100+ datasets found
  1. Normalized Dataset

    • kaggle.com
    zip
    Updated Jun 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hemanth S (2022). Normalized Dataset [Dataset]. https://www.kaggle.com/datasets/hemanth012/normalized-dataset
    Explore at:
    zip(1009250933 bytes)Available download formats
    Dataset updated
    Jun 15, 2022
    Authors
    Hemanth S
    Description

    Dataset

    This dataset was created by Hemanth S

    Contents

  2. Normalization Template

    • kaggle.com
    zip
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiro Youssef (2023). Normalization Template [Dataset]. https://www.kaggle.com/datasets/kiroyoussef/normalization-template
    Explore at:
    zip(22 bytes)Available download formats
    Dataset updated
    Nov 2, 2023
    Authors
    Kiro Youssef
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Kiro Youssef

    Released under Apache 2.0

    Contents

  3. Data from: Normalized data

    • figshare.com
    txt
    Updated Jun 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yalbi Balderas (2022). Normalized data [Dataset]. http://doi.org/10.6084/m9.figshare.20076047.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 15, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yalbi Balderas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Normalize data

  4. c

    Data from: LVMED: Dataset of Latvian text normalisation samples for the...

    • repository.clarin.lv
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Viesturs Jūlijs Lasmanis; Normunds Grūzītis (2023). LVMED: Dataset of Latvian text normalisation samples for the medical domain [Dataset]. https://repository.clarin.lv/repository/xmlui/handle/20.500.12574/85
    Explore at:
    Dataset updated
    May 30, 2023
    Authors
    Viesturs Jūlijs Lasmanis; Normunds Grūzītis
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The CSV dataset contains sentence pairs for a text-to-text transformation task: given a sentence that contains 0..n abbreviations, rewrite (normalize) the sentence in full words (word forms).

    Training dataset: 64,665 sentence pairs Validation dataset: 7,185 sentence pairs. Testing dataset: 7,984 sentence pairs.

    All sentences are extracted from a public web corpus (https://korpuss.lv/id/Tīmeklis2020) and contain at least one medical term.

  5. Identification of Novel Reference Genes Suitable for qRT-PCR Normalization...

    • plos.figshare.com
    tiff
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu Hu; Shuying Xie; Jihua Yao (2023). Identification of Novel Reference Genes Suitable for qRT-PCR Normalization with Respect to the Zebrafish Developmental Stage [Dataset]. http://doi.org/10.1371/journal.pone.0149277
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yu Hu; Shuying Xie; Jihua Yao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reference genes used in normalizing qRT-PCR data are critical for the accuracy of gene expression analysis. However, many traditional reference genes used in zebrafish early development are not appropriate because of their variable expression levels during embryogenesis. In the present study, we used our previous RNA-Seq dataset to identify novel reference genes suitable for gene expression analysis during zebrafish early developmental stages. We first selected 197 most stably expressed genes from an RNA-Seq dataset (29,291 genes in total), according to the ratio of their maximum to minimum RPKM values. Among the 197 genes, 4 genes with moderate expression levels and the least variation throughout 9 developmental stages were identified as candidate reference genes. Using four independent statistical algorithms (delta-CT, geNorm, BestKeeper and NormFinder), the stability of qRT-PCR expression of these candidates was then evaluated and compared to that of actb1 and actb2, two commonly used zebrafish reference genes. Stability rankings showed that two genes, namely mobk13 (mob4) and lsm12b, were more stable than actb1 and actb2 in most cases. To further test the suitability of mobk13 and lsm12b as novel reference genes, they were used to normalize three well-studied target genes. The results showed that mobk13 and lsm12b were more suitable than actb1 and actb2 with respect to zebrafish early development. We recommend mobk13 and lsm12b as new optimal reference genes for zebrafish qRT-PCR analysis during embryogenesis and early larval stages.

  6. Songs Normalize Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Ashraf Shaaban Shahata (2025). Songs Normalize Dataset [Dataset]. https://www.kaggle.com/datasets/mohammedashraf2004/songs-normalize-dataset
    Explore at:
    zip(95910 bytes)Available download formats
    Dataset updated
    Apr 2, 2025
    Authors
    Mohammed Ashraf Shaaban Shahata
    Description

    Dataset

    This dataset was created by Mohammed Ashraf Shaaban Shahata

    Released under Other (specified in description)

    Contents

  7. f

    DataSheet1_TimeNorm: a novel normalization method for time course microbiome...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    An, Lingling; Lu, Meng; Butt, Hamza; Luo, Qianwen; Du, Ruofei; Lytal, Nicholas; Jiang, Hongmei (2024). DataSheet1_TimeNorm: a novel normalization method for time course microbiome data.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001407445
    Explore at:
    Dataset updated
    Sep 24, 2024
    Authors
    An, Lingling; Lu, Meng; Butt, Hamza; Luo, Qianwen; Du, Ruofei; Lytal, Nicholas; Jiang, Hongmei
    Description

    Metagenomic time-course studies provide valuable insights into the dynamics of microbial systems and have become increasingly popular alongside the reduction in costs of next-generation sequencing technologies. Normalization is a common but critical preprocessing step before proceeding with downstream analysis. To the best of our knowledge, currently there is no reported method to appropriately normalize microbial time-series data. We propose TimeNorm, a novel normalization method that considers the compositional property and time dependency in time-course microbiome data. It is the first method designed for normalizing time-series data within the same time point (intra-time normalization) and across time points (bridge normalization), separately. Intra-time normalization normalizes microbial samples under the same condition based on common dominant features. Bridge normalization detects and utilizes a group of most stable features across two adjacent time points for normalization. Through comprehensive simulation studies and application to a real study, we demonstrate that TimeNorm outperforms existing normalization methods and boosts the power of downstream differential abundance analysis.

  8. f

    Data_Sheet_1_NormExpression: An R Package to Normalize Gene Expression Data...

    • frontiersin.figshare.com
    application/cdfv2
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhenfeng Wu; Weixiang Liu; Xiufeng Jin; Haishuo Ji; Hua Wang; Gustavo Glusman; Max Robinson; Lin Liu; Jishou Ruan; Shan Gao (2023). Data_Sheet_1_NormExpression: An R Package to Normalize Gene Expression Data Using Evaluated Methods.doc [Dataset]. http://doi.org/10.3389/fgene.2019.00400.s001
    Explore at:
    application/cdfv2Available download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Zhenfeng Wu; Weixiang Liu; Xiufeng Jin; Haishuo Ji; Hua Wang; Gustavo Glusman; Max Robinson; Lin Liu; Jishou Ruan; Shan Gao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data normalization is a crucial step in the gene expression analysis as it ensures the validity of its downstream analyses. Although many metrics have been designed to evaluate the existing normalization methods, different metrics or different datasets by the same metric yield inconsistent results, particularly for the single-cell RNA sequencing (scRNA-seq) data. The worst situations could be that one method evaluated as the best by one metric is evaluated as the poorest by another metric, or one method evaluated as the best using one dataset is evaluated as the poorest using another dataset. Here raises an open question: principles need to be established to guide the evaluation of normalization methods. In this study, we propose a principle that one normalization method evaluated as the best by one metric should also be evaluated as the best by another metric (the consistency of metrics) and one method evaluated as the best using scRNA-seq data should also be evaluated as the best using bulk RNA-seq data or microarray data (the consistency of datasets). Then, we designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it with another metric mSCC to evaluate 14 commonly used normalization methods using both scRNA-seq data and bulk RNA-seq data, satisfying the consistency of metrics and the consistency of datasets. Our findings paved the way to guide future studies in the normalization of gene expression data with its evaluation. The raw gene expression data, normalization methods, and evaluation metrics used in this study have been included in an R package named NormExpression. NormExpression provides a framework and a fast and simple way for researchers to select the best method for the normalization of their gene expression data based on the evaluation of different methods (particularly some data-driven methods or their own methods) in the principle of the consistency of metrics and the consistency of datasets.

  9. h

    marcuscedricridia_cursa-o1-7b-v1.2-normalize-false-details

    • huggingface.co
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open LLM Leaderboard (2025). marcuscedricridia_cursa-o1-7b-v1.2-normalize-false-details [Dataset]. https://huggingface.co/datasets/open-llm-leaderboard/marcuscedricridia_cursa-o1-7b-v1.2-normalize-false-details
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset authored and provided by
    Open LLM Leaderboard
    Description

    Dataset Card for Evaluation run of marcuscedricridia/cursa-o1-7b-v1.2-normalize-false

    Dataset automatically created during the evaluation run of model marcuscedricridia/cursa-o1-7b-v1.2-normalize-false The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is… See the full description on the dataset page: https://huggingface.co/datasets/open-llm-leaderboard/marcuscedricridia_cursa-o1-7b-v1.2-normalize-false-details.

  10. d

    WLCI - Important Agricultural Lands Assessment (Input Raster: Normalized...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). WLCI - Important Agricultural Lands Assessment (Input Raster: Normalized Antelope Damage Claims) [Dataset]. https://catalog.data.gov/dataset/wlci-important-agricultural-lands-assessment-input-raster-normalized-antelope-damage-claim
    Explore at:
    Dataset updated
    Oct 30, 2025
    Dataset provided by
    U.S. Geological Survey
    Description

    The values in this raster are unit-less scores ranging from 0 to 1 that represent normalized dollars per acre damage claims from antelope on Wyoming lands. This raster is one of 9 inputs used to calculate the "Normalized Importance Index."

  11. f

    Data from: proteiNorm – A User-Friendly Tool for Normalization and Analysis...

    • datasetcatalog.nlm.nih.gov
    Updated Sep 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Byrd, Alicia K; Zafar, Maroof K; Graw, Stefan; Tang, Jillian; Byrum, Stephanie D; Peterson, Eric C.; Bolden, Chris (2020). proteiNorm – A User-Friendly Tool for Normalization and Analysis of TMT and Label-Free Protein Quantification [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000568582
    Explore at:
    Dataset updated
    Sep 30, 2020
    Authors
    Byrd, Alicia K; Zafar, Maroof K; Graw, Stefan; Tang, Jillian; Byrum, Stephanie D; Peterson, Eric C.; Bolden, Chris
    Description

    The technological advances in mass spectrometry allow us to collect more comprehensive data with higher quality and increasing speed. With the rapidly increasing amount of data generated, the need for streamlining analyses becomes more apparent. Proteomics data is known to be often affected by systemic bias from unknown sources, and failing to adequately normalize the data can lead to erroneous conclusions. To allow researchers to easily evaluate and compare different normalization methods via a user-friendly interface, we have developed “proteiNorm”. The current implementation of proteiNorm accommodates preliminary filters on peptide and sample levels followed by an evaluation of several popular normalization methods and visualization of the missing value. The user then selects an adequate normalization method and one of the several imputation methods used for the subsequent comparison of different differential expression methods and estimation of statistical power. The application of proteiNorm and interpretation of its results are demonstrated on two tandem mass tag multiplex (TMT6plex and TMT10plex) and one label-free spike-in mass spectrometry example data set. The three data sets reveal how the normalization methods perform differently on different experimental designs and the need for evaluation of normalization methods for each mass spectrometry experiment. With proteiNorm, we provide a user-friendly tool to identify an adequate normalization method and to select an appropriate method for differential expression analysis.

  12. S

    Data from: A radiometric normalization dataset of Shandong Province based on...

    • scidb.cn
    Updated Feb 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    黄莉婷; 焦伟利; 龙腾飞 (2020). A radiometric normalization dataset of Shandong Province based on Gaofen-1 WFV image (2018) [Dataset]. http://doi.org/10.11922/sciencedb.947
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2020
    Dataset provided by
    Science Data Bank
    Authors
    黄莉婷; 焦伟利; 龙腾飞
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Shandong
    Description

    Surface reflectance is a critical physical variable that affects the energy budget in land-atmosphere interactions, feature recognition and classification, and climate change research. This dataset uses the relative radiometric normalization method, and takes the Landsat-8 Operational Land Imager (OLI) surface reflectance products as the reference image to normalize the GF-1 satellite WFV sensor cloud-free images of Shandong Province in 2018. Relative radiometric normalization processing mainly includes atmospheric correction, image resampling, image registration, mask, extract the no-change pixels and calculate normalization coefficients. After relative radiometric normalization, the no-change pixels of each GF-1 WFV image and its reference image, R2 is 0.7295 above, RMSE is below 0.0172. The surface reflectance accuracy of GF-1 WFV image is improved, which can be used in cooperation with Landsat data to provide data support for remote sensing quantitative inversion. This dataset is in GeoTIFF format, and the spatial resolution of the image is 16 m.

  13. h

    ni-unique-20-tasks-modernbert-kmeans-dim768-normalize-20250129

    • huggingface.co
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Albert Ge (2025). ni-unique-20-tasks-modernbert-kmeans-dim768-normalize-20250129 [Dataset]. https://huggingface.co/datasets/albertge/ni-unique-20-tasks-modernbert-kmeans-dim768-normalize-20250129
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 29, 2025
    Authors
    Albert Ge
    Description

    albertge/ni-unique-20-tasks-modernbert-kmeans-dim768-normalize-20250129 dataset hosted on Hugging Face and contributed by the HF Datasets community

  14. Residential Existing Homes (One to Four Units) Energy Efficiency Meter...

    • data.ny.gov
    • datasets.ai
    • +2more
    csv, xlsx, xml
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The New York State Energy Research and Development Authority, New York Residential Existing Homes Program (2019). Residential Existing Homes (One to Four Units) Energy Efficiency Meter Evaluated Project Data: 2007 – 2012 [Dataset]. https://data.ny.gov/Energy-Environment/Residential-Existing-Homes-One-to-Four-Units-Energ/5vqm-4rpf
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    New York State Energy Research and Development Authorityhttps://www.nyserda.ny.gov/
    Authors
    The New York State Energy Research and Development Authority, New York Residential Existing Homes Program
    Description

    IMPORTANT! PLEASE READ DISCLAIMER BEFORE USING DATA. This dataset backcasts estimated modeled savings for a subset of 2007-2012 completed projects in the Home Performance with ENERGY STAR® Program against normalized savings calculated by an open source energy efficiency meter available at https://www.openee.io/. Open source code uses utility-grade metered consumption to weather-normalize the pre- and post-consumption data using standard methods with no discretionary independent variables. The open source energy efficiency meter allows private companies, utilities, and regulators to calculate energy savings from energy efficiency retrofits with increased confidence and replicability of results. This dataset is intended to lay a foundation for future innovation and deployment of the open source energy efficiency meter across the residential energy sector, and to help inform stakeholders interested in pay for performance programs, where providers are paid for realizing measurable weather-normalized results. To download the open source code, please visit the website at https://github.com/openeemeter/eemeter/releases

    D I S C L A I M E R: Normalized Savings using open source OEE meter. Several data elements, including, Evaluated Annual Elecric Savings (kWh), Evaluated Annual Gas Savings (MMBtu), Pre-retrofit Baseline Electric (kWh), Pre-retrofit Baseline Gas (MMBtu), Post-retrofit Usage Electric (kWh), and Post-retrofit Usage Gas (MMBtu) are direct outputs from the open source OEE meter.

    Home Performance with ENERGY STAR® Estimated Savings. Several data elements, including, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, and Estimated First Year Energy Savings represent contractor-reported savings derived from energy modeling software calculations and not actual realized energy savings. The accuracy of the Estimated Annual kWh Savings and Estimated Annual MMBtu Savings for projects has been evaluated by an independent third party. The results of the Home Performance with ENERGY STAR impact analysis indicate that, on average, actual savings amount to 35 percent of the Estimated Annual kWh Savings and 65 percent of the Estimated Annual MMBtu Savings. For more information, please refer to the Evaluation Report published on NYSERDA’s website at: http://www.nyserda.ny.gov/-/media/Files/Publications/PPSER/Program-Evaluation/2012ContractorReports/2012-HPwES-Impact-Report-with-Appendices.pdf.

    This dataset includes the following data points for a subset of projects completed in 2007-2012: Contractor ID, Project County, Project City, Project ZIP, Climate Zone, Weather Station, Weather Station-Normalization, Project Completion Date, Customer Type, Size of Home, Volume of Home, Number of Units, Year Home Built, Total Project Cost, Contractor Incentive, Total Incentives, Amount Financed through Program, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, Estimated First Year Energy Savings, Evaluated Annual Electric Savings (kWh), Evaluated Annual Gas Savings (MMBtu), Pre-retrofit Baseline Electric (kWh), Pre-retrofit Baseline Gas (MMBtu), Post-retrofit Usage Electric (kWh), Post-retrofit Usage Gas (MMBtu), Central Hudson, Consolidated Edison, LIPA, National Grid, National Fuel Gas, New York State Electric and Gas, Orange and Rockland, Rochester Gas and Electric.

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov.

  15. Naturalistic Neuroimaging Database

    • openneuro.org
    Updated Apr 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Aliko; Jiawen Huang; Florin Gheorghiu; Stefanie Meliss; Jeremy I Skipper (2021). Naturalistic Neuroimaging Database [Dataset]. http://doi.org/10.18112/openneuro.ds002837.v1.1.3
    Explore at:
    Dataset updated
    Apr 20, 2021
    Dataset provided by
    OpenNeurohttps://openneuro.org/
    Authors
    Sarah Aliko; Jiawen Huang; Florin Gheorghiu; Stefanie Meliss; Jeremy I Skipper
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Overview

    • The Naturalistic Neuroimaging Database (NNDb v2.0) contains datasets from 86 human participants doing the NIH Toolbox and then watching one of 10 full-length movies during functional magnetic resonance imaging (fMRI).The participants were all right-handed, native English speakers, with no history of neurological/psychiatric illnesses, with no hearing impairments, unimpaired or corrected vision and taking no medication. Each movie was stopped in 40-50 minute intervals or when participants asked for a break, resulting in 2-6 runs of BOLD-fMRI. A 10 minute high-resolution defaced T1-weighted anatomical MRI scan (MPRAGE) is also provided.
    • The NNDb V2.0 is now on Neuroscout, a platform for fast and flexible re-analysis of (naturalistic) fMRI studies. See: https://neuroscout.org/

    v2.0 Changes

    • Overview
      • We have replaced our own preprocessing pipeline with that implemented in AFNI’s afni_proc.py, thus changing only the derivative files. This introduces a fix for an issue with our normalization (i.e., scaling) step and modernizes and standardizes the preprocessing applied to the NNDb derivative files. We have done a bit of testing and have found that results in both pipelines are quite similar in terms of the resulting spatial patterns of activity but with the benefit that the afni_proc.py results are 'cleaner' and statistically more robust.
    • Normalization

      • Emily Finn and Clare Grall at Dartmouth and Rick Reynolds and Paul Taylor at AFNI, discovered and showed us that the normalization procedure we used for the derivative files was less than ideal for timeseries runs of varying lengths. Specifically, the 3dDetrend flag -normalize makes 'the sum-of-squares equal to 1'. We had not thought through that an implication of this is that the resulting normalized timeseries amplitudes will be affected by run length, increasing as run length decreases (and maybe this should go in 3dDetrend’s help text). To demonstrate this, I wrote a version of 3dDetrend’s -normalize for R so you can see for yourselves by running the following code:
      # Generate a resting state (rs) timeseries (ts)
      # Install / load package to make fake fMRI ts
      # install.packages("neuRosim")
      library(neuRosim)
      # Generate a ts
      ts.rs <- simTSrestingstate(nscan=2000, TR=1, SNR=1)
      # 3dDetrend -normalize
      # R command version for 3dDetrend -normalize -polort 0 which normalizes by making "the sum-of-squares equal to 1"
      # Do for the full timeseries
      ts.normalised.long <- (ts.rs-mean(ts.rs))/sqrt(sum((ts.rs-mean(ts.rs))^2));
      # Do this again for a shorter version of the same timeseries
      ts.shorter.length <- length(ts.normalised.long)/4
      ts.normalised.short <- (ts.rs[1:ts.shorter.length]- mean(ts.rs[1:ts.shorter.length]))/sqrt(sum((ts.rs[1:ts.shorter.length]- mean(ts.rs[1:ts.shorter.length]))^2));
      # By looking at the summaries, it can be seen that the median values become  larger
      summary(ts.normalised.long)
      summary(ts.normalised.short)
      # Plot results for the long and short ts
      # Truncate the longer ts for plotting only
      ts.normalised.long.made.shorter <- ts.normalised.long[1:ts.shorter.length]
      # Give the plot a title
      title <- "3dDetrend -normalize for long (blue) and short (red) timeseries";
      plot(x=0, y=0, main=title, xlab="", ylab="", xaxs='i', xlim=c(1,length(ts.normalised.short)), ylim=c(min(ts.normalised.short),max(ts.normalised.short)));
      # Add zero line
      lines(x=c(-1,ts.shorter.length), y=rep(0,2), col='grey');
      # 3dDetrend -normalize -polort 0 for long timeseries
      lines(ts.normalised.long.made.shorter, col='blue');
      # 3dDetrend -normalize -polort 0 for short timeseries
      lines(ts.normalised.short, col='red');
      
    • Standardization/modernization

      • The above individuals also encouraged us to implement the afni_proc.py script over our own pipeline. It introduces at least three additional improvements: First, we now use Bob’s @SSwarper to align our anatomical files with an MNI template (now MNI152_2009_template_SSW.nii.gz) and this, in turn, integrates nicely into the afni_proc.py pipeline. This seems to result in a generally better or more consistent alignment, though this is only a qualitative observation. Second, all the transformations / interpolations and detrending are now done in fewers steps compared to our pipeline. This is preferable because, e.g., there is less chance of inadvertently reintroducing noise back into the timeseries (see Lindquist, Geuter, Wager, & Caffo 2019). Finally, many groups are advocating using tools like fMRIPrep or afni_proc.py to increase standardization of analyses practices in our neuroimaging community. This presumably results in less error, less heterogeneity and more interpretability of results across studies. Along these lines, the quality control (‘QC’) html pages generated by afni_proc.py are a real help in assessing data quality and almost a joy to use.
    • New afni_proc.py command line

      • The following is the afni_proc.py command line that we used to generate blurred and censored timeseries files. The afni_proc.py tool comes with extensive help and examples. As such, you can quickly understand our preprocessing decisions by scrutinising the below. Specifically, the following command is most similar to Example 11 for ‘Resting state analysis’ in the help file (see https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html): afni_proc.py \ -subj_id "$sub_id_name_1" \ -blocks despike tshift align tlrc volreg mask blur scale regress \ -radial_correlate_blocks tcat volreg \ -copy_anat anatomical_warped/anatSS.1.nii.gz \ -anat_has_skull no \ -anat_follower anat_w_skull anat anatomical_warped/anatU.1.nii.gz \ -anat_follower_ROI aaseg anat freesurfer/SUMA/aparc.a2009s+aseg.nii.gz \ -anat_follower_ROI aeseg epi freesurfer/SUMA/aparc.a2009s+aseg.nii.gz \ -anat_follower_ROI fsvent epi freesurfer/SUMA/fs_ap_latvent.nii.gz \ -anat_follower_ROI fswm epi freesurfer/SUMA/fs_ap_wm.nii.gz \ -anat_follower_ROI fsgm epi freesurfer/SUMA/fs_ap_gm.nii.gz \ -anat_follower_erode fsvent fswm \ -dsets media_?.nii.gz \ -tcat_remove_first_trs 8 \ -tshift_opts_ts -tpattern alt+z2 \ -align_opts_aea -cost lpc+ZZ -giant_move -check_flip \ -tlrc_base "$basedset" \ -tlrc_NL_warp \ -tlrc_NL_warped_dsets \ anatomical_warped/anatQQ.1.nii.gz \ anatomical_warped/anatQQ.1.aff12.1D \ anatomical_warped/anatQQ.1_WARP.nii.gz \ -volreg_align_to MIN_OUTLIER \ -volreg_post_vr_allin yes \ -volreg_pvra_base_index MIN_OUTLIER \ -volreg_align_e2a \ -volreg_tlrc_warp \ -mask_opts_automask -clfrac 0.10 \ -mask_epi_anat yes \ -blur_to_fwhm -blur_size $blur \ -regress_motion_per_run \ -regress_ROI_PC fsvent 3 \ -regress_ROI_PC_per_run fsvent \ -regress_make_corr_vols aeseg fsvent \ -regress_anaticor_fast \ -regress_anaticor_label fswm \ -regress_censor_motion 0.3 \ -regress_censor_outliers 0.1 \ -regress_apply_mot_types demean deriv \ -regress_est_blur_epits \ -regress_est_blur_errts \ -regress_run_clustsim no \ -regress_polort 2 \ -regress_bandpass 0.01 1 \ -html_review_style pythonic We used similar command lines to generate ‘blurred and not censored’ and the ‘not blurred and not censored’ timeseries files (described more fully below). We will provide the code used to make all derivative files available on our github site (https://github.com/lab-lab/nndb).

      We made one choice above that is different enough from our original pipeline that it is worth mentioning here. Specifically, we have quite long runs, with the average being ~40 minutes but this number can be variable (thus leading to the above issue with 3dDetrend’s -normalise). A discussion on the AFNI message board with one of our team (starting here, https://afni.nimh.nih.gov/afni/community/board/read.php?1,165243,165256#msg-165256), led to the suggestion that '-regress_polort 2' with '-regress_bandpass 0.01 1' be used for long runs. We had previously used only a variable polort with the suggested 1 + int(D/150) approach. Our new polort 2 + bandpass approach has the added benefit of working well with afni_proc.py.

      Which timeseries file you use is up to you but I have been encouraged by Rick and Paul to include a sort of PSA about this. In Paul’s own words: * Blurred data should not be used for ROI-based analyses (and potentially not for ICA? I am not certain about standard practice). * Unblurred data for ISC might be pretty noisy for voxelwise analyses, since blurring should effectively boost the SNR of active regions (and even good alignment won't be perfect everywhere). * For uncensored data, one should be concerned about motion effects being left in the data (e.g., spikes in the data). * For censored data: * Performing ISC requires the users to unionize the censoring patterns during the correlation calculation. * If wanting to calculate power spectra or spectral parameters like ALFF/fALFF/RSFA etc. (which some people might do for naturalistic tasks still), then standard FT-based methods can't be used because sampling is no longer uniform. Instead, people could use something like 3dLombScargle+3dAmpToRSFC, which calculates power spectra (and RSFC params) based on a generalization of the FT that can handle non-uniform sampling, as long as the censoring pattern is mostly random and, say, only up to about 10-15% of the data. In sum, think very carefully about which files you use. If you find you need a file we have not provided, we can happily generate different versions of the timeseries upon request and can generally do so in a week or less.

    • Effect on results

      • From numerous tests on our own analyses, we have qualitatively found that results using our old vs the new afni_proc.py preprocessing pipeline do not change all that much in terms of general spatial patterns. There is, however, an
  16. new 512x512x64 no normalize no augment

    • kaggle.com
    zip
    Updated Mar 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark A Lavin (2021). new 512x512x64 no normalize no augment [Dataset]. https://www.kaggle.com/markalavin/new-512x512x64-no-normalize-no-augment
    Explore at:
    zip(37680122587 bytes)Available download formats
    Dataset updated
    Mar 11, 2021
    Authors
    Mark A Lavin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Mark A Lavin

    Released under CC0: Public Domain

    Contents

  17. h

    ultrafeedback-qwen-32b-instruct-vanilla-router-length-normalize-bo32

    • huggingface.co
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guangxuan Xu (2025). ultrafeedback-qwen-32b-instruct-vanilla-router-length-normalize-bo32 [Dataset]. https://huggingface.co/datasets/gx-ai-architect/ultrafeedback-qwen-32b-instruct-vanilla-router-length-normalize-bo32
    Explore at:
    Dataset updated
    Mar 31, 2025
    Authors
    Guangxuan Xu
    Description

    gx-ai-architect/ultrafeedback-qwen-32b-instruct-vanilla-router-length-normalize-bo32 dataset hosted on Hugging Face and contributed by the HF Datasets community

  18. ARCS White Beam Vanadium Normalization Data for SNS Cycle 2022B (May 15 -...

    • osti.gov
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spallation Neutron Source (SNS) (2025). ARCS White Beam Vanadium Normalization Data for SNS Cycle 2022B (May 15 - Jun., 14, 2022) [Dataset]. http://doi.org/10.14461/oncat.data/2568320
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset provided by
    Office of Sciencehttp://www.er.doe.gov/
    Department of Energy Basic Energy Sciences Programhttp://science.energy.gov/user-facilities/basic-energy-sciences/
    Spallation Neutron Source (SNS)
    Description

    A data set used to normalize the detector response of the ARCS instrument see ARCS_226797.md in the data set for more details.

  19. n

    Methods for normalizing microbiome data: an ecological perspective

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Oct 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Donald T. McKnight; Roger Huerlimann; Deborah S. Bower; Lin Schwarzkopf; Ross A. Alford; Kyall R. Zenger (2018). Methods for normalizing microbiome data: an ecological perspective [Dataset]. http://doi.org/10.5061/dryad.tn8qs35
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 30, 2018
    Dataset provided by
    James Cook University
    University of New England
    Authors
    Donald T. McKnight; Roger Huerlimann; Deborah S. Bower; Lin Schwarzkopf; Ross A. Alford; Kyall R. Zenger
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description
    1. Microbiome sequencing data often need to be normalized due to differences in read depths, and recommendations for microbiome analyses generally warn against using proportions or rarefying to normalize data and instead advocate alternatives, such as upper quartile, CSS, edgeR-TMM, or DESeq-VS. Those recommendations are, however, based on studies that focused on differential abundance testing and variance standardization, rather than community-level comparisons (i.e., beta diversity), Also, standardizing the within-sample variance across samples may suppress differences in species evenness, potentially distorting community-level patterns. Furthermore, the recommended methods use log transformations, which we expect to exaggerate the importance of differences among rare OTUs, while suppressing the importance of differences among common OTUs. 2. We tested these theoretical predictions via simulations and a real-world data set. 3. Proportions and rarefying produced more accurate comparisons among communities and were the only methods that fully normalized read depths across samples. Additionally, upper quartile, CSS, edgeR-TMM, and DESeq-VS often masked differences among communities when common OTUs differed, and they produced false positives when rare OTUs differed. 4. Based on our simulations, normalizing via proportions may be superior to other commonly used methods for comparing ecological communities.
  20. m

    Bangla and Banglish E-Commerce Reviews Dataset for Aspect-Based Sentiment...

    • data.mendeley.com
    Updated Nov 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Nurnabi Shakil (2025). Bangla and Banglish E-Commerce Reviews Dataset for Aspect-Based Sentiment Analysis [Dataset]. http://doi.org/10.17632/n4n5y34p3s.1
    Explore at:
    Dataset updated
    Nov 3, 2025
    Authors
    Md Nurnabi Shakil
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is a manually annotated collection of 3,587 Bangla and Banglish e-commerce product reviews, curated for Aspect-Based Sentiment Analysis (ABSA) research in low-resource languages. Reviews were collected from Daraz, covering products in the electronics domain such as mobile phones, laptops, earphones, headphones, and CCTV cameras.

    The raw dataset initially contained 19,638 reviews, which were preprocessed to remove noise, normalize text, and filter irrelevant entries. Preprocessing steps included removing URLs, emails, and mentions; converting emojis to text; normalizing Banglish; reducing character elongation; ensuring meaningful sentence boundaries; and removing all reviews shorter than 5 words to maintain data quality and reliability. After cleaning, 10,657 reviews were retained.

    A subset of 3,587 reviews was manually annotated for ABSA. Each review contains one or more aspect-level sentiment labels (positive, negative, or neutral) covering five aspects: product quality, price, delivery, packaging, and seller service.

    Dataset Counts:

     Total original reviews: 19,638
    
     Total preprocessed reviews: 10,657
    
     Total annotated reviews: 3,587
    
     Languages (preprocessed):
    
      Bangla: 6,731
    
      Banglish: 2,797
    
      Mixed: 1,129
    

    Folder Structure:

     original/ – raw scraped reviews
    
     preprocessed/ – cleaned and normalized reviews, filtered for quality
    
     annotated/ – manually labeled ABSA reviews
    
     metadata/ – summary of review counts, language distribution
    

    Data quality was ensured through duplicate removal, filtering short reviews, manual validation, and annotation consistency checks. This dataset is ready to train and evaluate multilingual transformer models such as BanglaBERT, XLM-RoBERTa, and mBERT for multi-label ABSA tasks, and serves as a benchmark for Bangla–Banglish e-commerce sentiment research.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hemanth S (2022). Normalized Dataset [Dataset]. https://www.kaggle.com/datasets/hemanth012/normalized-dataset
Organization logo

Normalized Dataset

Explore at:
zip(1009250933 bytes)Available download formats
Dataset updated
Jun 15, 2022
Authors
Hemanth S
Description

Dataset

This dataset was created by Hemanth S

Contents

Search
Clear search
Close search
Google apps
Main menu