Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.
The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This
Facebook
TwitterThis dataset includes all the data and R code needed to reproduce the analyses in a forthcoming manuscript:Copes, W. E., Q. D. Read, and B. J. Smith. Environmental influences on drying rate of spray applied disinfestants from horticultural production services. PhytoFrontiers, DOI pending.Study description: Instructions for disinfestants typically specify a dose and a contact time to kill plant pathogens on production surfaces. A problem occurs when disinfestants are applied to large production areas where the evaporation rate is affected by weather conditions. The common contact time recommendation of 10 min may not be achieved under hot, sunny conditions that promote fast drying. This study is an investigation into how the evaporation rates of six commercial disinfestants vary when applied to six types of substrate materials under cool to hot and cloudy to sunny weather conditions. Initially, disinfestants with low surface tension spread out to provide 100% coverage and disinfestants with high surface tension beaded up to provide about 60% coverage when applied to hard smooth surfaces. Disinfestants applied to porous materials were quickly absorbed into the body of the material, such as wood and concrete. Even though disinfestants evaporated faster under hot sunny conditions than under cool cloudy conditions, coverage was reduced considerably in the first 2.5 min under most weather conditions and reduced to less than or equal to 50% coverage by 5 min. Dataset contents: This dataset includes R code to import the data and fit Bayesian statistical models using the model fitting software CmdStan, interfaced with R using the packages brms and cmdstanr. The models (one for 2022 and one for 2023) compare how quickly different spray-applied disinfestants dry, depending on what chemical was sprayed, what surface material it was sprayed onto, and what the weather conditions were at the time. Next, the statistical models are used to generate predictions and compare mean drying rates between the disinfestants, surface materials, and weather conditions. Finally, tables and figures are created. These files are included:Drying2022.csv: drying rate data for the 2022 experimental runWeather2022.csv: weather data for the 2022 experimental runDrying2023.csv: drying rate data for the 2023 experimental runWeather2023.csv: weather data for the 2023 experimental rundisinfestant_drying_analysis.Rmd: RMarkdown notebook with all data processing, analysis, and table creation codedisinfestant_drying_analysis.html: rendered output of notebookMS_figures.R: additional R code to create figures formatted for journal requirementsfit2022_discretetime_weather_solar.rds: fitted brms model object for 2022. This will allow users to reproduce the model prediction results without having to refit the model, which was originally fit on a high-performance computing clusterfit2023_discretetime_weather_solar.rds: fitted brms model object for 2023data_dictionary.xlsx: descriptions of each column in the CSV data files
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By SocialGrep [source]
A subreddit dataset is a collection of posts and comments made on Reddit's /r/datasets board. This dataset contains all the posts and comments made on the /r/datasets subreddit from its inception to March 1, 2022. The dataset was procured using SocialGrep. The data does not include usernames to preserve users' anonymity and to prevent targeted harassment
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In order to use this dataset, you will need to have a text editor such as Microsoft Word or LibreOffice installed on your computer. You will also need a web browser such as Google Chrome or Mozilla Firefox.
Once you have the necessary software installed, open the The Reddit Dataset folder and double-click on the the-reddit-dataset-dataset-posts.csv file to open it in your preferred text editor.
In the document, you will see a list of posts with the following information for each one: title, sentiment, score, URL, created UTC, permalink, subreddit NSFW status, and subreddit name.
You can use this information to analyze trends in data sets posted on /r/datasets over time. For example, you could calculate the average score for all posts and compare it to the average score for posts in specific subReddits. Additionally, sentiment analysis could be performed on the titles of posts to see if there is a correlation between positive/negative sentiment and upvotes/downvotes
- Finding correlations between different types of datasets
- Determining which datasets are most popular on Reddit
- Analyzing the sentiments of post and comments on Reddit's /r/datasets board
If you use this dataset in your research, please credit the original authors.
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: the-reddit-dataset-dataset-comments.csv | Column name | Description | |:-------------------|:---------------------------------------------------| | type | The type of post. (String) | | subreddit.name | The name of the subreddit. (String) | | subreddit.nsfw | Whether or not the subreddit is NSFW. (Boolean) | | created_utc | The time the post was created, in UTC. (Timestamp) | | permalink | The permalink for the post. (String) | | body | The body of the post. (String) | | sentiment | The sentiment of the post. (String) | | score | The score of the post. (Integer) |
File: the-reddit-dataset-dataset-posts.csv | Column name | Description | |:-------------------|:---------------------------------------------------| | type | The type of post. (String) | | subreddit.name | The name of the subreddit. (String) | | subreddit.nsfw | Whether or not the subreddit is NSFW. (Boolean) | | created_utc | The time the post was created, in UTC. (Timestamp) | | permalink | The permalink for the post. (String) | | score | The score of the post. (Integer) | | domain | The domain of the post. (String) | | url | The URL of the post. (String) | | selftext | The self-text of the post. (String) | | title | The title of the post. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit SocialGrep.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
I created these files and analysis as part of working on a case study for the Google Data Analyst certificate.
Question investigated: Do annual members and casual riders use Cyclistic bikes differently? Why do we want to know?: Knowing bike usage/behavior by rider type will allow the Marketing, Analytics, and Executive team stakeholders to design, assess, and approve appropriate strategies that drive profitability.
I used the script noted below to clean the files and then added some additional steps to create the visualizations to complete my analysis. The additional steps are noted in corresponding R Markdown file for this data set.
Files: most recent 1 year of data available, Divvy_Trips_2019_Q2.csv, Divvy_Trips_2019_Q3.csv, Divvy_Trips_2019_Q4.csv, Divvy_Trips_2020_Q1.csv Source: Downloaded from https://divvy-tripdata.s3.amazonaws.com/index.html
Data cleaning script: followed this script to clean and merge files https://docs.google.com/document/d/1gUs7-pu4iCHH3PTtkC1pMvHfmyQGu0hQBG5wvZOzZkA/copy
Note: Combined data set has 3,876,042 rows, so you will likely need to run R analysis on your computer (e.g., R Console) rather than in the cloud (e.g., RStudio Cloud)
This was my first attempt to conduct an analysis in R and create the R Markdown file. As you might guess, it was an eye-opening experience, with both exciting discoveries and aggravating moments.
One thing I have not yet been able to figure out is how to add a legend to the map. I was able to get a legend to appear on a separate (empty) map, but not on the map you will see here.
I am also interested to see what others did with this analysis - what were the findings and insights you found?
Facebook
TwitterTo make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.
You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:
df<-read.csv('uber.csv')
df_black<-subset(uber_df, uber_df$name == 'Black')
write.csv(df_black, "nameofthefileyouwanttosaveas.csv")
getwd()
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
# Annotated 12 lead ECG dataset Contain 827 ECG tracings from different patients, annotated by several cardiologists, residents and medical students. It is used as test set on the paper: "Automatic Diagnosis of the Short-Duration12-Lead ECG using a Deep Neural Network". It contain annotations about 6 different ECGs abnormalities: - 1st degree AV block (1dAVb); - right bundle branch block (RBBB); - left bundle branch block (LBBB); - sinus bradycardia (SB); - atrial fibrillation (AF); and, - sinus tachycardia (ST). ## Folder content: - `ecg_tracings.hdf5`: HDF5 file containing a single dataset named `tracings`. This dataset is a `(827, 4096, 12)` tensor. The first dimension correspond to the 827 different exams from different patients; the second dimension correspond to the 4096 signal samples; the third dimension to the 12 different leads of the ECG exam. The signals are sampled at 400 Hz. Some signals originally have a duration of 10 seconds (10 * 400 = 4000 samples) and others of 7 seconds (7 * 400 = 2800 samples). In order to make them all have the same size (4096 samples) we fill them with zeros on both sizes. For instance, for a 7 seconds ECG signal with 2800 samples we include 648 samples at the beginning and 648 samples at the end, yielding 4096 samples that are them saved in the hdf5 dataset. All signal are represented as floating point numbers at the scale 1e-4V: so it should be multiplied by 1000 in order to obtain the signals in V. In python, one can read this file using the following sequence: ```python import h5py with h5py.File(args.tracings, "r") as f: x = np.array(f['tracings']) ``` - The file `attributes.csv` contain basic patient attributes: sex (M or F) and age. It contain 827 lines (plus the header). The i-th tracing in `ecg_tracings.hdf5` correspond to the i-th line. - `annotations/`: folder containing annotations csv format. Each csv file contain 827 lines (plus the header). The i-th line correspond to the i-th tracing in `ecg_tracings.hdf5` correspond to the in all csv files. The csv files all have 6 columns `1dAVb, RBBB, LBBB, SB, AF, ST` corresponding to weather the annotator have detect the abnormality in the ECG (`=1`) or not (`=0`). 1. `cardiologist[1,2].csv` contain annotations from two different cardiologist. 2. `gold_standard.csv` gold standard annotation for this test dataset. When the cardiologist 1 and cardiologist 2 agree, the common diagnosis was considered as gold standard. In cases where there was any disagreement, a third senior specialist, aware of the annotations from the other two, decided the diagnosis. 3. `dnn.csv` prediction from the deep neural network described in "Automatic Diagnosis of the Short-Duration 12-Lead ECG using a Deep Neural Network". The threshold is set in such way it maximizes the F1 score. 4. `cardiology_residents.csv` annotations from two 4th year cardiology residents (each annotated half of the dataset). 5. `emergency_residents.csv` annotations from two 3rd year emergency residents (each annotated half of the dataset). 6. `medical_students.csv` annotations from two 5th year medical students (each annotated half of the dataset).
Facebook
TwitterThis archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128
Facebook
TwitterThis dataset contains files reconstructing single-cell data presented in 'Reference transcriptomics of porcine peripheral immune cells created through bulk and single-cell RNA sequencing' by Herrera-Uribe & Wiarda et al. 2021. Samples of peripheral blood mononuclear cells (PBMCs) were collected from seven pigs and processed for single-cell RNA sequencing (scRNA-seq) in order to provide a reference annotation of porcine immune cell transcriptomics at enhanced, single-cell resolution. Analysis of single-cell data allowed identification of 36 cell clusters that were further classified into 13 cell types, including monocytes, dendritic cells, B cells, antibody-secreting cells, numerous populations of T cells, NK cells, and erythrocytes. Files may be used to reconstruct the data as presented in the manuscript, allowing for individual query by other users. Scripts for original data analysis are available at https://github.com/USDA-FSEPRU/PorcinePBMCs_bulkRNAseq_scRNAseq. Raw data are available at https://www.ebi.ac.uk/ena/browser/view/PRJEB43826. Funding for this dataset was also provided by NRSP8: National Animal Genome Research Program (https://www.nimss.org/projects/view/mrp/outline/18464). Resources in this dataset:Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells 10X Format. File Name: PBMC7_AllCells.zipResource Description: Zipped folder containing PBMC counts matrix, gene names, and cell IDs. Files are as follows: matrix of gene counts* (matrix.mtx.gx) gene names (features.tsv.gz) cell IDs (barcodes.tsv.gz) *The ‘raw’ count matrix is actually gene counts obtained following ambient RNA removal. During ambient RNA removal, we specified to calculate non-integer count estimations, so most gene counts are actually non-integer values in this matrix but should still be treated as raw/unnormalized data that requires further normalization/transformation. Data can be read into R using the function Read10X().Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells Metadata. File Name: PBMC7_AllCells_meta.csvResource Description: .csv file containing metadata for cells included in the final dataset. Metadata columns include: nCount_RNA = the number of transcripts detected in a cell nFeature_RNA = the number of genes detected in a cell Loupe = cell barcodes; correspond to the cell IDs found in the .h5Seurat and 10X formatted objects for all cells prcntMito = percent mitochondrial reads in a cell Scrublet = doublet probability score assigned to a cell seurat_clusters = cluster ID assigned to a cell PaperIDs = sample ID for a cell celltypes = cell type ID assigned to a cellResource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells PCA Coordinates. File Name: PBMC7_AllCells_PCAcoord.csvResource Description: .csv file containing first 100 PCA coordinates for cells. Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells t-SNE Coordinates. File Name: PBMC7_AllCells_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells UMAP Coordinates. File Name: PBMC7_AllCells_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells t-SNE Coordinates. File Name: PBMC7_CD4only_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells UMAP Coordinates. File Name: PBMC7_CD4only_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells UMAP Coordinates. File Name: PBMC7_GDonly_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells t-SNE Coordinates. File Name: PBMC7_GDonly_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gene Annotation Information. File Name: UnfilteredGeneInfo.txtResource Description: .txt file containing gene nomenclature information used to assign gene names in the dataset. 'Name' column corresponds to the name assigned to a feature in the dataset.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells H5Seurat. File Name: PBMC7.tarResource Description: .h5Seurat object of all cells in PBMC dataset. File needs to be untarred, then read into R using function LoadH5Seurat().
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The DIAMAS project investigates Institutional Publishing Service Providers (IPSP) in the broadest sense, with a special focus on those publishing initiatives that do not charge fees to authors or readers. To collect information on Institutional Publishing in the ERA, a survey was conducted among IPSPs between March-May 2024. This dataset contains aggregated data from the 685 valid responses to the DIAMAS survey on Institutional Publishing.
The dataset supplements D2.3 Final IPSP landscape Report Institutional Publishing in the ERA: results from the DIAMAS survey.
The data
Basic aggregate tabular data
Full individual survey responses are not being shared to prevent the easy identification of respondents (in line with conditions set out in the survey questionnaire). This dataset contains full tables with aggregate data for all questions from the survey, with the exception of free-text responses, from all 685 survey respondents. This includes, per question, overall totals and percentages for the answers given as well the breakdown by both IPSP-types: institutional publishers (IPs) and service providers (SPs). Tables at country level have not been shared, as cell values often turned out to be too low to prevent potential identification of respondents. The data is available in csv and docx formats, with csv files grouped and packaged into ZIP files. Metadata describing data type, question type, as well as question response rate, is available in csv format. The R code used to generate the aggregate tables is made available as well.
Files included in this dataset
survey_questions_data_description.csv - metadata describing data type, question type, as well as question response rate per survey question.
tables_raw_all.zip - raw tables (csv format) with aggregated data per question for all respondents, with the exception of free-text responses. Questions with multiple answers have a table for each answer option. Zip file contains 180 csv files.
tables_raw_IP.zip - as tables_raw_all.zip, for responses from institutional publishers (IP) only. Zip file contains 180 csv files.
tables_raw_SP.zip - as tables_raw_all.zip, for responses from service providers (SP) only. Zip file contains 170 csv files.
tables_formatted_all.docx - formatted tables (docx format) with aggregated data per question for all respondents, with the exception of free-text responses. Questions with multiple answers have a table for each answer option.
tables_formatted_IP.docx - as tables_formatted_all.docx, for responses from institutional publishers (IP) only.
tables_formatted_SP.docx - as tables_formatted_all.docx, for responses from service providers (SP) only.
DIAMAS_Tables_single.R - R script used to generate raw tables with aggregated data for all single response questions
DIAMAS_Tables_multiple.R - R script used to generate raw tables with aggregated data for all multiple response questions
DIAMAS_Tables_layout.R - R script used to generate document with formatted tables from raw tables with aggregated data
DIAMAS Survey on Instititutional Publishing - data availability statement (pdf)
All data are made available under a CC0 license.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies.
Methods
This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies"
Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005
For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub.
The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub.
The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results.
Sequence_Analysis.Rmd has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd and Figures.Rmd. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program.
To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper.
Using Identifying_Recombinant_Reads.Rmd, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd.
Figures.Rmd used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.
Facebook
TwitterThis module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.
Facebook
TwitterWriting process data of 90 healthy elderly (50 - 90 years) were obtained. Each of them completed a typed sentence production task that consisted of 40 trials. Time on task, production time, and pause times before sentences, between words and within words were logged with a keystroke logging tool (ScriptLog). The data were used to examine the influences of normal ageing and verb transitivity on sentence production. The underlying aim was to provide a foundation for further research on sentence production in Alzheimer's disease (AD).
This data set contains the CSV files that were used for the analyses and the corresponding R script. Note that the files contain the data before data reduction (still containing, e.g., participants that were eventually not included in the analyses, or sentences with errors); the R script includes the necessary code for data reduction. This data set also contains the stimuli that were used in the experiment (a subset of images from the Open Linguistic Picture Database; Paesen & Meulemans, 2020).
The paper is currently under review. The data will be available as soon as it is accepted for publication.
Facebook
TwitterWelcome to my Kickstarter case study! In this project I’m trying to understand what the success’s factors for a Kickstarter campaign are, analyzing an available public dataset from Web Robots. The process of analysis will follow the data analysis roadmap: ASK, PREPARE, PROCESS, ANALYZE, SHARE and ACT.
ASK
Different questions will guide my analysis: 1. Is the campaign duration influencing the success of the project? 2. Is it the chosen funding budget? 3. Which category of campaign is the most likely to be successful?
PREPARE
I’m using the Kickstarter Datasets publicly available on Web Robots. Data are scraped using a bot which collects the data in CSV format once a month and all the data are divided into CSV files. Each table contains: - backers_count : number of people that contributed to the campaign - blurb : a captivating text description of the project - category : the label categorizing the campaign (technology, art, etc) - country - created_at : day and time of campaign creation - deadline : day and time of campaign max end - goal : amount to be collected - launched_at : date and time of campaign launch - name : name of campaign - pledged : amount of money collected - state : success or failure of the campaign
Each month scraping produce a huge amount of CSVs, so for an initial analysis I decided to focus on three months: November and December 2023, and January 2024. I’ve downloaded zipped files which once unzipped contained respectively: 7 CSVs (November 2023), 8 CSVs (December 2023), 8 CSVs (January 2024). Each month was divided into a specific folder.
Having a first look at the spreadsheets, it’s clear that there is some need for cleaning and modification: for example, dates and times are shown in Unix code, there are multiple columns that are not helpful for the scope of my analysis, currencies need to be uniformed (some are US$, some GB£, etc). In general, I have all the data that I need to answer my initial questions, identify trends, and make predictions.
PROCESS
I decided to use R to clean and process the data. For each month I started setting a new working environment in its own folder. After loading the necessary libraries:
R
library(tidyverse)
library(lubridate)
library(ggplot2)
library(dplyr)
library(tidyr)
I scripted a general R code that searches for CSVs files in the folder, open them as separate variable and into a single data frame:
csv_files <- list.files(pattern = "\\.csv$")
data_frames <- list()
for (file in csv_files) {
variable_name <- sub("\\.csv$", "", file)
assign(variable_name, read.csv(file))
data_frames[[variable_name]] <- get(variable_name)
}
Next, I converted some columns in numeric values because I was running into types error when trying to merge all the CSVs into a single comprehensive file.
data_frames <- lapply(data_frames, function(df) {
df$converted_pledged_amount <- as.numeric(df$converted_pledged_amount)
return(df)
})
data_frames <- lapply(data_frames, function(df) {
df$usd_exchange_rate <- as.numeric(df$usd_exchange_rate)
return(df)
})
data_frames <- lapply(data_frames, function(df) {
df$usd_pledged <- as.numeric(df$usd_pledged)
return(df)
})
In each folder I then ran a command to merge the CSVs in a single file (one for November 2023, one for December 2023 and one for January 2024):
all_nov_2023 = bind_rows(data_frames)
all_dec_2023 = bind_rows(data_frames)
all_jan_2024 = bind_rows(data_frames)`
After merging I converted the UNIX code datestamp into a readable datetime for the columns “created”, “launched”, “deadline” and deleted all the columns that had these data set to 0. I also filtered the values into the “slug” columns to show only the category of the campaign, without unnecessary information for the scope of my analysis. The final table was then saved.
filtered_dec_2023 <- all_dec_2023 %>% #this was modified according to the considered month
select(blurb, backers_count, category, country, created_at, launched_at, deadline,currency, usd_exchange_rate, goal, pledged, state) %>%
filter(created_at != 0 & deadline != 0 & launched_at != 0) %>%
mutate(category_slug = sub('.*?"slug":"(.*?)".*', '\\1', category)) %>%
mutate(created = as.POSIXct(created_at, origin = "1970-01-01")) %>%
mutate(launched = as.POSIXct(launched_at, origin = "1970-01-01")) %>%
mutate(setted_deadline = as.POSIXct(deadline, origin = "1970-01-01")) %>%
select(-category, -deadline, -launched_at, -created_at) %>%
relocate(created, launched, setted_deadline, .before = goal)
write.csv(filtered_dec_2023, "filtered_dec_2023.csv", row.names = FALSE)
The three generated files were then merged into one comprehensive CSV called "kickstarter_cleaned" which was further modified, converting a...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data and code files used for analyses in Indigenous caretaking of beargrass and the social and ecological consequences of adaptations to maintain beargrass weaving practices
Hart-Fredeluces, G. M., M. Burnham, M. Blaich Vaughan, G. Hart, J. A. Hart, E. St. Martin, J. Ward, and T. Ticktin. 2022. Indigenous caretaking of beargrass and the social and ecological consequences of adaptations to maintain beargrass weaving practices. Ecology and Society 27(4):22. https://doi.org/10.5751/ES-13588-270422
The specific .csv file used for analysis and the accompanying R code are available through the Open Ecology and Society 27(4): 22 https://www.ecologyandsociety.org/vol27/iss4/art22/ Science Framework at https://osf.io/edfrh/.
Data Use
License
Creative Commons Attribution 4.0 International (CC-BY 4.0)
Recommended Citation
Hart-Fredeluces G. 2021. Code and data for structural equation model of beargrass growth [Dataset]. OSF. https://doi.org/10.17605/OSF.IO/EDFRH
Funding
US National Science Foundation and Idaho EPSCoR: OIA-1757324
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Uniform Appraisal Dataset (UAD) Aggregate Statistics Data File and Dashboards are the nation’s first publicly available datasets of aggregate statistics on appraisal records, giving the public new access to a broad set of data points and trends found in appraisal reports. The UAD Aggregate Statistics for Enterprise Single-Family, Enterprise Condominium, and Federal Housing Administration (FHA) Single-Family appraisals may be grouped by neighborhood characteristics, property characteristics and different geographic levels.DocumentationOverview (10/28/2024)Data Dictionary (10/28/2024)Data File Version History and Suppression Rates (12/18/2024)Dashboard Guide (2/3/2025)UAD Aggregate Statistics DashboardsThe UAD Aggregate Statistics Dashboards are the visual front end of the UAD Aggregate Statistics Data File. The Dashboards are designed to provide easy access to customized maps and charts for all levels of users. Access the UAD Aggregate Statistics Dashboards here.UAD Aggregate Statistics DatasetsNotes:Some of the data files are relatively large in size and will not open correctly in certain software packages, such as Microsoft Excel. All the files can be opened and used in data analytics software such as SAS, Python, or R.All CSV files are zipped.
Facebook
TwitterThis data relates to our paper "Stereotype and Most-Popular Recommendations in the Digital Library Sowiport". The data includes a list of the 28 million delivered and clicked recommendations as CSV file, the R script to analyze the data, and the figures and tables presented in this paper as PNG and CSV files. This open access to the data allows replicating our analyses, checking the results for correctness, and conducting additional analyses.
Facebook
TwitterWe present a flora and fauna dataset for the Mira-Mataje binational basins. This is an area shared between southwestern Colombia and northwestern Ecuador, where both the Chocó and Tropical Andes biodiversity hotspots converge. Information from 120 sources was systematized in the Darwin Core Archive (DwC-A) standard and geospatial vector data format for geographic information systems (GIS) (shapefiles). Sources included natural history museums, published literature, and citizen science repositories across 18 countries. The resulting database has 33,460 records from 5,281 species, of which 1,083 are endemic and 680 threatened. The diversity represented in the dataset is equivalent to 10\% of the total plant species and 26\% of the total terrestrial vertebrate species in the hotspots. It corresponds to 0.07\% of their total area. The dataset can be used to estimate and compare biodiversity patterns with environmental parameters and provide value to ecosystems, ecoregions, and protected areas. The dataset is a baseline for future assessments of biodiversity in the face of environmental degradation, climate change, and accelerated extinction processes. The data has been formally presented in the manuscript entitled "The Tropical Andes Biodiversity Hotspot: A Comprehensive Dataset for the Mira-Mataje Binational Basins" in the journal "Scientific Data". To maintain DOI integrity, this version will not change after publication of the manuscript and therefore we cannot provide further references on volume, issue, and DOI of manuscript publication. - Data format 1: The .rds file extension saves a single object to be read in R and provides better compression, serialization, and integration within the R environment, than simple .csv files. The description of file names is in the original manuscript. -- m_m_flora_2021_voucher_ecuador.rds -- m_m_flora_2021_observation_ecuador.rds -- m_m_flora_2021_total_ecuador.rds -- m_m_fauna_2021_ecuador.rds - Data format 2: The .csv file has been encoded in UTF-8, and is an ASCII file with text separated by commas. The description of file names is in the original manuscript. -- m_m_flora_fauna_2021_all.zip. This file includes all biodiversity datasets. -- m_m_flora_2021_voucher_ecuador.csv -- m_m_flora_2021_observation_ecuador.csv -- m_m_flora_2021_total_ecuador.csv -- m_m_fauna_2021_ecuador.csv - Data format 3: We consolidated a shapefile for the basin containing layers for vegetation ecosystems and the total number of occurrences, species, and endemic and threatened species for each ecosystem. -- biodiversity_measures_mira_mataje.zip. This file includes the .shp file and accessory geomatic files. - A set of 3D shaded-relief map representations of the data in the shapefile can be found at https://doi.org/10.6084/m9.figshare.23499180.v4 Three taxonomic data tables were used in our technical validation of the presented dataset. These three files are: 1) the_catalog_of_life.tsv (Source: Bánki, O. et al. Catalogue of life checklist (version 2024-03-26). https://doi.org/10.48580/dfz8d (2024)) 2) world_checklist_of_vascular_plants_names.csv (we are also including ancillary tables "world_checklist_of_vascular_plants_distribution.csv", and "README_world_checklist_of_vascular_plants_.xlsx") (Source: Govaerts, R., Lughadha, E. N., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants is a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215, 10.1038/s41597-021-00997-6 (2021).) 3) world_flora_online.csv (Source: The World Flora Online Consortium et al. World flora online plant list December 2023, 10.5281/zenodo.10425161 (2023).)
Facebook
TwitterThis dataset contains (a) a script “R_met_integrated_for_modeling.R”, and (b) associated input CSV files: 3 CSV files per location to create a 5-variable integrated meteorological dataset file (air temperature, precipitation, wind speed, relative humidity, and solar radiation) for 19 meteorological stations and 1 location within Trail Creek from the modeling team within the East River Community Observatory as part of the Watershed Function Scientific Focus Area (SFA). As meteorological forcings varied across the watershed, a high-frequency database is needed to ensure consistency in the data analysis and modeling. We evaluated several data sources, including gridded meteorological products and field data from meteorological stations. We determined that our modeling efforts required multiple data sources to meet all their needs. As output, this dataset contains (c) a single CSV data file (*_1981-2022.csv) for each location (20 CSV output files total) containing hourly time series data for 1981 to 2022 and (d) five PNG files of time series and density plots for each variable per location (100 PNG files). Detailed location metadata is contained within the Integrated_Met_Database_Locations.csv file for each point location included within this dataset, obtained from Varadharajan et al., 2023 doi:10.15485/1660962. This dataset also includes (e) a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata and (f) a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. Review the (g) ReadMe_Integrated_Met_Database.pdf file for additional details on the script, methods, and structure of the dataset. The script integrates Northwest Alliance for Computational Science and Engineering’s PRISM gridded data product, National Oceanic and Atmospheric Administration’s NCEP-NCAR Reanalysis 1 gridded data product (through the RCNEP R package, Kemp et al., doi:10.32614/CRAN.package.RNCEP), and analytical-based calculations. Further, this script downscales the input data into hourly frequency, which is necessary for the modeling efforts.
Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `