Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created using LeRobot.
Dataset Structure
meta/info.json: { "codebase_version": "v3.0", "robot_type": "so101_follower", "total_episodes": 40, "total_frames": 10385, "total_tasks": 1, "chunks_size": 1000, "data_files_size_in_mb": 100, "video_files_size_in_mb": 200, "fps": 30, "splits": { "train": "0:40" }, "data_path": "data/chunk-{chunk_index:03d}/file-{file_index:03d}.parquet", "video_path":… See the full description on the dataset page: https://huggingface.co/datasets/treitz/dataset-pinkball-first-merge.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By SocialGrep [source]
The stonks movement spawned by this is a very interesting one. It's rare to see an Internet meme have such an effect on real-world economy - yet here we are.
This dataset contains a collection of posts and comments mentioning GME in their title and body text respectively. The data is procured using SocialGrep. The posts and the comments are labelled with their score.
It'll be interesting to see how this effects the stock market prices in the aftermath with this new dataset
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
The file contains posts from Reddit mentioning GME and their score. This can be used to analyze how the sentiment on GME affected its stock prices in the aftermath
- To study how social media affects stock prices
- To study how Reddit affects stock prices
- To study how the sentiment of a subreddit affects stock prices
If you use this dataset in your research, please credit the original authors. Data Source
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: six-months-of-gme-on-reddit-comments.csv | Column name | Description | |:-------------------|:------------------------------------------------------| | type | The type of post or comment. (String) | | subreddit.name | The name of the subreddit. (String) | | subreddit.nsfw | Whether the subreddit is NSFW. (Boolean) | | created_utc | The time the post or comment was created. (Timestamp) | | permalink | The permalink of the post or comment. (String) | | body | The body of the post or comment. (String) | | sentiment | The sentiment of the post or comment. (String) | | score | The score of the post or comment. (Integer) |
File: six-months-of-gme-on-reddit-posts.csv | Column name | Description | |:-------------------|:------------------------------------------------------| | type | The type of post or comment. (String) | | subreddit.name | The name of the subreddit. (String) | | subreddit.nsfw | Whether the subreddit is NSFW. (Boolean) | | created_utc | The time the post or comment was created. (Timestamp) | | permalink | The permalink of the post or comment. (String) | | score | The score of the post or comment. (Integer) | | domain | The domain of the post or comment. (String) | | url | The URL of the post or comment. (String) | | selftext | The selftext of the post or comment. (String) | | title | The title of the post or comment. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit SocialGrep.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.
Facebook
TwitterKORUSAQ_Merge_Data are pre-generated merge data files combining various products collected during the KORUS-AQ field campaign. This collection features pre-generated merge files for the DC-8 aircraft. Data collection for this product is complete.The KORUS-AQ field study was conducted in South Korea during May-June, 2016. The study was jointly sponsored by NASA and Korea’s National Institute of Environmental Research (NIER). The primary objectives were to investigate the factors controlling air quality in Korea (e.g., local emissions, chemical processes, and transboundary transport) and to assess future air quality observing strategies incorporating geostationary satellite observations. To achieve these science objectives, KORUS-AQ adopted a highly coordinated sampling strategy involved surface and airborne measurements including both in-situ and remote sensing instruments.Surface observations provided details on ground-level air quality conditions while airborne sampling provided an assessment of conditions aloft relevant to satellite observations and necessary to understand the role of emissions, chemistry, and dynamics in determining air quality outcomes. The sampling region covers the South Korean peninsula and surrounding waters with a primary focus on the Seoul Metropolitan Area. Airborne sampling was primarily conducted from near surface to about 8 km with extensive profiling to characterize the vertical distribution of pollutants and their precursors. The airborne observational data were collected from three aircraft platforms: the NASA DC-8, NASA B-200, and Hanseo King Air. Surface measurements were conducted from 16 ground sites and 2 ships: R/V Onnuri and R/V Jang Mok.The major data products collected from both the ground and air include in-situ measurements of trace gases (e.g., ozone, reactive nitrogen species, carbon monoxide and dioxide, methane, non-methane and oxygenated hydrocarbon species), aerosols (e.g., microphysical and optical properties and chemical composition), active remote sensing of ozone and aerosols, and passive remote sensing of NO2, CH2O, and O3 column densities. These data products support research focused on examining the impact of photochemistry and transport on ozone and aerosols, evaluating emissions inventories, and assessing the potential use of satellite observations in air quality studies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
This dataset is the repository for the following paper submitted to Data in Brief:
Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).
The Data in Brief article contains the supplement information and is the related data paper to:
Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).
Description/abstract
The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.
Folder structure
The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:
“code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.
“MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.
“mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).
“yield_productivity” contains .csv files of yield information for all countries listed above.
“population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).
“GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.
“built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.
Code structure
1_MODIS_NDVI_hdf_file_extraction.R
This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.
2_MERGE_MODIS_tiles.R
In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").
3_CROP_MODIS_merged_tiles.R
Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
The repository provides the already clipped and merged NDVI datasets.
4_TREND_analysis_NDVI.R
Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.
5_BUILT_UP_change_raster.R
Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.
6_POPULATION_numbers_plot.R
For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.
7_YIELD_plot.R
In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.
8_GLDAS_read_extract_trend
The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Scripts used for analysis of V1 and V2 Datasets.seurat_v1.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, PCA analysis, clustering, tSNE visualization. Used for v1 datasets. merge_seurat.R - merge two or more seurat objects into one seurat object. Perform linear regression to remove batch effects from separate objects. Used for v1 datasets. subcluster_seurat_v1.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA. Used for v1 datasets.seurat_v2.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, and PCA analysis. Used for v2 datasets. clustering_markers_v2.R - clustering and tSNE visualization for v2 datasets. subcluster_seurat_v2.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA analysis. Used for v2 datasets.seurat_object_analysis_v1_and_v2.R - downstream analysis and plotting functions for seurat object created by seurat_v1.R or seurat_v2.R. merge_clusters.R - merge clusters that do not meet gene threshold. Used for both v1 and v2 datasets. prepare_for_monocle_v1.R - subcluster cells of interest and perform linear regression, but not scaling in order to input normalized, regressed values into monocle with monocle_seurat_input_v1.R monocle_seurat_input_v1.R - monocle script using seurat batch corrected values as input for v1 merged timecourse datasets. monocle_lineage_trace.R - monocle script using nUMI as input for v2 lineage traced dataset. monocle_object_analysis.R - downstream analysis for monocle object - BEAM and plotting. CCA_merging_v2.R - script for merging v2 endocrine datasets with canonical correlation analysis and determining the number of CCs to include in downstream analysis. CCA_alignment_v2.R - script for downstream alignment, clustering, tSNE visualization, and differential gene expression analysis.
Facebook
TwitterMerging (in Table R) data published on https://www.data.gouv.fr/fr/datasets/ventes-de-pesticides-par-departement/, and joining two other sources of information associated with MAs: — uses: https://www.data.gouv.fr/fr/datasets/usages-des-produits-phytosanitaires/ — information on the “Biocontrol” status of the product, from document DGAL/SDQSPV/2020-784 published on 18/12/2020 at https://agriculture.gouv.fr/quest-ce-que-le-biocontrole
All the initial files (.csv transformed into.txt), the R code used to merge data and different output files are collected in a zip.
enter image description here
NB:
1) “YASCUB” for {year,AMM,Substance_active,Classification,Usage,Statut_“BioConttrol”}, substances not on the DGAL/SDQSPV list being coded NA.
2) The file of biocontrol products shall be cleaned from the duplicates generated by the marketing authorisations leading to several trade names.
3) The BNVD_BioC_DY3 table and the output file BNVD_BioC_DY3.txt contain the fields {Code_Region,Region,Dept,Code_Dept,Anne,Usage,Classification,Type_BioC,Quantite_substance)}
Facebook
TwitterThis dataset contains NASA DC-8 1 Minute Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. This dataset contains updated data provided by NASA. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg60-dc8_merge_YYYYMMdd_R5_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This dataset is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and dataset comments. For more information on updates to this dataset, please see the readme file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables convey 1. demographics (281 variables), 2. dietary consumption (324 variables), 3. physiological functions (1,040 variables), 4. occupation (61 variables), 5. questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood), 6. medications (29 variables), 7. mortality information linked from the National Death Index (15 variables), 8. survey weights (857 variables), 9. environmental exposure biomarker measurements (598 variables), and 10. chemical comments indicating which measurements are below or above the lower limit of detection (505 variables).
csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file. - The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments. - "dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES. - "dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables. - “dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes. - “nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.
R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file. - “w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data. - “m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.
Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order. - “example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together. - “example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model. - “example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design. - “example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.
Facebook
TwitterBRAINTEASER (Bringing Artificial Intelligence home for a better care of amyotrophic lateral sclerosis and multiple sclerosis) is a data science project that seeks to exploit the value of big data, including those related to health, lifestyle habits, and environment, to support patients with Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS) and their clinicians. Taking advantage of cost-efficient sensors and apps, BRAINTEASER will integrate large, clinical datasets that host both patient-generated and environmental data. As part of its activities, BRAINTEASER organized three open evaluation challenges on Intelligent Disease Progression Prediction (iDPP), iDPP@CLEF 2022, iDPP@CLEF 2023, and iDPP@CLEF 2024 co-located with the Conference and Labs of the Evaluation Forum (CLEF). The goal of iDPP@CLEF is to design and develop an evaluation infrastructure for AI algorithms able to: better describe disease mechanisms; stratify patients according to their phenotype assessed all over the disease evolution; predict disease progression in a probabilistic, time-dependent fashion. The iDPP@CLEF challenges relied on retrospective and prospective ALS and MS patient data made available by the clinical partners of the BRAINTEASER consortium. Retrospective Dataset We release three retrospective datasets, one for ALS and two for MS. The two retrospective MS datasets, one consisting of clinical data only and one with clinical data and environmental/pollution data. The retrospective datasets contain data about 2,204 ALS patients (static variables, ALSFRS-R questionnaires, spirometry tests, environmental/pollution data) and 1,792 MS patients (static variables, EDSS scores, evoked potentials, relapses, MRIs). A subset of 280 MS patients contains environmental and pollution data. More in detail, the BRAINTEASER project retrospective datasets were derived from the merging of already existing datasets obtained by the clinical centers involved in the BRAINTEASER Project. The ALS dataset was obtained by the merge and homogenisation of the Piemonte and Valle d’Aosta Registry for Amyotrophic Lateral Sclerosis (PARALS, Chiò et al., 2017) and the Lisbon ALS clinic (CENTRO ACADÉMICO DE MEDICINA DE LISBOA, Centro Hospitalar Universitário de Lisboa-Norte, Hospital de Santa Maria, Lisbon, Portugal,) dataset. Both datasets were initiated in 1995 and are currently maintained by researchers of the ALS Regional Expert Centre (CRESLA), University of Turin, and of the CENTRO ACADÉMICO DE MEDICINA DE LISBOA-Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. They include demographic and clinical data, comprehending both static and dynamic variables. The MS dataset was obtained from the Pavia MS clinical dataset, which was started in 1990 and contains demographic and clinical information that is continuously updated by the researchers of the Institute and the Turin MS clinic dataset (Department of Neurosciences and Mental Health, Neurology Unit 1, Città della Salute e della Scienza di Torino. Retrospective environmental data are accessible at various scales at the individual subject level. Thus, environmental data have been retrieved at different scales: To gather macroscale air pollution data we’ve leveraged data coming from public monitoring stations that cover the whole extension of the involved countries, namely the European Air Quality Portal; data from a network of air quality sensors (PurpleAir - Outdoor Air Quality Monitor / PurpleAir PA-II) installed in different points of the city of Pavia (Italy) were extracted as well. In both cases, environmental data were previously publicly available. In order to merge environmental data with individual subject locations we leverage postcodes (postcodes of the station for the pollutant detection and postcodes of subject address). Data were merged following an anonymization procedure based on hash keys. Environmental exposure trajectories have been pre-processed and aggregated in order to avoid fine temporal and spatial granularities. Thus, individual exposure information could not disclose personal addresses. The retrospective datasets are shared in two formats: RDF (serialized in Turtle) modeled according to the BRAINTEASER Ontology (BTO); CSV, as shared during the iDPP@CLEF 2022 and 2023 challenges, split into training and test. Each format corresponds to a specific folder in the datasets, where a dedicated README file provides further details on the datasets. Note that the ALS dataset is split into multiple ZIP files due to the size of the environmental data. Prospective Dataset For the iDPP@CLEF 2024 challenge, the datasets contain prospective data about 86 ALS patients (static variables, ALSFRS-R questionnaires compiled by clinicians or patients using the BRAINTEASER mobile application, sensors data). The prospective datasets are shared in two formats: RDF (serialized in Turtle) modeled according to the BRAINTEASER Ontology (BTO); CSV, as shared durin
Facebook
TwitterName: Data used to rate the relevance of each dimension necessary for a Holistic Environmental Policy Assessment.
Summary: This dataset contains answers from a panel of experts and the public to rate the relevance of each dimension on a scale of 0 (Nor relevant at all) to 100 (Extremely relevant).
License: CC-BY-SA
Acknowledge: These data have been collected in the framework of the DECIPHER project. This project has received funding from the European Union’s Horizon Europe programme under grant agreement No. 101056898.
Disclaimer: Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.
Collection Date: 2024-1 / 2024-04
Publication Date: 22/04/2025
DOI: 10.5281/zenodo.13909413
Other repositories: -
Author: University of Deusto
Objective of collection: This data was originally collected to prioritise the dimensions to be further used for Environmental Policy Assessment and IAMs enlarged scope.
Description:
Data Files (CSV)
decipher-public.csv : Public participants' general survey results in the framework of the Decipher project, including socio demographic characteristics and overall perception of each dimension necessary for a Holistic Environmental Policy Assessment.
decipher-risk.csv : Contains individual survey responses regarding prioritisation of dimensions in risk situations. Includes demographic and opinion data from a targeted sample.
decipher-experts.csv : Experts’ opinions collected on risk topics through surveys in the framework of Decipher Project, targeting professionals in relevant fields.
decipher-modelers.csv: Answers given by the developers of models about the characteristics of the models and dimensions covered by them.
prolific_export_risk.csv : Exported survey data from Prolific, focusing specifically on ratings in risk situations. Includes response times, demographic details, and survey metadata.
prolific_export_public_{1,2}.csv : Public survey exports from Prolific, gathering prioritisation of dimensions necessary for environmental policy assessment.
curated.csv : Final cleaned and harmonized dataset combining multiple survey sources. Designed for direct statistical analysis with standardized variable names.
Scripts files (R)
decipher-modelers.R: Script to assess the answers given modelers about the characteristics of the models.
joint.R: Script to clean and joint the RAW answers from the different surveys to retrieve overall perception of each dimension necessary for a Holistic Environmental Policy Assessment.
Report Files
decipher-modelers.pdf: Diagram with the result of the
full-Country.html : Full interactive report showing dimension prioritisation broken down by participant country.
full-Gender.html : Visualization report displaying differences in dimension prioritisation by gender.
full-Education.html : Detailed breakdown of dimension prioritisation results based on education level.
full-Work.html : Report focusing on participant occupational categories and associated dimension prioritisation.
full-Income.html : Analysis report showing how income level correlates with dimension prioritisation.
full-PS.html : Report analyzing Political Sensitivity scores across all participants.
full-type.html : Visualization report comparing participant dimensions prioritisation (public vs experts) in normal and risk situations.
full-joint-Country.html : Joint analysis report integrating multiple dimensions of country-based dimension prioritisation in normal and risk situations. Combines demographic and response patterns.
full-joint-Gender.html : Combined gender-based analysis across datasets, exploring intersections of demographic factors and dimensions prioritisation in normal and risk situations.
full-joint-Education.html : Education-focused report merging various datasets to show consistent or divergent patterns of dimensions prioritisation in normal and risk awareness.
full-joint-Work.html : Cross-dataset analysis of occupational groups and their dimensions prioritisation in normal and risk situation
full-joint-Income.html : Income-stratified joint analysis, merging public and expert datasets to find common trends and significant differences during dimensions prioritisation in normal and risks situations.
full-joint-PS.html : Comprehensive Political Sensitivity score report from merged datasets, highlighting general patterns and subgroup variations in normal and risk situations.
5 star: ⭐⭐⭐
Preprocessing steps: The data has been re-coded and cleaned using the scripts provided.
Reuse: NA
Update policy: No more updates are planned.
Ethics and legal aspects: Names of the persons involved have been removed.
Technical aspects:
Other:
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This file describes the replication material for: Trajectories of mental health problems in childhood and adult voting behaviour: Evidence from the 1970s British Cohort Study. Authors: Lisa-Christine Girard & Martin Okolikj. Accepted in Political Behavior. This dataverse holds the following 4 replication files: 1. data_cleaning_traj.R - This file is designed to load, merge and clean the datasets for the estimation of trajectories along with the rescaling of the age 10 Rutter scale. This file was prepared using R-4.1.1 version. 2. traj_estimation.do - With the dataset merged from data_cleaning_traj.R, we run this file in STATA to create and estimate trajectories, to be included in the full dataset. This file was prepared using STATA 17.0 version. 3. data_cleaning.R - This is the file designed to load, merge and clean all datasets in one for preparation of the main analysis following the trajectory estimation. This file was prepared using R-4.1.1 version. 4. POBE Analysis.do - The analysis file is designed to generate the results from the tables in the published paper along with all supplementary materials. This file was prepared using STATA 17.0 version. The data can be accessed at the following address. It requires user registration under special licence conditions: http://discover.ukdataservice.ac.uk/series/?sn=200001. If you have any questions or spot any errors please contact g.lisachristine@gmail.com or martin.okolic@gmail.com.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We collected all available global soil carbon (C) and heterotrophic respiration (RH) maps derived from data-driven estimates, sourcing them from public repositories and supplementary materials of previous studies (Table 1). All spatial datasets were converted to NetCDF format for consistency and ease of use.
Because the maps had varying spatial resolutions (ranging from 0.0083° to 0.5°), we harmonized all datasets to a common resolution of 0.5° (approximately 50 km at the equator). We then merged the processed maps by computing the mean, maximum, and minimum values at each grid cell, resulting in harmonized global maps of soil C (for the top 0–30 cm and 0–100 cm depths) and RH at 0.5° resolution.
Grid cells with fewer than three soil C estimates or fewer than four RH estimates were assigned NA values. Land and water grid cells were automatically distinguished by combining multiple datasets containing soil C and RH information over land.
Soil carbon turnover time (years), denoted as τ, was calculated under the assumption of a quasi-equilibrium state using the formula:
τ = CS / RH
where CS is soil carbon stock and RH is the heterotrophic respiration rate. The uncertainty range of τ was estimated for each grid cell using:
τmax = CS+ / RH− τmin = CS− / RH+
where CS+ and CS− are the maximum and minimum soil C values, and RH+ and RH− are the maximum and minimum RH values, respectively.
To calculate the temperature sensitivity of decomposition (Q10)—the factor by which decomposition rates increase with a 10 °C rise in temperature—we followed the method described in Koven et al. (2017). The uncertainty of Q10 (maximum and minimum values) was derived using τmax and τmin, respectively.
All files are provided in NetCDF format. The SOC file includes the following variables:
· longitude, latitude
· soc: mean soil C stock (kg C m⁻²)
· soc_median: median soil C (kg C m⁻²)
· soc_n: number of estimates per grid cell
· soc_max, soc_min: maximum and minimum soil C (kg C m⁻²)
· soc_max_id, soc_min_id: study IDs corresponding to the maximum and minimum values
· soc_range: range of soil C values
· soc_sd: standard deviation of soil C (kg C m⁻²)
· soc_cv: coefficient of variation (%)
The RH file includes:
· longitude, latitude
· rh: mean RH (g C m⁻² yr⁻¹)
· rh_median, rh_n, rh_max, rh_min: as above
· rh_max_id, rh_min_id: study IDs for max/min
· rh_range, rh_sd, rh_cv: analogous variables for RH
The mean, maximum, and minimum values of soil C turnover time are provided as separate files. The Q10 files contain estimates derived from the mean values of soil C and RH, along with associated uncertainty values.
The harmonized dataset files available in the repository are as follows:
· harmonized-RH-hdg.nc: global soil heterotrophic respiration map
· harmonized-SOC100-hdg.nc: global soil C map for 0–100 cm
· harmonized-SOC30-hdg.nc: global soil C map for 0–30 cm
· Q10.nc: global Q10 map
· Turnover-time_max.nc: global soil C turnover time estimated using maximum soil C and minimum RH
· Turnover-time_min.nc: global soil C turnover time estimated using minimum soil C and maximum RH
· Turnover-time_mean.nc: global soil C turnover time estimated using mean soil C and RH
· Turnover-time30_mean.nc: global soil C turnover time estimated using the soil C map for 0-30 cm
Version history
Version 1.1: Median values were added. Bug fix for SOC30 (n>2 was inactive in the former version)
More details are provided in: Hashimoto S. Ito, A. & Nishina K. (in revision) Harmonized global soil carbon and respiration datasets with derived turnover time and temperature sensitivity. Scientific Data
Reference
Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).
Table1 : List of soil carbon and heterotrophic respiration datasets used in this study.
<td style="width:|
Dataset |
Repository/References (Dataset name) |
Depth |
ID in NetCDF file*** |
|
Global soil C |
Global soil data task 2000 (IGBP-DIS)1 |
0–100 |
3,- |
|
|
Shangguan et al. 2014 (GSDE)2,3 |
0–100, 0–30* |
1,1 |
|
|
Batjes 2016 (WISE30sec)4,5 |
0–100, 0–30 |
6,7 |
|
|
Sanderman et al. 2017 (Soil-Carbon-Debt) 6,7 |
0–100, 0–30 |
5,5 |
|
|
Soilgrids team and Hengl et al. 2017 (SoilGrids)8,9 |
0–30** |
-,6 |
|
|
Hengl and Wheeler 2018 (LandGIS)10 |
0–100, 0–30 |
4,4 |
|
|
FAO 2022 (GSOC)11 |
0–30 |
-,2 |
|
|
FAO 2023 (HWSD2)12 |
0–100, 0–30 |
2,3 |
|
Circumpolar soil C |
Hugelius et al. 2013 (NCSCD)13–15 |
0–100, 0–30 |
7,8 |
|
Global RH |
Hashimoto et al. 201516,17 |
- |
1 |
|
|
Warner et al. 2019 (Bond-Lamberty equation based)18,19 |
- |
2 |
|
|
Warner et al. 2019 (Subke equation based)18,19 |
- |
3 |
|
|
Tang et al. 202020,21 |
- |
4 |
|
|
Lu et al. 202122,23 |
- |
5 |
|
|
Stell et al. 202124,25 |
- |
Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Facebook
TwitterThis data set contains DLR Falcon 1 Minute Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 29 May 2012 through 14 June 2012. These merges were created using data in the NASA DC3 archive as of September 25, 2013. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. In addition, a "grand merge" has been provided. This includes data from all the individual merged flights throughout the mission. This grand merge will follow the following naming convention: "dc3-mrg06-falcon_merge_YYYYMMdd_R2_thruYYYYMMdd.ict" (with the comment "_thruYYYYMMdd" indicating the last flight date included). This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments.
Facebook
TwitterRNA-seq gene count datasets built using the raw data from 18 different studies. The raw sequencing data (.fastq files) were processed with Myrna to obtain tables of counts for each gene. For ease of statistical analysis, they combined each count table with sample phenotype data to form an R object of class ExpressionSet. The count tables, ExpressionSets, and phenotype tables are ready to use and freely available. By taking care of several preprocessing steps and combining many datasets into one easily-accessible website, we make finding and analyzing RNA-seq data considerably more straightforward.
Facebook
TwitterThis data set contains NASA DC-8 1 Second Data Merge data collected during the Deep Convective Clouds and Chemistry Experiment (DC3) from 18 May 2012 through 22 June 2012. These merges are an updated version that were provided by NASA. In most cases, variable names have been kept identical to those submitted in the raw data files. However, in some cases, names have been changed (e.g., to eliminate duplication). Units have been standardized throughout the merge. No "grand merge" has been provided for the 1-second data on the DC8 aircraft due to its prohibitive size (~1.5GB). In most cases, downloading the individual merge files for each day and simply concatenating them should suffice. This data set is in ICARTT format. Please see the header portion of the data files for details on instruments, parameters, quality assurance, quality control, contact information, and data set comments. For more information on the updates to this dataset, please see the readme file.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
What is the relationship between environment and democracy? The framework of cultural evolution suggests that societal development is an adaptation to ecological threats. Pertinent theories assume that democracy emerges as societies adapt to ecological factors such as higher economic wealth, lower pathogen threats, less demanding climates, and fewer natural disasters. However, previous research confused within-country processes with between-country processes and erroneously interpreted between-country findings as if they generalize to within-country mechanisms. In this article, we analyze a time-series cross-sectional dataset to study the dynamic relationship between environment and democracy (1949-2016), accounting for previous misconceptions in levels of analysis. By separating within-country processes from between-country processes, we find that the relationship between environment and democracy not only differs by countries but also depends on the level of analysis. Economic wealth predicts increasing levels of democracy in between-country comparisons, but within-country comparisons show that democracy declines as countries become wealthier over time. This relationship is only prevalent among historically wealthy countries but not among historically poor countries, whose wealth also increased over time. By contrast, pathogen prevalence predicts lower levels of democracy in both between-country and within-country comparisons. Our longitudinal analyses identifying temporal precedence reveal that not only reductions in pathogen prevalence drive future democracy, but also democracy reduces future pathogen prevalence and increases future wealth. These nuanced results contrast with previous analyses using narrow, cross-sectional data. As a whole, our findings illuminate the dynamic process by which environment and democracy shape each other.
Methods Our Time-Series Cross-Sectional data combine various online databases. Country names were first identified and matched using R-package “countrycode” (Arel-Bundock, Enevoldsen, & Yetman, 2018) before all datasets were merged. Occasionally, we modified unidentified country names to be consistent across datasets. We then transformed “wide” data into “long” data and merged them using R’s Tidyverse framework (Wickham, 2014). Our analysis begins with the year 1949, which was occasioned by the fact that one of the key time-variant level-1 variables, pathogen prevalence was only available from 1949 on. See our Supplemental Material for all data, Stata syntax, R-markdown for visualization, supplemental analyses and detailed results (available at https://osf.io/drt8j/).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" (Monitoring open data practices - challenges in finding data publications using the example of publications by researchers at TU Dresden) - Katharina Zinke, Institut für Bibliotheks- und Informationswissenschaften, Humboldt-Universität Berlin, 2023
This ZIP-File contains the data the thesis is based on, interim exports of the results and the R script with all pre-processing, data merging and analyses carried out. The documentation of the additional, explorative analysis is also available. The actual PDFs and text files of the scientific papers used are not included as they are published open access.
The folder structure is shown below with the file names and a brief description of the contents of each file. For details concerning the analyses approach, please refer to the master's thesis (publication following soon).
## Data sources
Folder 01_SourceData/
- PLOS-Dataset_v2_Mar23.csv (PLOS-OSI dataset)
- ScopusSearch_ExportResults.csv (export of Scopus search results from Scopus)
- ScopusSearch_ExportResults.ris (export of Scopus search results from Scopus)
- Zotero_Export_ScopusSearch.csv (export of the file names and DOIs of the Scopus search results from Zotero)
## Automatic classification
Folder 02_AutomaticClassification/
- (NOT INCLUDED) PDFs folder (Folder for PDFs of all publications identified by the Scopus search, named AuthorLastName_Year_PublicationTitle_Title)
- (NOT INCLUDED) PDFs_to_text folder (Folder for all texts extracted from the PDFs by ODDPub, named AuthorLastName_Year_PublicationTitle_Title)
- PLOS_ScopusSearch_matched.csv (merge of the Scopus search results with the PLOS_OSI dataset for the files contained in both)
- oddpub_results_wDOIs.csv (results file of the ODDPub classification)
- PLOS_ODDPub.csv (merge of the results file of the ODDPub classification with the PLOS-OSI dataset for the publications contained in both)
## Manual coding
Folder 03_ManualCheck/
- CodeSheet_ManualCheck.txt (Code sheet with descriptions of the variables for manual coding)
- ManualCheck_2023-06-08.csv (Manual coding results file)
- PLOS_ODDPub_Manual.csv (Merge of the results file of the ODDPub and PLOS-OSI classification with the results file of the manual coding)
## Explorative analysis for the discoverability of open data
Folder04_FurtherAnalyses
Proof_of_of_Concept_Open_Data_Monitoring.pdf (Description of the explorative analysis of the discoverability of open data publications using the example of a researcher) - in German
## R-Script
Analyses_MA_OpenDataMonitoring.R (R-Script for preparing, merging and analyzing the data and for performing the ODDPub algorithm)
Facebook
Twitteranalyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created using LeRobot.
Dataset Structure
meta/info.json: { "codebase_version": "v3.0", "robot_type": "so101_follower", "total_episodes": 40, "total_frames": 10385, "total_tasks": 1, "chunks_size": 1000, "data_files_size_in_mb": 100, "video_files_size_in_mb": 200, "fps": 30, "splits": { "train": "0:40" }, "data_path": "data/chunk-{chunk_index:03d}/file-{file_index:03d}.parquet", "video_path":… See the full description on the dataset page: https://huggingface.co/datasets/treitz/dataset-pinkball-first-merge.