2 datasets found
  1. Google Data Analytics Case Study Cyclistic

    • kaggle.com
    zip
    Updated Sep 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
    Explore at:
    zip(1299 bytes)Available download formats
    Dataset updated
    Sep 27, 2022
    Authors
    Udayakumar19
    Description

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

    Ask

    How do annual members and casual riders use Cyclistic bikes differently?

    Guiding Question:

    What is the problem you are trying to solve?
      How do annual members and casual riders use Cyclistic bikes differently?
    How can your insights drive business decisions?
      The insight will help the marketing team to make a strategy for casual riders
    

    Prepare

    Guiding Question:

    Where is your data located?
      Data located in Cyclistic organization data.
    
    How is data organized?
      Dataset are in csv format for each month wise from Financial year 22.
    
    Are there issues with bias or credibility in this data? Does your data ROCCC? 
      It is good it is ROCCC because data collected in from Cyclistic organization.
    
    How are you addressing licensing, privacy, security, and accessibility?
      The company has their own license over the dataset. Dataset does not have any personal information about the riders.
    
    How did you verify the data’s integrity?
      All the files have consistent columns and each column has the correct type of data.
    
    How does it help you answer your questions?
      Insights always hidden in the data. We have the interpret with data to find the insights.
    
    Are there any problems with the data?
      Yes, starting station names, ending station names have null values.
    

    Process

    Guiding Question:

    What tools are you choosing and why?
      I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.
    
    Have you ensured the data’s integrity?
     Yes, the data is consistent throughout the columns.
    
    What steps have you taken to ensure that your data is clean?
      First duplicates, null values are removed then added new columns for analysis.
    
    How can you verify that your data is clean and ready to analyze? 
     Make sure the column names are consistent thorough out all data sets by using the “bind row” function.
    
    Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
    Combine the all dataset into single data frame to make consistent throught the analysis.
    Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
    Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
    Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
    Removed the null rows from the dataset by using the “na.omit function”
    Have you documented your cleaning process so you can review and share those results? 
      Yes, the cleaning process is documented clearly.
    

    Analyze Phase:

    Guiding Questions:

    How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

    What surprises did you discover in the data?
      Casual member ride duration is higher than the annual members
      Causal member widely uses docked bike than the annual members
    What trends or relationships did you find in the data?
      Annual members are used mainly for commute purpose
      Casual member are preferred the docked bikes
      Annual members are preferred the electric or classic bikes
    How will these insights help answer your business questions?
      This insights helps to build a profile for members
    

    Share

    Guiding Quesions:

    Were you able to answer the question of how ...
    
  2. FacialRecognition

    • kaggle.com
    zip
    Updated Dec 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TheNicelander (2016). FacialRecognition [Dataset]. https://www.kaggle.com/petein/facialrecognition
    Explore at:
    zip(121674455 bytes)Available download formats
    Dataset updated
    Dec 1, 2016
    Authors
    TheNicelander
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    #https://www.kaggle.com/c/facial-keypoints-detection/details/getting-started-with-r #################################

    ###Variables for downloaded files data.dir <- ' ' train.file <- paste0(data.dir, 'training.csv') test.file <- paste0(data.dir, 'test.csv') #################################

    ###Load csv -- creates a data.frame matrix where each column can have a different type. d.train <- read.csv(train.file, stringsAsFactors = F) d.test <- read.csv(test.file, stringsAsFactors = F)

    ###In training.csv, we have 7049 rows, each one with 31 columns. ###The first 30 columns are keypoint locations, which R correctly identified as numbers. ###The last one is a string representation of the image, identified as a string.

    ###To look at samples of the data, uncomment this line:

    head(d.train)

    ###Let's save the first column as another variable, and remove it from d.train: ###d.train is our dataframe, and we want the column called Image. ###Assigning NULL to a column removes it from the dataframe

    im.train <- d.train$Image d.train$Image <- NULL #removes 'image' from the dataframe

    im.test <- d.test$Image d.test$Image <- NULL #removes 'image' from the dataframe

    ################################# #The image is represented as a series of numbers, stored as a string #Convert these strings to integers by splitting them and converting the result to integer

    #strsplit splits the string #unlist simplifies its output to a vector of strings #as.integer converts it to a vector of integers. as.integer(unlist(strsplit(im.train[1], " "))) as.integer(unlist(strsplit(im.test[1], " ")))

    ###Install and activate appropriate libraries ###The tutorial is meant for Linux and OSx, where they use a different library, so: ###Replace all instances of %dopar% with %do%.

    install.packages('foreach')

    library("foreach", lib.loc="~/R/win-library/3.3")

    ###implement parallelization im.train <- foreach(im = im.train, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } im.test <- foreach(im = im.test, .combine=rbind) %do% { as.integer(unlist(strsplit(im, " "))) } #The foreach loop will evaluate the inner command for each row in im.train, and combine the results with rbind (combine by rows). #%do% instructs R to do all evaluations in parallel. #im.train is now a matrix with 7049 rows (one for each image) and 9216 columns (one for each pixel):

    ###Save all four variables in data.Rd file ###Can reload them at anytime with load('data.Rd')

    save(d.train, im.train, d.test, im.test, file='data.Rd')

    load('data.Rd')

    #each image is a vector of 96*96 pixels (96*96 = 9216). #convert these 9216 integers into a 96x96 matrix: im <- matrix(data=rev(im.train[1,]), nrow=96, ncol=96)

    #im.train[1,] returns the first row of im.train, which corresponds to the first training image. #rev reverse the resulting vector to match the interpretation of R's image function #(which expects the origin to be in the lower left corner).

    #To visualize the image we use R's image function: image(1:96, 1:96, im, col=gray((0:255)/255))

    #Let’s color the coordinates for the eyes and nose points(96-d.train$nose_tip_x[1], 96-d.train$nose_tip_y[1], col="red") points(96-d.train$left_eye_center_x[1], 96-d.train$left_eye_center_y[1], col="blue") points(96-d.train$right_eye_center_x[1], 96-d.train$right_eye_center_y[1], col="green")

    #Another good check is to see how variable is our data. #For example, where are the centers of each nose in the 7049 images? (this takes a while to run): for(i in 1:nrow(d.train)) { points(96-d.train$nose_tip_x[i], 96-d.train$nose_tip_y[i], col="red") }

    #there are quite a few outliers -- they could be labeling errors. Looking at one extreme example we get this: #In this case there's no labeling error, but this shows that not all faces are centralized idx <- which.max(d.train$nose_tip_x) im <- matrix(data=rev(im.train[idx,]), nrow=96, ncol=96) image(1:96, 1:96, im, col=gray((0:255)/255)) points(96-d.train$nose_tip_x[idx], 96-d.train$nose_tip_y[idx], col="red")

    #One of the simplest things to try is to compute the mean of the coordinates of each keypoint in the training set and use that as a prediction for all images colMeans(d.train, na.rm=T)

    #To build a submission file we need to apply these computed coordinates to the test instances: p <- matrix(data=colMeans(d.train, na.rm=T), nrow=nrow(d.test), ncol=ncol(d.train), byrow=T) colnames(p) <- names(d.train) predictions <- data.frame(ImageId = 1:nrow(d.test), p) head(predictions)

    #The expected submission format has one one keypoint per row, but we can easily get that with the help of the reshape2 library:

    install.packages('reshape2')

    library(...

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
Organization logo

Google Data Analytics Case Study Cyclistic

Difference between Casual vs Member in Cyclistic Riders

Explore at:
zip(1299 bytes)Available download formats
Dataset updated
Sep 27, 2022
Authors
Udayakumar19
Description

Introduction

Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

Scenario

You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

Ask

How do annual members and casual riders use Cyclistic bikes differently?

Guiding Question:

What is the problem you are trying to solve?
  How do annual members and casual riders use Cyclistic bikes differently?
How can your insights drive business decisions?
  The insight will help the marketing team to make a strategy for casual riders

Prepare

Guiding Question:

Where is your data located?
  Data located in Cyclistic organization data.

How is data organized?
  Dataset are in csv format for each month wise from Financial year 22.

Are there issues with bias or credibility in this data? Does your data ROCCC? 
  It is good it is ROCCC because data collected in from Cyclistic organization.

How are you addressing licensing, privacy, security, and accessibility?
  The company has their own license over the dataset. Dataset does not have any personal information about the riders.

How did you verify the data’s integrity?
  All the files have consistent columns and each column has the correct type of data.

How does it help you answer your questions?
  Insights always hidden in the data. We have the interpret with data to find the insights.

Are there any problems with the data?
  Yes, starting station names, ending station names have null values.

Process

Guiding Question:

What tools are you choosing and why?
  I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.

Have you ensured the data’s integrity?
 Yes, the data is consistent throughout the columns.

What steps have you taken to ensure that your data is clean?
  First duplicates, null values are removed then added new columns for analysis.

How can you verify that your data is clean and ready to analyze? 
 Make sure the column names are consistent thorough out all data sets by using the “bind row” function.

Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
Combine the all dataset into single data frame to make consistent throught the analysis.
Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
Removed the null rows from the dataset by using the “na.omit function”
Have you documented your cleaning process so you can review and share those results? 
  Yes, the cleaning process is documented clearly.

Analyze Phase:

Guiding Questions:

How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

What surprises did you discover in the data?
  Casual member ride duration is higher than the annual members
  Causal member widely uses docked bike than the annual members
What trends or relationships did you find in the data?
  Annual members are used mainly for commute purpose
  Casual member are preferred the docked bikes
  Annual members are preferred the electric or classic bikes
How will these insights help answer your business questions?
  This insights helps to build a profile for members

Share

Guiding Quesions:

Were you able to answer the question of how ...
Search
Clear search
Close search
Google apps
Main menu