimeter (filter = Daily Perimeter, symbology = red outline with transparent black fill).- Pop-ups show only relevant fields.- Labels show the incident name when zoomed in.If the perimeter you are looking for does not show up on the map:- It may take at least 24 hours after a fire is reported for the perimeter to show up in this layer.- The Wildland Fire Incident Management Team (IMT) GIS Specialist (GISS) may not have updated the feature layer yet or they may not participate in the National Incident Feature Service program. - You can check the USGS GeoMAC Services to see if it appears there.For more information see the NIFC ArcGIS Online Organization.
Facebook
TwitterSoil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from the gSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesGeographic Extent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System: Web Mercator Auxiliary SphereVisible Scale: 1:144,000 to 1:1,000Source: USDA Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 What can you do with this layer?ArcGIS OnlineFeature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro.Below are just a few of the things you can do with a feature service in Online and Pro.Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
Facebook
Twitterhttps://data.cityoftacoma.org/pages/disclaimerhttps://data.cityoftacoma.org/pages/disclaimer
Data Background:This layer displays the general areas of capital projects along with associated project data. It is maintained in accordance with section 10.22.160 of the Tacoma Municipal Code: "The Public Works Department may develop a capital projects layer on its GIS mapping system, entitled “Capital Improvement Projects,” where it will identify its capital improvement projects. Once established, all public and private Tacoma Municipal Code (Revised 4/2018) 10-44 City Clerk’s Office utilities and operators of any communications or cable system shall identify and update their capital projects on the Capital Improvement Projects map, in accordance with Local Law. The Public Works Department, all utilities, and all communications or cable system operators are responsible for updating their capital improvement projects on no less than a calendar quarterly basis."Public Works project data is updated monthly by project managers. Recommended Symbology:"cipstatus" field valuePolygon FillHex/TransparencyPolygon OutlineHex/Transparency/WidthDrawing OrderYes#0078BD/50%#0078BD/0%/2px SolidTopNoNo Fill/100%#999999/50%/1.5px DashedBottomSome projects do not have mappable work areas because they involve work throughout the city or have otherwise indeterminate work areas. For dataset integrity purposes, these projects are mapped as a polygon encompassing the city limits of Tacoma and given a value of "No" in the field "cipstatus". Selecting individual features is difficult if these features are not hidden, transparent, or drawn first. To improve functionality while viewing mapped features, the above symbology and drawing order is recommended. Depending on your use case, you might also simply choose to filter out features with a "cipstatus" value of "No".Unique Fields: projname Official project title used in documentation
websiteurl URL for the project's individual web page (if it has one)
project_type Primary type of asset involved
project_description Overview of project scope
project_rationale Description of justification for the work
current_phase Capital projects typically progress through some or all of the following phases in order:Unfunded: Bringing a construction idea to life requires funds. Projects marked as "Unfunded" are in the process of securing funding and approval. They are not considered active yet.Planning: The project has confirmed some or all funding, and a plan needs to be made to get it moving. The Planning phase involves gathering people and resources to map out the project's future.Design: If not already fully funded by this point, the project has at least enough funding to be completely designed. An engineering team decides how the work should be done and what the final result must include.Right-of-Way (ROW): At this stage, the project team secures the project area for construction. They find potential legal issues and solve them with things like securing permits, making negotiations, or notifying property owners/businesses.Ad-Award: Project plans are advertised so potential contractors can bid on performing the work. The City awards the project contract based on cost estimates and guidelines such as equity in contracting.Construction: The project is fully funded. The City's construction team and any contractors collaborate to perform and inspect the work.Closeout: After construction is substantially complete, documentation and finances are squared away.Complete: All processes to perform the work have been completed. The project is no longer active.Work might also be paused during any phase due to unforeseen issues. This marks the project phase as On Hold.
phase_notes Brief progress update to elaborate on the current phase
construction_start Month and Year in which construction is estimated to start. Projects in early phases may not have this estimate ready.
construction_end Month and Year in which construction is estimated to be completed. Projects in early phases may not have this estimate ready.
citywide Some projects do not have precise mapped locations and are given the value "citywide". This is most often because the project is actually an ongoing project fund that continuously affects many locations every year (example: Unfit/Unsafe Sidewalk Program) or because the project's goal is to conduct a study to determine future work locations.
business_districts City of Tacoma Business Districts containing any of the project area
city_council_districts City Council Districts containing any of the project area
neighborhood_councils City of Tacoma Neighborhood Councils containing any of the project area
total_estimated_cost Estimated combined cost of the project throughout its lifetime in dollars. Might be blank or very rough estimate for early-stage projects
confirmed_funds_so_far Dollar amount that has been secured toward the total cost of the project
associated_programs_6ytip "Yes" if the project is in the 6-Year Transportation Improvement Plan
associated_programs_cfp "Yes" if the project is in the Capital Facilities Plan
associated_programs_si "Yes" if the project is associated with the Tacoma Streets Initiative
lead_department Department/organization with primary ownership of the project
partners Other departments/organizations/entities that support the project, financially or otherwise
contact_name Subject Matter Expert of the project
contact_email Subject Matter Expert's email address to contact with questions about the project
contact_phone Subject Matter Expert's phone number to contact with questions about the project
cipstatus "Yes" if the precise project area is mapped; "No" if the project area is indeterminate and mapped as a city boundary polygon This is a layer view. The original dataset contains many non-viewer-friendly fields structured for HTML and Arcade functionality in various apps, maps, websites, and reports such as Capital Project Highlights, Capital Improvement Plan web app, Capital Facilities Plan documentation, and more. Omitted fields can be seen in the App View of this dataset.Data Owner:Natasha MillerAssociate Civil Engineer -- Asset Managementnmiller@cityoftacoma.org
Facebook
TwitterThe National Insect and Disease Risk map identifies areas with risk of significant tree mortality due to insects and plant diseases. The layer identifies lands in three classes: areas with risk of tree mortality from insects and disease between 2013 and 2027, areas with lower tree mortality risk, and areas that were formerly at risk but are no longer at risk due to disturbance (human or natural) between 2012 and 2018. Areas with risk of tree mortality are defined as places where at least 25% of standing live basal area greater than one inch in diameter will die over a 15-year time frame (2013 to 2027) due to insects and diseases.The National Insect and Disease Risk map, produced by the US Forest Service FHAAST, is part of a nationwide strategic assessment of potential hazard for tree mortality due to major forest insects and diseases. Dataset Summary Phenomenon Mapped: Risk of tree mortality due to insects and diseaseUnits: MetersCell Size: 30 meters in Hawaii and 240 meters in Alaska and the Contiguous USSource Type: DiscretePixel Type: 2-bit unsigned integerData Coordinate System: NAD 1983 Albers (Contiguous US), WGS 1984 Albers (Alaska), Hawaii Albers (Hawaii)Mosaic Projection: North America Albers Equal Area ConicExtent: Alaska, Hawaii, and the Contiguous United States Source: National Insect Disease Risk MapPublication Date: 2018ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the 2018 version of the National Insect Disease Risk Map.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "insects and disease" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "insects and disease" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use raster functions to create your own custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. For example, Zonal Statistics as Table tool can be used to summarize risk of tree mortality across several watersheds, counties, or other areas that you may be interested in such as areas near homes.In ArcGIS Online you can change then layer's symbology in the image display control, set the layer's transparency, and control the visible scale range.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Facebook
TwitterThe National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution. Dataset Summary Phenomenon Mapped: Surface waters and related features of the United States and associated territories Geographic Extent: Shared Drainage Basins- Canada and the U.S. Projection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000 Source: USGS Update Frequency: Annual Publication Date: July 2022 This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema. Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values. What can you do with this layer? Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro. ArcGIS Online Add this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility range Open the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table. Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbology Add labels and set their properties Customize the pop-up Use as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data. ArcGIS Pro Add this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the data Open table and make interactive selections with the map Modify the pop-ups Apply Definition Queries to create sub-sets of the layer This layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThe Streetlights (La Mesa) layer offers a comprehensive dataset designed to support the planning, management, and maintenance of streetlight infrastructure across the City of La Mesa. It includes key attributes such as wattage, voltage, light type, and pole type, as well as lifecycle status, installation dates, and maintenance records to ensure accurate and efficient infrastructure management. Ownership and billing information, including City SDGE account numbers and billing types, provide transparency for utility tracking and operational planning. Geographic data, such as street names, cross streets, and zone identifiers, enhances spatial analysis and mapping capabilities.By integrating technical data like lamp warranty lengths, inspection dates, and energy consumption, the layer supports data-driven decision-making for infrastructure improvements and energy efficiency programs. The inclusion of document links and notes further enriches the dataset, providing additional context and historical records for each streetlight. Configured with symbology and intuitive pop-ups, this layer is accessible and user-friendly, serving as a critical tool for city officials, contractors, and community stakeholders to monitor and manage La Mesa's streetlight network effectively.
Facebook
TwitterThis sub layer displays the proposal to: “Create 361 acres of cutback borders by cutting or girdling trees to feather edges of the Elleber range allotment and Ramshorn area. Provide habitat for federally-endangered Indiana bats by retaining a minimum of six snags per acre across the habitat complexes.”
Purpose:
This data was created by the U.S. Forest Service staff for use in analysis of the project’s likely environmental impacts.
Source & Date:
Deer Creek Integrated Resource Project Scoping Information: 4.4. Data was downloaded from the project website ( https://www.fs.usda.gov/project/?project=60882 ) on 11/17/2022.
Processing:
ABRA symbolized the layer using the project’s scoping maps as a guide. This and other project layers were published together from ArcMap as a Feature Service.
Symbology:
Cutback Borders: Blue dashed polygon
Facebook
TwitterWetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsGeographic Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, American Samoa, and the Northern Mariana IslandsProjection: Web Mercator Auxiliary SphereVisible Scale: This layer preforms well between scales of 1:1,000,000 to 1:1,000. An imagery layer created from this dataset is also available which you can also use to quickly draw wetlands at smaller scales.Source: U.S. Fish and Wildlife ServiceUpdate Frequency: AnnualPublication Date: October 26, 2024This layer was created from the October 26, 2024 version of the NWI. The features were converted from multi-part to a single part using the Multipart To Singlepart tool. Features with more than 50,000 vertices were split with the Dice tool. The Repair Geometry tool was run on the features, using the OGC option.The layer is published with a related table that contains text fields created by Esri for use in the layer's pop-up. Fields in the table are:Popup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for System Name = 'Palustrine' to create a map of palustrine wetlands only.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d mapUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterBuildings are the foundation of any 3D city; they create a realistic visual context for understanding the built environment. This rule can help you quickly create 3D buildings using your existing 2D building footprint polygons. Create buildings for your whole city or specific areas of interest. Use the buildings for context surrounding higher-detail buildings or proposed future developments. Already have existing 3D buildings? Check out the Textured Buildings from Mass by Building Type rule.What you getA Rule Package file named Building_FromFootprint_Textured_ByBuildingType.rpk Rule works with a polygon layerGet startedIn ArcGIS Pro Use this rule to create Procedural Symbols, which are 3D symbols drawn on 2D features Create 3D objects (Multipatch layer) for sharing on the webShare on the web via a Scene LayerIn CityEngineCityEngine File Navigator HelpParametersBuilding Type: Eave_Height: Height from the ground to the eave, units controlled by the Units parameterFloor_Height: Height of each floor, units controlled by the Units parameterRoof_Form: Style of the building roof (Gable, Hip, Flat, Green)Roof_Height: Height from the eave to the top of the roof, units controlled by the Units parameterType: Use activity within the building, this helps in assigning appropriate building texturesDisplay:Color_Override: Setting this to True will allow you to define a specific color using the Override_Color parameter, and will disable photo-texturing.Override_Color: Allows you to specify a building color using the color palette. Note: you must change the Color_Override parameter from False to True for this parameter to take effect.Transparency: Sets the amount of transparency of the feature Units:Units: Controls the measurement units in the rule: Meters | FeetImportant Note: You can hook up the rule parameters to attributes in your data by clicking on the database icon to the right of each rule parameter. The database icon will change to blue when the rule parameter is mapped to an attribute field. The rule will automatically connect when field names match rule parameter names. Use layer files to preserve rule configurations unique to your data.For those who want to know moreThis rule is part of a the 3D Rule Library available in the Living Atlas. Discover more 3D rules to help you perform your work.Learn more about ArcGIS Pro in the Getting to Know ArcGIS Pro lesson
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.