Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Online Makeup Classes market has emerged as a vibrant and dynamic segment within the beauty and cosmetics industry, catering to the growing demand for accessible and convenient makeup education. With a significant rise in digital learning platforms, these classes offer enthusiasts and professionals alike the cha
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Professional Online Makeup Course market has seen significant growth in recent years, reflecting a shift in the beauty industry towards digital learning platforms. As makeup artistry continues to become a sought-after profession and a popular hobby, the demand for comprehensive and easily accessible education is
Facebook
TwitterData files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
The Department for Transport is committed to continuously improving the quality and transparency of our outputs, in line with the Code of Practice for Statistics. In line with this, we have recently concluded a planned review of the processes and methodologies used in the production of Vehicle licensing statistics data. The review sought to seek out and introduce further improvements and efficiencies in the coding technologies we use to produce our data and as part of that, we have identified several historical errors across the published data tables affecting different historical periods. These errors are the result of mistakes in past production processes that we have now identified, corrected and taken steps to eliminate going forward.
Most of the revisions to our published figures are small, typically changing values by less than 1% to 3%. The key revisions are:
Licensed Vehicles (2014 Q3 to 2016 Q3)
We found that some unlicensed vehicles during this period were mistakenly counted as licensed. This caused a slight overstatement, about 0.54% on average, in the number of licensed vehicles during this period.
3.5 - 4.25 tonnes Zero Emission Vehicles (ZEVs) Classification
Since 2023, ZEVs weighing between 3.5 and 4.25 tonnes have been classified as light goods vehicles (LGVs) instead of heavy goods vehicles (HGVs). We have now applied this change to earlier data and corrected an error in table VEH0150. As a result, the number of newly registered HGVs has been reduced by:
3.1% in 2024
2.3% in 2023
1.4% in 2022
Table VEH0156 (2018 to 2023)
Table VEH0156, which reports average CO₂ emissions for newly registered vehicles, has been updated for the years 2018 to 2023. Most changes are minor (under 3%), but the e-NEDC measure saw a larger correction, up to 15.8%, due to a calculation error. Other measures (WLTP and Reported) were less notable, except for April 2020 when COVID-19 led to very few new registrations which led to greater volatility in the resultant percentages.
Neither these specific revisions, nor any of the others introduced, have had a material impact on the statistics overall, the direction of trends nor the key messages that they previously conveyed.
Specific details of each revision made has been included in the relevant data table notes to ensure transparency and clarity. Users are advised to review these notes as part of their regular use of the data to ensure their analysis accounts for these changes accordingly.
If you have questions regarding any of these changes, please contact the Vehicle statistics team.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/68ecf5acf159f887526bbd7c/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 99.7 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/68ecf5abf159f887526bbd7b/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 23.8 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/68ecf5ac2adc28a81b4acfc8/veh0105.ods">Licensed vehicles at
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors).
SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.
SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Iceland, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) :
The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J).
Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced.
Main characteristics (variables) of the SBS data category:
All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below:
More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003.
Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
Facebook
TwitterWe welcome any feedback on the structure of our data files, their usability, or any suggestions for improvements; please contact vehicles statistics.
The Department for Transport is committed to continuously improving the quality and transparency of our outputs, in line with the Code of Practice for Statistics. In line with this, we have recently concluded a planned review of the processes and methodologies used in the production of Vehicle licensing statistics data. The review sought to seek out and introduce further improvements and efficiencies in the coding technologies we use to produce our data and as part of that, we have identified several historical errors across the published data tables affecting different historical periods. These errors are the result of mistakes in past production processes that we have now identified, corrected and taken steps to eliminate going forward.
Most of the revisions to our published figures are small, typically changing values by less than 1% to 3%. The key revisions are:
Licensed Vehicles (2014 Q3 to 2016 Q3)
We found that some unlicensed vehicles during this period were mistakenly counted as licensed. This caused a slight overstatement, about 0.54% on average, in the number of licensed vehicles during this period.
3.5 - 4.25 tonnes Zero Emission Vehicles (ZEVs) Classification
Since 2023, ZEVs weighing between 3.5 and 4.25 tonnes have been classified as light goods vehicles (LGVs) instead of heavy goods vehicles (HGVs). We have now applied this change to earlier data and corrected an error in table VEH0150. As a result, the number of newly registered HGVs has been reduced by:
3.1% in 2024
2.3% in 2023
1.4% in 2022
Table VEH0156 (2018 to 2023)
Table VEH0156, which reports average CO₂ emissions for newly registered vehicles, has been updated for the years 2018 to 2023. Most changes are minor (under 3%), but the e-NEDC measure saw a larger correction, up to 15.8%, due to a calculation error. Other measures (WLTP and Reported) were less notable, except for April 2020 when COVID-19 led to very few new registrations which led to greater volatility in the resultant percentages.
Neither these specific revisions, nor any of the others introduced, have had a material impact on the statistics overall, the direction of trends nor the key messages that they previously conveyed.
Specific details of each revision made has been included in the relevant data table notes to ensure transparency and clarity. Users are advised to review these notes as part of their regular use of the data to ensure their analysis accounts for these changes accordingly.
If you have questions regarding any of these changes, please contact the Vehicle statistics team.
Data tables containing aggregated information about vehicles in the UK are also available.
CSV files can be used either as a spreadsheet (using Microsoft Excel or similar spreadsheet packages) or digitally using software packages and languages (for example, R or Python).
When using as a spreadsheet, there will be no formatting, but the file can still be explored like our publication tables. Due to their size, older software might not be able to open the entire file.
df_VEH0120_GB: https://assets.publishing.service.gov.uk/media/68ed0c52f159f887526bbda6/df_VEH0120_GB.csv">Vehicles at the end of the quarter by licence status, body type, make, generic model and model: Great Britain (CSV, 59.8 MB)
Scope: All registered vehicles in Great Britain; from 1994 Quarter 4 (end December)
Schema: BodyType, Make, GenModel, Model, Fuel, LicenceStatus, [number of vehicles; 1 column per quarter]
df_VEH0120_UK: <a class="govuk-link" href="https://assets.publishing.service.gov.uk/media/68ed0c2
Facebook
TwitterSince the beginning of the 1960s, Statistics Sweden, in collaboration with various research institutions, has carried out follow-up surveys in the school system. These surveys have taken place within the framework of the IS project (Individual Statistics Project) at the University of Gothenburg and the UGU project (Evaluation through follow-up of students) at the University of Teacher Education in Stockholm, which since 1990 have been merged into a research project called 'Evaluation through Follow-up'. The follow-up surveys are part of the central evaluation of the school and are based on large nationally representative samples from different cohorts of students.
Evaluation through follow-up (UGU) is one of the country's largest research databases in the field of education. UGU is part of the central evaluation of the school and is based on large nationally representative samples from different cohorts of students. The longitudinal database contains information on nationally representative samples of school pupils from ten cohorts, born between 1948 and 2004. The sampling process was based on the student's birthday for the first two and on the school class for the other cohorts.
For each cohort, data of mainly two types are collected. School administrative data is collected annually by Statistics Sweden during the time that pupils are in the general school system (primary and secondary school), for most cohorts starting in compulsory school year 3. This information is provided by the school offices and, among other things, includes characteristics of school, class, special support, study choices and grades. Information obtained has varied somewhat, e.g. due to changes in curricula. A more detailed description of this data collection can be found in reports published by Statistics Sweden and linked to datasets for each cohort.
Survey data from the pupils is collected for the first time in compulsory school year 6 (for most cohorts). Questionnaire in survey in year 6 includes questions related to self-perception and interest in learning, attitudes to school, hobbies, school motivation and future plans. For some cohorts, questionnaire data are also collected in year 3 and year 9 in compulsory school and in upper secondary school.
Furthermore, results from various intelligence tests and standartized knowledge tests are included in the data collection year 6. The intelligence tests have been identical for all cohorts (except cohort born in 1987 from which questionnaire data were first collected in year 9). The intelligence test consists of a verbal, a spatial and an inductive test, each containing 40 tasks and specially designed for the UGU project. The verbal test is a vocabulary test of the opposite type. The spatial test is a so-called ‘sheet metal folding test’ and the inductive test are made up of series of numbers. The reliability of the test, intercorrelations and connection with school grades are reported by Svensson (1971).
For the first three cohorts (1948, 1953 and 1967), the standartized knowledge tests in year 6 consist of the standard tests in Swedish, mathematics and English that up to and including the beginning of the 1980s were offered to all pupils in compulsory school year 6. For the cohort 1972, specially prepared tests in reading and mathematics were used. The test in reading consists of 27 tasks and aimed to identify students with reading difficulties. The mathematics test, which was also offered for the fifth cohort, (1977) includes 19 assignments. After a changed version of the test, caused by the previously used test being judged to be somewhat too simple, has been used for the cohort born in 1982. Results on the mathematics test are not available for the 1987 cohort. The mathematics test was not offered to the students in the cohort in 1992, as the test did not seem to fully correspond with current curriculum intentions in mathematics. For further information, see the description of the dataset for each cohort.
For several of the samples, questionnaires were also collected from the students 'parents and teachers in year 6. The teacher questionnaire contains questions about the teacher, class size and composition, the teacher's assessments of the class' knowledge level, etc., school resources, working methods and parental involvement and questions about the existence of evaluations. The questionnaire for the guardians includes questions about the child's upbringing conditions, ambitions and wishes regarding the child's education, views on the school's objectives and the parents' own educational and professional situation.
The students are followed up even after they have left primary school. Among other things, data collection is done during the time they are in high school. Then school administrative data such as e.g. choice of upper secondary school line / program and grades after completing studies. For some of the cohorts, in addition to school administrative data, questionnaire data were also collected from the students.
he sample consisted of students born on the 5th, 15th and 25th of any month in 1953, a total of 10,723 students.
The data obtained in 1966 were: 1. School administrative data (school form, class type, year and grades). 2. Information about the parents' profession and education, number of siblings, the distance between home and school, etc.
This information was collected for 93% of all born on the current days. The reason for this is reduced resources for Statistics Sweden for follow-up work - reminders etc. Annual data for cohorts in 1953 were collected by Statistics Sweden up to and including academic year 1972/73.
Response rate for test and questionnaire data is 88% Standard test results were received for just over 85% of those who took the tests.
The sample included a total of 9955 students, for whom some form of information was obtained.
Part of the "Individual Statistics Project" together with cohort 1953.
Facebook
TwitterThe National Energy Efficiency Data-Framework (NEED) was set up to provide a better understanding of energy use and energy efficiency in domestic and non-domestic buildings in Great Britain. The data framework matches data about a property together - including energy consumption and energy efficiency measures installed - at household level.
We identified 2 processing errors in this edition of the Domestic NEED Annual report and corrected them. The changes are small and do not affect the overall findings of the report, only the domestic energy consumption estimates. The impact of energy efficiency measures analysis remains unchanged. The revisions are summarised here:
This survey (published June 2021) sought user feedback to inform BEIS’ development of Domestic NEED to better meet user requirements. It is now closed: thank you to those who responded.
We are reviewing responses and will provide an update in due course. The responses will also inform BEIS’ decision on whether or not to pause the 2022 NEED publication to enable development work to take place.
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Online Makeup Course market has witnessed exponential growth in recent years, becoming a vital component of the beauty and cosmetics industry. As social media platforms and the influence of beauty gurus proliferate, more individuals are seeking to enhance their makeup skills through accessible and flexible onlin
Facebook
TwitterData for households in receipt of Support for Mortgage Interest (SMI) loans is available on Stat-Xplore on a quarterly basis.
These quarterly experimental statistics include number of households who are currently in receipt of the support as well as the number who have received SMI loans so far (see the background information and methodology note for an explanation of households).
The statistics are broken down by:
Geography information may not be up to date for some households. This affects the geography statistics from April 2020
Please https://forms.office.com/Pages/ResponsePage.aspx?id=6fbxllcQF0GsKIDN_ob4ww6eQtaLpw1MuH5cgQWx29tUMVE4QkFPVlUxMVM5VllRMDc2REpUWVc5UC4u" class="govuk-link">complete this short survey to help us make the statistics better for you.
We welcome all feedback on the content, relevance, accessibility and timing of these statistics to help us in producing statistics that meet user needs.
For non-media enquiries on these statistics email: laura.parkhurst@dwp.gov.uk
For media enquiries, please contact the Department for Work and Pensions (DWP) press office.
Read the background information and methodology note for guidance on these statistics, such as timeliness and interpretation.
Find further breakdowns of these statistics on https://stat-xplore.dwp.gov.uk/webapi/jsf/login.xhtml" class="govuk-link">Stat-Xplore, an online tool for exploring some of DWP’s main statistics.
Support for Mortgage Interest statistics are published quarterly. The dates for future releases are listed in the statistics release calendar.
In addition to staff who are responsible for the production and quality assurance of the statistics, up to 24-hour pre-release access is provided to ministers and other officials. We publish the job titles and organisations of the people who have been granted up to 24-hour pre-release access to the latest Support for Mortgage Interest statistics.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Sir R.A. Fisher said of simulation and permutation methods in 1936: "Actually, the statistician does not carry out this very simple and very tedious process, but his conclusions have no justification beyond the fact that they agree with those which could have been arrived at by this elementary method." These methods, too ‘tedious’ to apply in 1936, are now readily accessible. As George Cobb (2007) wrote in his lead article for the journal Technology Innovations in Statistical Education, “... despite broad acceptance and rapid growth in enrollments, the consensus curriculum is still an unwitting prisoner of history. What we teach is largely the technical machinery of numerical approximations based on the normal distribution and its many subsidiary cogs. This machinery was once necessary, because the conceptually simpler alternative based on permutations was computationally beyond our reach. Before computers statisticians had no choice. These days we have no excuse. Randomization-based inference makes a direct connection between data production and the logic of inference that deserves to be at the core of every introductory course.” It is our hope that the textbook we are writing will help move the introductory statistics curriculum in the directions advocated by Professor Cobb. We use ideas such as randomization tests and bootstrap intervals to introduce the fundamental ideas of statistical inference. These methods are surprisingly intuitive to novice students and, with proper use of computer support, are accessible at very early stages of a course. Our text introduces statistical inference through these resampling methods, not only because these methods are becoming increasingly important for statisticians in their own right but also because randomization methods are outstanding in building students’ conceptual understanding of the key ideas. Our text includes the more traditional methods such as t-tests, chi-square tests, etc., but only after students have developed a strong intuitive understanding of inference through randomization methods. At this point students have a conceptual understanding and appreciation for the results they can then compute using the more traditional methods. We believe that this approach helps students realize that although the formulae may take different forms for different types of data, the conceptual framework underlying most statistical methods remains the same. Furthermore, our experience has been that after using these new methods in intuitive ways to introduce the core ideas, students understand and can move quickly through most of the standard techniques. Our goal is a text that gently moves the curriculum in innovative ways while still looking relatively familiar. Instructors won’t need to completely abandon their current syllabi and students will be well-prepared for more traditional follow-up courses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors).
SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.
SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Iceland, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) :
The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J).
Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced.
Main characteristics (variables) of the SBS data category:
All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below:
More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003.
Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
Facebook
TwitterThese official statistics include data up to 31 January 2022 for:
The data tables that accompany this publication have been significantly re-formatted in order to conform to the latest Government Statistical Service guidelines on releasing statistics in spreadsheets. The aim of this guidance is to improve the usability, accessibility and machine readability of statistical spreadsheets.
Also, static tables containing award rates and assessment award rates are no longer being produced. Instead, users can obtain these figures for themselves by using Stat-Xplore to:
Further guidance on how to complete these steps can be found at Notes 6A of the data tables.
From the June 2022 release, it is planned to reduce the frequency of the commentary on various sections of this release. All tables and charts showing breakdowns by disability based on cumulative figures from April 2013 onwards (or July 2016 onwards in the case of Award Review Outcomes) will be moved into a section focussing on differences between different disability groupings. This section will be updated on an annual basis. Underlying figures in Stat-Xplore will continue to be updated quarterly so users interested in specific disability groupings can find the figures there as they do now.
This change is intended to streamline the release and reduce the amount of content which shows little change from one quarter to the next, while retaining a detailed view of the subject area. Each quarter’s release will contain a link to the publication that contained the most recent update for this section.
In addition, section 6 of this release, which looks at detailed breakdowns for Experimental Statistics on Clearance outcomes by Award Type and Review Period will be removed from future publications though key figures will instead be included in section 4: Clearance Outcomes – Awards.
From 21 March 2022, people living in certain parts of Scotland (Dundee City, Perth and Kinross or the Western Isles) will make new claims for Adult Disability Payment rather than PIP. Discussions are ongoing as to how best to present PIP statistics for Scotland and for Great Britain as a whole in future releases.
We are keen to receive feedback about these changes. Please contact us with your comments by 26 April 2022.
If you have any queries or feedback about existing PIP Official Statistics, or the changes proposed above, please email cm.analysis.research@dwp.gov.uk
View an https://pipdash.herokuapp.com" class="govuk-link">interactive dashboard of the latest PIP statistics by region.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors).
SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.
SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Iceland, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) :
The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J).
Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced.
Main characteristics (variables) of the SBS data category:
All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below:
More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003.
Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Structural business statistics (SBS) describes the structure, conduct and performance of economic activities, down to the most detailed activity level (several hundred economic sectors).
SBS are transmitted annually by the EU Member States on the basis of a legal obligation from 1995 onwards.
SBS covers all activities of the business economy with the exception of agricultural activities and personal services and the data are provided by all EU Member States, Iceland, Norway and Switzerland, some candidate and potential candidate countries. The data are collected by domain of activity (annex) :
The majority of the data is collected by National Statistical Institutes (NSIs) by means of statistical surveys, business registers or from various administrative sources. Regulatory or controlling national offices for financial institutions or central banks often provide the information required for the financial sector (NACE Rev 2 Section K / NACE Rev 1.1 Section J).
Member States apply various statistical methods, according to the data source, such as grossing up, model based estimation or different forms of imputation, to ensure the quality of SBSs produced.
Main characteristics (variables) of the SBS data category:
All SBS characteristics are published on Eurostat’s website by tables and an example of the existent tables is presented below:
More information on the contents of different tables: the detail level and breakdowns required starting with the reference year 2008 is defined in Commission Regulation N° 251/2009. For previous reference years it is included in Commission Regulations (EC) N° 2701/98 and amended by Commission Regulation N°1614/2002 and Commission Regulation N°1669/2003.
Several important derived indicators are generated in the form of ratios of certain monetary characteristics or per head values. A list with the available derived indicators is available below in the Annex.
Facebook
TwitterThese tables present high-level breakdowns and time series. A list of all tables, including those discontinued, is available in the table index. More detailed data is available in our data tools, or by downloading the open dataset.
We are proposing to make some changes to these tables in future, further details can be found alongside the latest provisional statistics.
The tables below are the latest final annual statistics for 2024, which are currently the latest available data. Provisional statistics for the first half of 2025 are also available, with provisional data for the whole of 2025 scheduled for publication in May 2026.
A list of all reported road collisions and casualties data tables and variables in our data download tool is available in the https://assets.publishing.service.gov.uk/media/6925869422424e25e6bc3105/reported-road-casualties-gb-index-of-tables.ods">Tables index (ODS, 28.9 KB).
https://assets.publishing.service.gov.uk/media/68d42292b6c608ff9421b2d2/ras-all-tables-excel.zip">Reported road collisions and casualties data tables (zip file) (ZIP, 11.2 MB)
RAS0101: https://assets.publishing.service.gov.uk/media/68d3cdeeca266424b221b253/ras0101.ods">Collisions, casualties and vehicles involved by road user type since 1926 (ODS, 34.7 KB)
RAS0102: https://assets.publishing.service.gov.uk/media/68d3cdfee65dc716bfb1dcf3/ras0102.ods">Casualties and casualty rates, by road user type and age group, since 1979 (ODS, 129 KB)
RAS0201: https://assets.publishing.service.gov.uk/media/68d3ce0bc908572e81248c1f/ras0201.ods">Numbers and rates (ODS, 37.5 KB)
RAS0202: https://assets.publishing.service.gov.uk/media/68d3ce17b6c608ff9421b25e/ras0202.ods">Sex and age group (ODS, 178 KB)
RAS0203: https://assets.publishing.service.gov.uk/media/67600227b745d5f7a053ef74/ras0203.ods">Rates by mode, including air, water and rail modes (ODS, 24.2 KB) - this table will be updated for 2024 once data is available for other modes.
RAS0301: https://assets.publishing.service.gov.uk/media/68d3ce2b8c739d679fb1dcf6/ras0301.ods">Speed limit, built-up and non-built-up roads (<span class="gem-c-attachmen
Facebook
TwitterThis annual publication provides a round-up of statistics on food covering the economic, social and environmental aspects of the food we eat (excluding agriculture). It contains sections on:
The information in the pocketbook comes from previously published government surveys run by the Office for National Statistics (ONS) and the Department for Environment, Food and Rural Affairs (Defra) and a wide range of other sources including government agencies and commercial organisations. The publication carries the National Statistics logo but is a combination of National Statistics and other statistics. Those which are National Statistics are identified as being so. Data quality varies among the many data sources and where possible an indication is included in bullet points. For more information see the data set that accompanies each chapter of the main publication.
Researchers put this data to a wide range of uses spanning from informing decisions on the general public’s choices through to local food policy making. It is often used for statistics on the food industry, on food prices, on balance of diet, international comparisons and food production to supply ratio.
Next update: see the statistics release calendar
Please answer https://docs.google.com/forms/d/e/1FAIpQLSdhEn_EZ-KD4iFbGhHaZJVdqd5sLycNz383H2zB-1vBDRP-Sg/viewform?usp=sf_link">4 short questions (opens in Google Forms) to help us make the pocketbook better for you.
We’ve published this year’s food statistics pocketbook as a HTML publication. We would like your feedback on this new approach and if you think there is anything we can improve? You can contact us via email or Twitter.
Defra statistics: family food
Email mailto:familyfood@defra.gov.uk">familyfood@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://x.com/DefraStats" class="govuk-link">https://x.com/DefraStats</a></p>
Facebook
Twitter <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="Comma-separated Values" class="gem-c-attachment_abbr">CSV</abbr></span>, <span class="gem-c-attachment_attribute">48.7 MB</span></p>
<p class="gem-c-attachment_metadata"><a class="govuk-link" aria-label="View Local Authority Housing Statistics open data 1978-79 to 2023-24 online" href="/csv-preview/6853e03c1203c00468ba2ae2/LAHS_open_data_1978-79_to_2023-24.csv">View online</a></p>
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">15.3 MB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
Notes on Local Authority Housing Statistics (LAHS) open data
These datafiles contain the underlying data used to create the main LAHS tables and reflect the latest revisions to historical LAHS data. There will therefore be some minor discrepancies when compared to individual historical publications of LAHS tables.
LAHS questions are represented in this open data file by the question codes as recorded in the latest form (the 2023-24 return). This may differ from the code they were originally assigned, but the aim is to facilitate a time series analysis. Variables that have been discontinued are usually not included in this file, with only a few exceptions where they provide information that helps understand other data.
A data dictionary for this open data can be found in the accessible Open Document Spreadsheet file.<
Facebook
TwitterBy US Open Data Portal, data.gov [source]
This dataset contains stroke mortality data among US adults (35+) by state/territory and county. Learn more about the health of people within your own state or region, across genders and ethnicities. Reliable statistics even for small counties can be seen, thanks to 3-year averages, age-standardization, and spatial smoothing. Data sources such as the National Vital Statistics System give you all the data you need to get a detailed sense of your population's total cardiovascular health. With interactive maps created from this data also provided covering heart disease risks, death rates and hospital bed availability across each location in America, you can now gain a powerful perspective on how effective healthcare initiatives are making an impact in those who live there. Study up on the real cardiovascular conditions plaguing those around us today to make a real change in public health!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains stroke mortality data among US adults (35+) by state/territory and county. This data can be useful in helping identify areas where stroke mortality is high, and interventions to reduce mortality should be taken into account.
To access the dataset, you need to download it from Kaggle. The dataset consists of 18 columns including year, location description, geographic level, source of data, class of data values provided, topic of discussion with regard to stroke mortality rates (age-standardized), labels for stratification categories and stratifications used within the given age group when performing this analysis. The last 3 columns consist of geographical coordinates for each location (Y_lat & X_lon) as well as an overall georeferenced column (Georeferenced Column).
Once you have downloaded the dataset there are a few ways you can go about using it:
- You can perform a descriptive analysis on any particular column using methods such as summary statistics or distributions graphs;
- You can create your own maps or other visual representation based on the latitude/longitude columns;
- You could look at differences between states and counties/areas within states by subsetting out certain areas;
- Using statistical testing methods you could create inferential analyses that may lead to insights on why some areas seem more prone to higher levels of stroke mortality than others
- Track county-level stroke mortality trends among US adults (35+) over time.
- Identify regions of higher stroke mortality risk and use that information to inform targeted, preventative health policies and interventions.
- Analyze differences in stroke mortality rates by gender, race/ethnicity, or geographic location to identify potential disparities in care access or outcomes for certain demographic groups
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: csv-1.csv | Column name | Description | |:-------------------------------|:---------------------------------------------------------| | Year | Year of the data. (Integer) | | LocationAbbr | Abbreviation of the state or territory. (String) | | LocationDesc | Name of the state or territory. (String) | | GeographicLevel | Level of geographic detail. (String) | | DataSource | Source of the data. (String) | | Class | Classification of the data. (String) | | Topic | Topic of the data. (String) | | Data_Value | Numeric value associated with the topic. (Float) | | Data_Value_Unit | Unit used to express the data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Symbol associated with the data value footnote. (String) | | StratificationCategory1 | First category of stratification. (String) | | Stratification1 | First stratifica...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Total Road Motor Vehicles: %: Motorcycles data was reported at 7.749 % in 2020. This records an increase from the previous number of 7.746 % for 2019. Germany DE: Total Road Motor Vehicles: %: Motorcycles data is updated yearly, averaging 7.150 % from Dec 1994 (Median) to 2020, with 27 observations. The data reached an all-time high of 7.764 % in 2017 and a record low of 4.477 % in 1994. Germany DE: Total Road Motor Vehicles: %: Motorcycles data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Germany – Table DE.OECD.ITF: Motor Vehicles Statistics: OECD Member: Annual. The stock of road motor vehicles is the number of road motor vehicles registered at a given date in a country and licenced to use roads open to public traffic. This includes road vehicles exempted from annual taxes or licence fee; it also includes imported second-hand vehicles and other road vehicles according to national practices. It should not include military vehicles.; MOTORCYCLES A motorcycle is a two, three, or four-wheeled motor vehicle not exceeding 4000 kg (900 lb) of unladen weight. All such vehicles with a cylinder capacity of 50 cc or over are included, as those under 50 cc which do not meet the definition of moped. It refers to categories L3, L4, L5, L6 and L7 of the UN Consolidated Resolution on the Construction of Vehicles. VEHICLES A road motor vehicle is a road vehicle fitted with an engine whence it derives its sole means of propulsion, which is normally used for carrying persons or goods or for drawing, on the road, vehicles used for the carriage of persons or goods.; Data include vehicles that are temporarily not registered. MOTORCYCLES Data refer to kraftrad bearing an official registration number. Data include: - zweirädrige kraftfahrzeuge: two-wheeled motorcycles bearing an official registration number; - leichtkraftrad: motorcycles/motor scooters with an engine capacity of over 50 up to 125 cc piston capacity and a power not exceeding 11 kW; - motrra-roller: motorcycles/motor scooters with an engine capacity of over 125 cc or a power of more than 11 kW; - drei- und leichtes vierrädriges kraftfahrzeug (fahrzeugklasse L5e, L7e): three-wheeled (more than 50 cc and/or more than 45 km/h, class L5e), four-wheeled to the transportation of human beings (to 400 kg of empty mass and up to 15 kW, class L7e) and four-wheeled to carriage go goods (to 550 kg of empty mass up to 15 kW, class L7e). VEHICLES Data do not include mopeds.
Facebook
TwitterThese experimental statistics contain data for the total number of people:
They also contain data for the total number of households on Universal Credit at 11 November 2021
Read the background information and methodology note for guidance on these statistics, such as timeliness, uses, and procedures.
View statistics on the Universal Credit claimants at Jobcentre Plus office level on a https://dwp-stats.maps.arcgis.com/apps/MapSeries/index.html?appid=f90fb305d8da4eb3970812b3199cf489" class="govuk-link">regional interactive map.
Software used for the interactive map showing households on Universal Credit at the local authority level is no longer supported. The interactive map has therefore been withdrawn and a replacement is currently under development. Once completed and launched, the upcoming interactive tool, Examine-a-Stat, will have improved functionality, in addition to interactive maps, to better meet a wider range of user needs, and will be available in due course.
The most recent data for households on Universal Credit up to November 2021 can be obtained via https://stat-xplore.dwp.gov.uk/webapi/openinfopage?id=UC_Households" class="govuk-link">Stat-Xplore.
In addition to staff who are responsible for the production and quality assurance of the statistics, up to 24-hour pre-release access is provided to ministers and other officials. We publish the job titles and organisations of the people who have been granted up to 24-hour pre-release access to the latest Universal Credit statistics.
Previous release can be found in the Universal Credit statistics.
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Online Makeup Classes market has emerged as a vibrant and dynamic segment within the beauty and cosmetics industry, catering to the growing demand for accessible and convenient makeup education. With a significant rise in digital learning platforms, these classes offer enthusiasts and professionals alike the cha