92 datasets found
  1. Introduction to ArcGIS Pro Part 2

    • lecturewithgis.co.uk
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2024). Introduction to ArcGIS Pro Part 2 [Dataset]. https://lecturewithgis.co.uk/datasets/introduction-to-arcgis-pro-part-2
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Attribute tables are an essential part of working with GIS. In addition to the spatial element, feature classes will have additional data associated to them which can be viewed within the attribute table.To open an attribute table...Right click a layer within the contents paneClick 'Attribute Table'.

  2. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • pacificgeoportal.com
    • sgie-wacaci.hub.arcgis.com
    • +1more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://www.pacificgeoportal.com/datasets/esri::sentinel-2-10m-land-use-land-cover-change-from-2018-to-2021-mature-support/explore
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  3. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    geojson, csv, kml, esri rest, html, zipAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  4. p

    Building Point Classification - New Zealand

    • pacificgeoportal.com
    • hub.arcgis.com
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2023). Building Point Classification - New Zealand [Dataset]. https://www.pacificgeoportal.com/content/ebc54f498df94224990cf5f6598a5665
    Explore at:
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into building and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Building is useful in applications such as high-quality 3D basemap creation, urban planning, and planning climate change response.Building could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Building in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.The model is trained with classified LiDAR that follows the The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 6 BuildingApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Auckland, Christchurch, Kapiti, Wellington Testing dataset - Auckland, WellingtonValidation/Evaluation dataset - Hutt City Dataset City Training Auckland, Christchurch, Kapiti, Wellington Testing Auckland, Wellington Validating HuttModel architectureThis model uses the SemanticQueryNetwork model architecture implemented in ArcGIS Pro.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.984921 0.975853 0.979762 Building 0.951285 0.967563 0.9584Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 75~%, Test: 25~%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-137.74 m to 410.50 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-17 to +17 Maximum points per block8192 Block Size50 Meters Class structure[0, 6]Sample resultsModel to classify a dataset with 23pts/m density Wellington city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story

  5. d

    Real-time kinematic (RTK) Drone-collected Data and Processed Models of Port...

    • dataone.org
    • osti.gov
    Updated Oct 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Buschow; Linchao Luo; William Mobley; Suzanne Pierce (2024). Real-time kinematic (RTK) Drone-collected Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2447557
    Explore at:
    Dataset updated
    Oct 26, 2024
    Dataset provided by
    ESS-DIVE
    Authors
    Paul Buschow; Linchao Luo; William Mobley; Suzanne Pierce
    Time period covered
    Jun 17, 2024 - Jun 20, 2024
    Area covered
    Description

    The Southeast Texas Urban Integrated field lab’s Co-design team captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024. Aerial photos taken were through autonomous flight, and models were processed through the DroneDeploy engine. All aerial photos are in .JPG format and contained in zipped files for each area. The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point Cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857. For using these data: - The Adobe Suite gives you great software to open .Tif files. - You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains. - Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk. - You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files. - The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file. This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset will support researchers' decision-making processes under uncertainties.

  6. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, San Miguel Island
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  7. d

    Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +1more
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linchao Luo; Fernanda Leite (2024). Aerial Data and Processed Models of Port Arthur Coastal Neighborhood and Pleasure Island Golf Course, June 2024 [Dataset]. http://doi.org/10.15485/2406464
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    ESS-DIVE
    Authors
    Linchao Luo; Fernanda Leite
    Time period covered
    Jun 17, 2024 - Jun 20, 2024
    Area covered
    Description

    Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu. We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024. Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area. The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857. For using these data: - The Adobe Suite gives you great software to open .Tif files. - You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains. - Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk. - You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files. - The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file. This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.

  8. c

    Watershed Boundary Dataset HUC 10s

    • resilience.climate.gov
    • hub.arcgis.com
    • +4more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 10s [Dataset]. https://resilience.climate.gov/maps/esri::watershed-boundary-dataset-huc-10s
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  9. W

    Wildfire Perimeters (NIFC)

    • wifire-data.sdsc.edu
    csv, esri rest +4
    Updated Jun 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). Wildfire Perimeters (NIFC) [Dataset]. https://wifire-data.sdsc.edu/dataset/wildfire-perimeters-nifc
    Explore at:
    geojson, zip, kml, html, esri rest, csvAvailable download formats
    Dataset updated
    Jun 22, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This ArcGIS Online hosted feature service displays perimeters from the National Incident Feature Service (NIFS) that meet ALL of the following criteria:

    • FeatureCategory = 'Wildfire Daily Fire Perimeter'
    • IsVisible = 'Yes'
    • FeatureAccess = 'Public'
    • FeatureStatus = 'Approved'.

    This dataset is made up of current, active wildfires. On a weekly basis, fires meeting specific criteria are removed from the source service. After removal, those perimeters can be found in the associated "Archived Wildfire Perimeters" service. Criteria include:
    • Perimeters are identified with an IRWIN ID that has non-null values in IRWIN for ContainmentDateTime, ControlDateTime, or FireOutDateTime
    • The most recent controlled/contained/fire out date is greater than 14 days old
    • No IRWIN ID
    • Last edit (based on DateCurrent) is greater than 30 days old
    This hosted feature service is not "live", but is updated every 5 minutes to reflect changes to perimeters posted to the National Incident Feature Service. It is updated from operational data and may not reflect current conditions on the ground. For a better understanding of the workflows involved in mapping and sharing fire perimeter data, see the NWCG Geographic Information System Standard Operating Procedures On Incidents (GSTOP) and most recent addendums: https://www.nwcg.gov/publications/936.

    To use this service from the Open Data site in a web map, click the APIs down arrow, copy the GeoService URL (remove the /query? statement) or just copy and paste this URL and add it to a web map (Add > Add Layer from Web): https://services3.arcgis.com/T4QMspbfLg3qTGWY/arcgis/rest/services/Public_Wildfire_Perimeters_View/FeatureServer

    From within ArcGIS Online, open this feature service in a new web map by clicking Open in Map Viewer.

    Once this service has been added to a web map, the features can be filtered by incident name, GACC, Create Date, or Current Date, keeping in mind that not all perimeters are fully attributed. Not all data are editable through this service and delete is disabled. To delete features, open in ArcGIS Pro or ArcMap.

    If your perimeter is not found in the Current Wildfire Perimeters, check in the Archived dataset: https://nifc.maps.arcgis.com/home/item.html?id=090a23c0470d4ef9a27142ee9b200023

  10. Watershed Boundary Dataset HUC 8s

    • gisnation-sdi.hub.arcgis.com
    • resilience.climate.gov
    • +5more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 8s [Dataset]. https://gisnation-sdi.hub.arcgis.com/datasets/esri::watershed-boundary-dataset-huc-8s
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Watershed Boundary Dataset" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Watershed Boundary Dataset" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  11. a

    Soil Survey Geographic Database (SSURGO) Downloader

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Soil Survey Geographic Database (SSURGO) Downloader [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/documents/305ef916da574a71877edb15c3f47f08
    Explore at:
    Dataset updated
    Jun 17, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Description

    The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updatesTitle: Soil Survey Geographic Database (SSURGO) DownloaderItem Type: Web Mapping Application URLSummary: Download ready-to-use project packages with over 170 attributes derived from the SSURGO (Soil Survey Geographic Database) dataset.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: https://nmcdc.maps.arcgis.com/home/item.html?id=cdc49bd63ea54dd2977f3f2853e07fff link to Esri web mapping applicationFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=305ef916da574a71877edb15c3f47f08#overviewUID: 26Data Requested: Ag CensusMethod of Acquisition: Esri web mapDate Acquired: 6/16/22Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDINGDOCUMENTATION FROM DATA SOURCE URL: This application provides quick access to ready-to-use project packages filled with useful soil data derived from the SSURGO dataset.To use this application, navigate to your study area and click the map. A pop-up window will open. Click download and the project package will be copied to your computer. Double click the downloaded package to open it in ArcGIS Pro. Alt + click on the layer in the table of contents to zoom to the subbasin.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryThe map packages were created from the October 2021 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a

  12. Watershed Boundary Dataset HUC 2s

    • sal-urichmond.hub.arcgis.com
    • resilience.climate.gov
    • +3more
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Watershed Boundary Dataset HUC 2s [Dataset]. https://sal-urichmond.hub.arcgis.com/items/bc0cc62461d1442580412b4fdd49d2b4
    Explore at:
    Dataset updated
    Sep 6, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.Dataset SummaryPhenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD)Geographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American SamoaProjection: Web MercatorUpdate Frequency: AnnualVisible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.Source: United States Geological Survey (WBD)Data Vintage: January 7, 2025What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "subsidence" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "subsidence" in the search box, browse to the layer then click OK.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  13. D

    OC 2017 LiDAR Image Service

    • detroitdata.org
    • portal.datadrivendetroit.org
    • +5more
    Updated May 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oakland County, Michigan (2021). OC 2017 LiDAR Image Service [Dataset]. https://detroitdata.org/dataset/oc-2017-lidar-image-service1
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    May 18, 2021
    Dataset provided by
    Oakland County, Michigan
    Description

    BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE.

    The Classified Point Cloud (LAS) for the 2017 Michigan LiDAR project covering approximately 907 square miles, covering Oakland County. LAS data products are suitable for 1 foot contour generation. USGS LiDAR Base Specification 1.2, QL2. 19.6 cm NVA.

    This data is for planning purposes only and should not be used for legal or cadastral purposes. Any conclusions drawn from analysis of this information are not the responsibility of Sanborn Map Company. Users should be aware that temporal changes may have occurred since this dataset was collected and some parts of this dataset may no longer represent actual surface conditions. Users should not use these data for critical applications without a full awareness of its limitations.

    This service is best used directly within ArcMap or ArcGIS Pro.If the raw LiDAR points are needed, use these clients to extract project area size portions. Due to the density of the data, downloading the entire County from this service is not possible. For further questions, contact the Oakland County Service Center at 248-858-8812, servicecenter@oakgov.com.

  14. Deutsche Bahn Haltestellen

    • opendata.coworkingmap.de
    • utilities-esri-de-content.hub.arcgis.com
    • +5more
    Updated Jul 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2019). Deutsche Bahn Haltestellen [Dataset]. https://opendata.coworkingmap.de/maps/esri-de-content::deutsche-bahn-haltestellen
    Explore at:
    Dataset updated
    Jul 24, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Deutschland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Übersicht Haltestellen DB Station&Service AG. Dieser Datenbestand kann Fehler enthalten und/oder unvollständig sein. DB Station&Service AG übernimmt keine Haftung und leistet keinerlei Gewähr.Quelle: Open Data der Deutsche Bahn AG.Verarbeitungsprozesse: CSV Datei wurde in ArcGIS Pro importiert, georeferenziert, nach WebMercator projiziert und als Feature Service in ArcGIS Online veröffentlicht.

  15. O

    Connecticut State Parcel Layer 2023

    • data.ct.gov
    • geodata.ct.gov
    • +2more
    application/rdfxml +5
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Policy and Management (2025). Connecticut State Parcel Layer 2023 [Dataset]. https://data.ct.gov/Environment-and-Natural-Resources/Connecticut-State-Parcel-Layer-2023/v875-mr5r/data
    Explore at:
    application/rssxml, csv, xml, tsv, json, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Office of Policy and Management
    Area covered
    Connecticut
    Description

    The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2023 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually.

    These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 12/08/2023 from data collected in 2022-2023. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.

    CAMA Notes:

    The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,353,595 entries and information on property assessments and other relevant attributes.

    • CAMA was provided by the towns.

    • Canaan parcels are viewable, but no additional information is available since no CAMA data was submitted.

    Spatial Data Notes:

    Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,247,506 parcels.

    • No alteration has been made to the spatial geometry of the data.

    • Fields that are associated with CAMA data were provided by towns.

    • The data fields that have information from the CAMA were sourced from the towns’ CAMA data.

    • If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.

    • Linking fields were renamed to "Link".

    • All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.

    • Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.

    • Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.

    • Field names for town (Muni, Municipality) were renamed to "Town Name".

    The attributes included in the data:

    • Town Name

    • Owner

    • Co-Owner

    • Link

    • Editor

    • Edit Date

    • Collection year – year the parcels were submitted

    • Location

    • Mailing Address

    • Mailing City

    • Mailing State

    • Assessed Total

    • Assessed Land

    • Assessed Building

    • Pre-Year Assessed Total

    • Appraised Land

    • Appraised Building

    • Appraised Outbuilding

    • Condition

    • Model

    • Valuation

    • Zone

    • State Use

    • State Use Description

    • Living Area

    • Effective Area

    • Total rooms

    • Number of bedrooms

    • Number of Baths

    • Number of Half-Baths

    • Sale Price

    • Sale Date

    • Qualified

    • Occupancy

    • Prior Sale Price

    • Prior Sale Date

    • Prior Book and Page

    • Planning Region

    *Please note that not all parcels have a link to a CAMA entry.

    *If any discrepancies are discovered within the data, whether pertaining to geographical inaccuracies or attribute inaccuracy, please directly contact the respective municipalities to request any necessary amendments

    As of 2/15/2023 - Occupancy, State Use, State Use Description, and Mailing State added to dataset

    Additional information about the specifics of data availability and compliance will be coming soon.

  16. p

    Fire Response Distance (Minutes) - Station 201

    • open.penticton.ca
    • hub.arcgis.com
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CityOfPenticton (2023). Fire Response Distance (Minutes) - Station 201 [Dataset]. https://open.penticton.ca/datasets/11828623259e43ada37f20cf77b9ae4e
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    CityOfPenticton
    Area covered
    Description

    Travel Distance, in Minutes , from Fire Station 201.

    This dataset was create in ArcGIS Pro using Generate Service Areas (Ready To Use) to determine response time in minutes away from Fire Station 201.

  17. a

    Fire Response Distance (Kilometres) - Station 202

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • open.penticton.ca
    • +2more
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CityOfPenticton (2023). Fire Response Distance (Kilometres) - Station 202 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/5d5c988899a249f599e85829d63ef926_5/explore
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    CityOfPenticton
    Area covered
    Description

    Travel Distance, in kilometres (KM), from Fire Station 202.

    This dataset was create in ArcGIS Pro using Generate Service Areas (Ready To Use) to determine distance away from the two fire halls.

  18. USGS Historical Topographic Map Explorer

    • communities-amerigeoss.opendata.arcgis.com
    • amerigeo.org
    • +2more
    Updated Jun 26, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). USGS Historical Topographic Map Explorer [Dataset]. https://communities-amerigeoss.opendata.arcgis.com/items/15118046711648a783844109bfdd2203
    Explore at:
    Dataset updated
    Jun 26, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:Find a location of interest.View the maps.Compare the maps.Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location. Save the maps in an ArcGIS Online web map.

    Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.

  19. CDTFA Mobile

    • data.ca.gov
    • catalog.ogopendata.com
    • +5more
    Updated Aug 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Tax and Fee Administration (2020). CDTFA Mobile [Dataset]. https://data.ca.gov/dataset/cdtfa-mobile
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Aug 7, 2020
    Dataset authored and provided by
    California Department of Tax and Fee Administrationhttp://cdtfa.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The CDTFA Mobile app will enable you to find a sales and use tax rate, locate and contact our field offices, and conveniently access our website and online services.


    FEATURES


    • California Sales and Use Tax Rates: Find a tax rate by address, city, or your current location

    • CDTFA Field Offices: Get an office's address and other details, and with the tap of a button call an office or open its location in the Maps application to get driving directions

    • Website: View our website right within the app

    • Online Services: Access our online services directly with the tap of a button

    • And more features will be coming soon!

  20. GLDAS Evapotranspiration 2000 - Present

    • climate-arcgis-content.hub.arcgis.com
    • cacgeoportal.com
    • +7more
    Updated Jun 30, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). GLDAS Evapotranspiration 2000 - Present [Dataset]. https://climate-arcgis-content.hub.arcgis.com/datasets/23605c21c353454892978587d1b3d8bb
    Explore at:
    Dataset updated
    Jun 30, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Most of us understand the hydrologic cycle in terms of the visible paths that water can take such as rainstorms, rivers, waterfalls and lakes. However, an even larger volume of water flows through the air all around us in two invisible paths: evaporation and transpiration. These two paths together are referred to as evapotranpsiration (ET), and claim 61% of all terrestrial precipitation. Solar radiation, air temperature, wind speed, soil moisture, and land cover all affect the rate of evapotranspiration, which is a major driver of the global water cycle, and key component of most catchments' water budget. This map contains a historical record showing the volume of water lost to evapotranspiration globally during each month from March 2000 to the present.Dataset SummaryThe GLDAS Evapotranspiration layer is a time-enabled image service that shows total actual evapotranspiration monthly from 2000 to the present, measured in millimeters of water loss. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!Phenomenon Mapped: EvapotranspirationUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales. By applying the "Calculate Anomaly" processing template, it is also possible to view these data in terms of deviation from the mean. Mean evapotranspiration for a given month is calculated over the entire period of record - 2000 to present.Time: This is a time-enabled layer. By default, it will show the first month from the map's time extent. Or, if time animation is disabled, a time range can be set using the layer's multidimensional settings. If you wish to calculate the average, sum, or min/max over the time extent, change the mosaic operator used to resolve overlapping pixels. In ArcGIS Online, you do this in the "Image Display Order" tab. In ArcGIS Pro, use the "Data" ribbon. In ArcMap, it is in the 'Mosaic' tab of the layer properties window. The minimum time extent is one month, and the maximum is 8 years. Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri UK Education (2024). Introduction to ArcGIS Pro Part 2 [Dataset]. https://lecturewithgis.co.uk/datasets/introduction-to-arcgis-pro-part-2
Organization logo

Introduction to ArcGIS Pro Part 2

Explore at:
Dataset updated
Dec 3, 2024
Dataset provided by
Esrihttp://esri.com/
Authors
Esri UK Education
Description

Attribute tables are an essential part of working with GIS. In addition to the spatial element, feature classes will have additional data associated to them which can be viewed within the attribute table.To open an attribute table...Right click a layer within the contents paneClick 'Attribute Table'.

Search
Clear search
Close search
Google apps
Main menu