11 datasets found
  1. Datasets for One to One Merge in Stata

    • kaggle.com
    zip
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    iFinance Tutor (2023). Datasets for One to One Merge in Stata [Dataset]. https://www.kaggle.com/datasets/ifinancetutor/datasets-for-one-to-one-merge-in-stata
    Explore at:
    zip(2854 bytes)Available download formats
    Dataset updated
    Feb 1, 2023
    Authors
    iFinance Tutor
    Description

    Dataset

    This dataset was created by iFinance Tutor

    Contents

  2. After One to Many and Many to One Merge in Stata

    • kaggle.com
    zip
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    iFinance Tutor (2023). After One to Many and Many to One Merge in Stata [Dataset]. https://www.kaggle.com/datasets/ifinancetutor/after-one-to-many-and-many-to-one-merge-in-stata
    Explore at:
    zip(2929 bytes)Available download formats
    Dataset updated
    Feb 1, 2023
    Authors
    iFinance Tutor
    Description

    Dataset

    This dataset was created by iFinance Tutor

    Contents

  3. Code for merging National Neighborhood Data Archive ZCTA level datasets with...

    • linkagelibrary.icpsr.umich.edu
    Updated Oct 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megan Chenoweth; Anam Khan (2020). Code for merging National Neighborhood Data Archive ZCTA level datasets with the UDS Mapper ZIP code to ZCTA crosswalk [Dataset]. http://doi.org/10.3886/E124461V4
    Explore at:
    Dataset updated
    Oct 15, 2020
    Dataset provided by
    University of Michigan. Institute for Social Research
    Authors
    Megan Chenoweth; Anam Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The sample SAS and Stata code provided here is intended for use with certain datasets in the National Neighborhood Data Archive (NaNDA). NaNDA (https://www.openicpsr.org/openicpsr/nanda) contains some datasets that measure neighborhood context at the ZIP Code Tabulation Area (ZCTA) level. They are intended for use with survey or other individual-level data containing ZIP codes. Because ZIP codes do not exactly match ZIP code tabulation areas, a crosswalk is required to use ZIP-code-level geocoded datasets with ZCTA-level datasets from NaNDA. A ZIP-code-to-ZCTA crosswalk was previously available on the UDS Mapper website, which is no longer active. An archived copy of the ZIP-code-to-ZCTA crosswalk file has been included here. Sample SAS and Stata code are provided for merging the UDS mapper crosswalk with NaNDA datasets.

  4. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  5. d

    Replication Data for: Trajectories of mental health problems in childhood...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Girard, Lisa-Christine; Okolikj, Martin (2023). Replication Data for: Trajectories of mental health problems in childhood and adult voting behaviour: Evidence from the 1970s British Cohort Study [Dataset]. http://doi.org/10.7910/DVN/S6UUBF
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Girard, Lisa-Christine; Okolikj, Martin
    Description

    This file describes the replication material for: Trajectories of mental health problems in childhood and adult voting behaviour: Evidence from the 1970s British Cohort Study. Authors: Lisa-Christine Girard & Martin Okolikj. Accepted in Political Behavior. This dataverse holds the following 4 replication files: 1. data_cleaning_traj.R - This file is designed to load, merge and clean the datasets for the estimation of trajectories along with the rescaling of the age 10 Rutter scale. This file was prepared using R-4.1.1 version. 2. traj_estimation.do - With the dataset merged from data_cleaning_traj.R, we run this file in STATA to create and estimate trajectories, to be included in the full dataset. This file was prepared using STATA 17.0 version. 3. data_cleaning.R - This is the file designed to load, merge and clean all datasets in one for preparation of the main analysis following the trajectory estimation. This file was prepared using R-4.1.1 version. 4. POBE Analysis.do - The analysis file is designed to generate the results from the tables in the published paper along with all supplementary materials. This file was prepared using STATA 17.0 version. The data can be accessed at the following address. It requires user registration under special licence conditions: http://discover.ukdataservice.ac.uk/series/?sn=200001. If you have any questions or spot any errors please contact g.lisachristine@gmail.com or martin.okolic@gmail.com.

  6. H

    Survey of Consumer Finances (SCF)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Survey of Consumer Finances (SCF) [Dataset]. http://doi.org/10.7910/DVN/FRMKMF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the survey of consumer finances (scf) with r the survey of consumer finances (scf) tracks the wealth of american families. every three years, more than five thousand households answer a battery of questions about income, net worth, credit card debt, pensions, mortgages, even the lease on their cars. plenty of surveys collect annual income, only the survey of consumer finances captures such detailed asset data. responses are at the primary economic unit-level (peu) - the economically dominant, financially interdependent family members within a sampled household. norc at the university of chicago administers the data collection, but the board of governors of the federal reserve pay the bills and therefore call the shots. if you were so brazen as to open up the microdata and run a simple weighted median, you'd get the wrong answer. the five to six thousand respondents actually gobble up twenty-five to thirty thousand records in the final pub lic use files. why oh why? well, those tables contain not one, not two, but five records for each peu. wherever missing, these data are multiply-imputed, meaning answers to the same question for the same household might vary across implicates. each analysis must account for all that, lest your confidence intervals be too tight. to calculate the correct statistics, you'll need to break the single file into five, necessarily complicating your life. this can be accomplished with the meanit sas macro buried in the 2004 scf codebook (search for meanit - you'll need the sas iml add-on). or you might blow the dust off this website referred to in the 2010 codebook as the home of an alternative multiple imputation technique, but all i found were broken links. perhaps it's time for plan c, and by c, i mean free. read the imputation section of the latest codebook (search for imputation), then give these scripts a whirl. they've got that new r smell. the lion's share of the respondents in the survey of consumer finances get drawn from a pretty standard sample of american dwellings - no nursing homes, no active-duty military. then there's this secondary sample of richer households to even out the statistical noise at the higher end of the i ncome and assets spectrum. you can read more if you like, but at the end of the day the weights just generalize to civilian, non-institutional american households. one last thing before you start your engine: read everything you always wanted to know about the scf. my favorite part of that title is the word always. this new github repository contains t hree scripts: 1989-2010 download all microdata.R initiate a function to download and import any survey of consumer finances zipped stata file (.dta) loop through each year specified by the user (starting at the 1989 re-vamp) to download the main, extract, and replicate weight files, then import each into r break the main file into five implicates (each containing one record per peu) and merge the appropriate extract data onto each implicate save the five implicates and replicate weights to an r data file (.rda) for rapid future loading 2010 analysis examples.R prepare two survey of consumer finances-flavored multiply-imputed survey analysis functions load the r data files (.rda) necessary to create a multiply-imputed, replicate-weighted survey design demonstrate how to access the properties of a multiply-imput ed survey design object cook up some descriptive statistics and export examples, calculated with scf-centric variance quirks run a quick t-test and regression, but only because you asked nicely replicate FRB SAS output.R reproduce each and every statistic pr ovided by the friendly folks at the federal reserve create a multiply-imputed, replicate-weighted survey design object re-reproduce (and yes, i said/meant what i meant/said) each of those statistics, now using the multiply-imputed survey design object to highlight the statistically-theoretically-irrelevant differences click here to view these three scripts for more detail about the survey of consumer finances (scf), visit: the federal reserve board of governors' survey of consumer finances homepage the latest scf chartbook, to browse what's possible. (spoiler alert: everything.) the survey of consumer finances wikipedia entry the official frequently asked questions notes: nationally-representative statistics on the financial health, wealth, and assets of american hous eholds might not be monopolized by the survey of consumer finances, but there isn't much competition aside from the assets topical module of the survey of income and program participation (sipp). on one hand, the scf interview questions contain more detail than sipp. on the other hand, scf's smaller sample precludes analyses of acute subpopulations. and for any three-handed martians in the audience, ther e's also a few biases between these two data sources that you ought to consider. the survey methodologists at the federal reserve take their job...

  7. n

    Multilevel modeling of time-series cross-sectional data reveals the dynamic...

    • data.niaid.nih.gov
    • dataone.org
    • +1more
    zip
    Updated Mar 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kodai Kusano (2020). Multilevel modeling of time-series cross-sectional data reveals the dynamic interaction between ecological threats and democratic development [Dataset]. http://doi.org/10.5061/dryad.547d7wm3x
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    University of Nevada, Reno
    Authors
    Kodai Kusano
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    What is the relationship between environment and democracy? The framework of cultural evolution suggests that societal development is an adaptation to ecological threats. Pertinent theories assume that democracy emerges as societies adapt to ecological factors such as higher economic wealth, lower pathogen threats, less demanding climates, and fewer natural disasters. However, previous research confused within-country processes with between-country processes and erroneously interpreted between-country findings as if they generalize to within-country mechanisms. In this article, we analyze a time-series cross-sectional dataset to study the dynamic relationship between environment and democracy (1949-2016), accounting for previous misconceptions in levels of analysis. By separating within-country processes from between-country processes, we find that the relationship between environment and democracy not only differs by countries but also depends on the level of analysis. Economic wealth predicts increasing levels of democracy in between-country comparisons, but within-country comparisons show that democracy declines as countries become wealthier over time. This relationship is only prevalent among historically wealthy countries but not among historically poor countries, whose wealth also increased over time. By contrast, pathogen prevalence predicts lower levels of democracy in both between-country and within-country comparisons. Our longitudinal analyses identifying temporal precedence reveal that not only reductions in pathogen prevalence drive future democracy, but also democracy reduces future pathogen prevalence and increases future wealth. These nuanced results contrast with previous analyses using narrow, cross-sectional data. As a whole, our findings illuminate the dynamic process by which environment and democracy shape each other.

    Methods Our Time-Series Cross-Sectional data combine various online databases. Country names were first identified and matched using R-package “countrycode” (Arel-Bundock, Enevoldsen, & Yetman, 2018) before all datasets were merged. Occasionally, we modified unidentified country names to be consistent across datasets. We then transformed “wide” data into “long” data and merged them using R’s Tidyverse framework (Wickham, 2014). Our analysis begins with the year 1949, which was occasioned by the fact that one of the key time-variant level-1 variables, pathogen prevalence was only available from 1949 on. See our Supplemental Material for all data, Stata syntax, R-markdown for visualization, supplemental analyses and detailed results (available at https://osf.io/drt8j/).

  8. Merged data set

    • figshare.com
    txt
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huafeng Zhang (2025). Merged data set [Dataset]. http://doi.org/10.6084/m9.figshare.28246769.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Huafeng Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data we use in this paper were gathered in the 6th round of Multiple Indicator Cluster Surveys (MICS6), which can be downloaded from https://mics.unicef.org/surveys. The MICS6 surveys are conducted by UNICEF (United Nations International Children's Emergency Fund). We merge the original data from 11 countries and saved the user data in Stata data. In addition, do-file for analysis is also published here.

  9. H

    County FIPS Matching Tool

    • dataverse.harvard.edu
    Updated Jan 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carl Klarner (2019). County FIPS Matching Tool [Dataset]. http://doi.org/10.7910/DVN/OSLU4G
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Carl Klarner
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This tool--a simple csv or Stata file for merging--gives you a fast way to assign Census county FIPS codes to variously presented county names. This is useful for dealing with county names collected from official sources, such as election returns, which inconsistently present county names and often have misspellings. It will likely take less than ten minutes the first time, and about one minute thereafter--assuming all versions of your county names are in this file. There are about 3,142 counties in the U.S., and there are 77,613 different permutations of county names in this file (ave=25 per county, max=382). Counties with more likely permutations have more versions. Misspellings were added as I came across them over time. I DON'T expect people to cite the use of this tool. DO feel free to suggest the addition of other county name permutations.

  10. H

    Area Resource File (ARF)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Area Resource File (ARF) [Dataset]. http://doi.org/10.7910/DVN/8NMSFV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the area resource file (arf) with r the arf is fun to say out loud. it's also a single county-level data table with about 6,000 variables, produced by the united states health services and resources administration (hrsa). the file contains health information and statistics for over 3,000 us counties. like many government agencies, hrsa provides only a sas importation script and an as cii file. this new github repository contains two scripts: 2011-2012 arf - download.R download the zipped area resource file directly onto your local computer load the entire table into a temporary sql database save the condensed file as an R data file (.rda), comma-separated value file (.csv), and/or stata-readable file (.dta). 2011-2012 arf - analysis examples.R limit the arf to the variables necessary for your analysis sum up a few county-level statistics merge the arf onto other data sets, using both fips and ssa county codes create a sweet county-level map click here to view these two scripts for mo re detail about the area resource file (arf), visit: the arf home page the hrsa data warehouse notes: the arf may not be a survey data set itself, but it's particularly useful to merge onto other survey data. confidential to sas, spss, stata, and sudaan users: time to put down the abacus. time to transition to r. :D

  11. H

    Replication Data for: Lawyers' Role-Induced Bias Arises Fast and Persists...

    • dataverse.harvard.edu
    Updated Jun 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Holger Spamann (2020). Replication Data for: Lawyers' Role-Induced Bias Arises Fast and Persists Despite Intervention [Dataset]. http://doi.org/10.7910/DVN/CRZCPT
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 4, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Holger Spamann
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This data depository contains all experimental materials, data, and code for Spamann, Lawyers' Role-Induced Bias ... All experimental materials (i.e., exercise and survey instrument) are in the pdf file Spamann_experimentalmaterials_all.pdf. The dataset Newman.dta (Stata 14.2) contains the data collected. The Stata do-file Spamann_role_bias_code.do generates the three figures and other reported statistical information reported in the version of the paper originally posted to SSRN in May 2019. Spamann_role_bias_code_revised.do generates the four figures and other reported statistical information reported in the revision submitted to JLS in March 2020 and ultimately accepted by the journal. Both do-files use Newman.dta. Newman.dta is the result of merging 6 csv files generated by Qualtrics in each of the six semesters from students' survey responses. These 6 csv files, and the do-file rawdata_merge_clean.do to merge them, are also included.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
iFinance Tutor (2023). Datasets for One to One Merge in Stata [Dataset]. https://www.kaggle.com/datasets/ifinancetutor/datasets-for-one-to-one-merge-in-stata
Organization logo

Datasets for One to One Merge in Stata

These are three datasets in .dta format of Stata to understand merge command

Explore at:
zip(2854 bytes)Available download formats
Dataset updated
Feb 1, 2023
Authors
iFinance Tutor
Description

Dataset

This dataset was created by iFinance Tutor

Contents

Search
Clear search
Close search
Google apps
Main menu