3 datasets found
  1. Superstore Sales Analysis

    • kaggle.com
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ali Reda Elblgihy
    Description

    Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

    1- Data Import and Transformation:

    • Gather and import relevant sales data from various sources into Excel.
    • Utilize Power Query to clean, transform, and structure the data for analysis.
    • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

    2- Data Quality Assessment:

    • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
    • Standardize data formats and ensure that all data is in a consistent, usable state.

    3- Calculating COGS:

    • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
    • Apply appropriate formulas and calculations to determine COGS accurately.

    4- Discount Analysis:

    • Analyze the discount values offered on products to understand their impact on sales and profitability.
    • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

    5- Sales Metrics:

    • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
    • Utilize Excel functions to compute these metrics and create visuals for better insights.

    6- Visualization:

    • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
    • Visual representations can help identify trends, outliers, and patterns in the data.

    7- Report Generation:

    • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

    Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

  2. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  3. Data from: TimeSpec4LULC: A deep learning-oriented global dataset of MODIS...

    • data.europa.eu
    unknown
    Updated Jun 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2021). TimeSpec4LULC: A deep learning-oriented global dataset of MODIS Terra-Aqua multi-spectral time series measured from 2002 to 2021 for LULC mapping and change detection. [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-5020024?locale=de
    Explore at:
    unknown(92010)Available download formats
    Dataset updated
    Jun 27, 2021
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TimeSpec4LULC is archived in 30 different ZIP files owning the name of the 29 LULC classes (one class is divided into two files since it is too large). Within each ZIP file, there exists a set of seven CSV files, each one corresponding to one of the seven spectral bands. The naming of each file follows this structure: IdOfTheClass_NameOfTheClass_ModisBand.csv For example, for band 1 of the Barren Lands class, the filename is: 01_BarrenLands_MCD09A1b01.csv Inside each CSV file, rows represent the collected pixels for that class. The first 11 columns contain the following metadata: - “IdOfTheClass”: Id of the class. - “NameOfTheClass”: Name of the class. - “IdOfTheLevel0”: Id of the FAO-L0 (i.e., countries). - “IdOfTheLevel1”: Id of the FAO-L1 (i.e., departments, states, or provinces depending on the country). - “IdOfThePixel”: Id of the pixel. - “PurityOfThePixel”: Spatial and inter-annual consensus for this class across multiple land-cover products, i.e., Purity of the pixel. - “DataAvailability”: percentage of non-missing data per band throughout the time series. - “Index_GHM”: average of Global Human Modification index (gHM). - “Lat”: Latitude of the pixel center. - “Lon”: Longitude of the pixel center. - “.geo”: (Longitude, Latitude) of the pixel center with more precision. And, the last 223 columns contain the 223 monthly observations of the time series for one spectral band from 2002-07 to 2021-01. Along with the dataset, an Excel file named 'Countries_Departments_FAO-GAUL' containing the FAO-L0 and the FAO-L1 Ids and names (following the FAO-GAUL standards) is provided.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ali Reda Elblgihy (2023). Superstore Sales Analysis [Dataset]. https://www.kaggle.com/datasets/aliredaelblgihy/superstore-sales-analysis
Organization logo

Superstore Sales Analysis

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Oct 21, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Ali Reda Elblgihy
Description

Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:

1- Data Import and Transformation:

  • Gather and import relevant sales data from various sources into Excel.
  • Utilize Power Query to clean, transform, and structure the data for analysis.
  • Merge and link different data sheets to create a cohesive dataset, ensuring that all data fields are connected logically.

2- Data Quality Assessment:

  • Perform data quality checks to identify and address issues like missing values, duplicates, outliers, and data inconsistencies.
  • Standardize data formats and ensure that all data is in a consistent, usable state.

3- Calculating COGS:

  • Determine the Cost of Goods Sold (COGS) for each product sold by considering factors like purchase price, shipping costs, and any additional expenses.
  • Apply appropriate formulas and calculations to determine COGS accurately.

4- Discount Analysis:

  • Analyze the discount values offered on products to understand their impact on sales and profitability.
  • Calculate the average discount percentage, identify trends, and visualize the data using charts or graphs.

5- Sales Metrics:

  • Calculate and analyze various sales metrics, such as total revenue, profit margins, and sales growth.
  • Utilize Excel functions to compute these metrics and create visuals for better insights.

6- Visualization:

  • Create visualizations, such as charts, graphs, and pivot tables, to present the data in an understandable and actionable format.
  • Visual representations can help identify trends, outliers, and patterns in the data.

7- Report Generation:

  • Compile the findings and insights into a well-structured report or dashboard, making it easy for stakeholders to understand and make informed decisions.

Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.

Search
Clear search
Close search
Google apps
Main menu