Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
{# General information# The script runs with R (Version 3.1.1; 2014-07-10) and packages plyr (Version 1.8.1), XLConnect (Version 0.2-9), utilsMPIO (Version 0.0.25), sp (Version 1.0-15), rgdal (Version 0.8-16), tools (Version 3.1.1) and lattice (Version 0.20-29)# --------------------------------------------------------------------------------------------------------# Questions can be directed to: Martin Bulla (bulla.mar@gmail.com)# -------------------------------------------------------------------------------------------------------- # Data collection and how the individual variables were derived is described in: #Steiger, S.S., et al., When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proceedings of the Royal Society B: Biological Sciences, 2013. 280(1764): p. 20131016-20131016. # Dale, J., et al., The effects of life history and sexual selection on male and female plumage colouration. Nature, 2015. # Data are available as Rdata file # Missing values are NA. # --------------------------------------------------------------------------------------------------------# For better readability the subsections of the script can be collapsed # --------------------------------------------------------------------------------------------------------}{# Description of the method # 1 - data are visualized in an interactive actogram with time of day on x-axis and one panel for each day of data # 2 - red rectangle indicates the active field, clicking with the mouse in that field on the depicted light signal generates a data point that is automatically (via custom made function) saved in the csv file. For this data extraction I recommend, to click always on the bottom line of the red rectangle, as there is always data available due to a dummy variable ("lin") that creates continuous data at the bottom of the active panel. The data are captured only if greenish vertical bar appears and if new line of data appears in R console). # 3 - to extract incubation bouts, first click in the new plot has to be start of incubation, then next click depict end of incubation and the click on the same stop start of the incubation for the other sex. If the end and start of incubation are at different times, the data will be still extracted, but the sex, logger and bird_ID will be wrong. These need to be changed manually in the csv file. Similarly, the first bout for a given plot will be always assigned to male (if no data are present in the csv file) or based on previous data. Hence, whenever a data from a new plot are extracted, at a first mouse click it is worth checking whether the sex, logger and bird_ID information is correct and if not adjust it manually. # 4 - if all information from one day (panel) is extracted, right-click on the plot and choose "stop". This will activate the following day (panel) for extraction. # 5 - If you wish to end extraction before going through all the rectangles, just press "escape". }{# Annotations of data-files from turnstone_2009_Barrow_nest-t401_transmitter.RData dfr-- contains raw data on signal strength from radio tag attached to the rump of female and male, and information about when the birds where captured and incubation stage of the nest1. who: identifies whether the recording refers to female, male, capture or start of hatching2. datetime_: date and time of each recording3. logger: unique identity of the radio tag 4. signal_: signal strength of the radio tag5. sex: sex of the bird (f = female, m = male)6. nest: unique identity of the nest7. day: datetime_ variable truncated to year-month-day format8. time: time of day in hours9. datetime_utc: date and time of each recording, but in UTC time10. cols: colors assigned to "who"--------------------------------------------------------------------------------------------------------m-- contains metadata for a given nest1. sp: identifies species (RUTU = Ruddy turnstone)2. nest: unique identity of the nest3. year_: year of observation4. IDfemale: unique identity of the female5. IDmale: unique identity of the male6. lat: latitude coordinate of the nest7. lon: longitude coordinate of the nest8. hatch_start: date and time when the hatching of the eggs started 9. scinam: scientific name of the species10. breeding_site: unique identity of the breeding site (barr = Barrow, Alaska)11. logger: type of device used to record incubation (IT - radio tag)12. sampling: mean incubation sampling interval in seconds--------------------------------------------------------------------------------------------------------s-- contains metadata for the incubating parents1. year_: year of capture2. species: identifies species (RUTU = Ruddy turnstone)3. author: identifies the author who measured the bird4. nest: unique identity of the nest5. caught_date_time: date and time when the bird was captured6. recapture: was the bird capture before? (0 - no, 1 - yes)7. sex: sex of the bird (f = female, m = male)8. bird_ID: unique identity of the bird9. logger: unique identity of the radio tag --------------------------------------------------------------------------------------------------------}
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128
Facebook
TwitterS Usa R Precision Plot Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterThis module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.
Facebook
TwitterInternational Contract Packaging Fo R Chemicals Plot No Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data presented here were used to produce the following paper:
Archibald, Twine, Mthabini, Stevens (2021) Browsing is a strong filter for savanna tree seedlings in their first growing season. J. Ecology.
The project under which these data were collected is: Mechanisms Controlling Species Limits in a Changing World. NRF/SASSCAL Grant number 118588
For information on the data or analysis please contact Sally Archibald: sally.archibald@wits.ac.za
Description of file(s):
File 1: cleanedData_forAnalysis.csv (required to run the R code: "finalAnalysis_PostClipResponses_Feb2021_requires_cleanData_forAnalysis_.R"
The data represent monthly survival and growth data for ~740 seedlings from 10 species under various levels of clipping.
The data consist of one .csv file with the following column names:
treatment Clipping treatment (1 - 5 months clip plus control unclipped) plot_rep One of three randomised plots per treatment matrix_no Where in the plot the individual was placed species_code First three letters of the genus name, and first three letters of the species name uniquely identifies the species species Full species name sample_period Classification of sampling period into time since clip. status Alive or Dead standing.height Vertical height above ground (in mm) height.mm Length of the longest branch (in mm) total.branch.length Total length of all the branches (in mm) stemdiam.mm Basal stem diameter (in mm) maxSpineLength.mm Length of the longest spine postclipStemNo Number of resprouting stems (only recorded AFTER clipping) date.clipped date.clipped date.measured date.measured date.germinated date.germinated Age.of.plant Date measured - Date germinated newtreat Treatment as a numeric variable, with 8 being the control plot (for plotting purposes)
File 2: Herbivory_SurvivalEndofSeason_march2017.csv (required to run the R code: "FinalAnalysisResultsSurvival_requires_Herbivory_SurvivalEndofSeason_march2017.R"
The data consist of one .csv file with the following column names:
treatment Clipping treatment (1 - 5 months clip plus control unclipped) plot_rep One of three randomised plots per treatment matrix_no Where in the plot the individual was placed species_code First three letters of the genus name, and first three letters of the species name uniquely identifies the species species Full species name sample_period Classification of sampling period into time since clip. status Alive or Dead standing.height Vertical height above ground (in mm) height.mm Length of the longest branch (in mm) total.branch.length Total length of all the branches (in mm) stemdiam.mm Basal stem diameter (in mm) maxSpineLength.mm Length of the longest spine postclipStemNo Number of resprouting stems (only recorded AFTER clipping) date.clipped date.clipped date.measured date.measured date.germinated date.germinated Age.of.plant Date measured - Date germinated newtreat Treatment as a numeric variable, with 8 being the control plot (for plotting purposes) genus Genus MAR Mean Annual Rainfall for that Species distribution (mm) rainclass High/medium/low
File 3: allModelParameters_byAge.csv (required to run the R code: "FinalModelSeedlingSurvival_June2021_.R"
Consists of a .csv file with the following column headings
Age.of.plant Age in days species_code Species pred_SD_mm Predicted stem diameter in mm pred_SD_up top 75th quantile of stem diameter in mm pred_SD_low bottom 25th quantile of stem diameter in mm treatdate date when clipped pred_surv Predicted survival probability pred_surv_low Predicted 25th quantile survival probability pred_surv_high Predicted 75th quantile survival probability species_code species code Bite.probability Daily probability of being eaten max_bite_diam_duiker_mm Maximum bite diameter of a duiker for this species duiker_sd standard deviation of bite diameter for a duiker for this species max_bite_diameter_kudu_mm Maximum bite diameer of a kudu for this species kudu_sd standard deviation of bite diameter for a kudu for this species mean_bite_diam_duiker_mm mean etc duiker_mean_sd standard devaition etc mean_bite_diameter_kudu_mm mean etc kudu_mean_sd standard deviation etc genus genus rainclass low/med/high
File 4: EatProbParameters_June2020.csv (required to run the R code: "FinalModelSeedlingSurvival_June2021_.R"
Consists of a .csv file with the following column headings
shtspec species name
species_code species code
genus genus
rainclass low/medium/high
seed mass mass of seed (g per 1000seeds)
Surv_intercept coefficient of the model predicting survival from age of clip for this species
Surv_slope coefficient of the model predicting survival from age of clip for this species
GR_intercept coefficient of the model predicting stem diameter from seedling age for this species
GR_slope coefficient of the model predicting stem diameter from seedling age for this species
species_code species code
max_bite_diam_duiker_mm Maximum bite diameter of a duiker for this species
duiker_sd standard deviation of bite diameter for a duiker for this species
max_bite_diameter_kudu_mm Maximum bite diameer of a kudu for this species
kudu_sd standard deviation of bite diameter for a kudu for this species
mean_bite_diam_duiker_mm mean etc
duiker_mean_sd standard devaition etc
mean_bite_diameter_kudu_mm mean etc
kudu_mean_sd standard deviation etc
AgeAtEscape_duiker[t] age of plant when its stem diameter is larger than a mean duiker bite
AgeAtEscape_duiker_min[t] age of plant when its stem diameter is larger than a min duiker bite
AgeAtEscape_duiker_max[t] age of plant when its stem diameter is larger than a max duiker bite
AgeAtEscape_kudu[t] age of plant when its stem diameter is larger than a mean kudu bite
AgeAtEscape_kudu_min[t] age of plant when its stem diameter is larger than a min kudu bite
AgeAtEscape_kudu_max[t] age of plant when its stem diameter is larger than a max kudu bite
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description. The NetVote dataset contains the outputs of the NetVote program when applied to voting data coming from VoteWatch (http://www.votewatch.eu/).
These results were used in the following conference papers:
Source code. The NetVote source code is available on GitHub: https://github.com/CompNet/NetVotes.
Citation. If you use our dataset or tool, please cite article [1] above.
@InProceedings{Mendonca2015, author = {Mendonça, Israel and Figueiredo, Rosa and Labatut, Vincent and Michelon, Philippe}, title = {Relevance of Negative Links in Graph Partitioning: A Case Study Using Votes From the {E}uropean {P}arliament}, booktitle = {2\textsuperscript{nd} European Network Intelligence Conference ({ENIC})}, year = {2015}, pages = {122-129}, address = {Karlskrona, SE}, publisher = {IEEE Publishing}, doi = {10.1109/ENIC.2015.25},}
-------------------------
Details. This archive contains the following folders:
-------------------------
License. These data are shared under a Creative Commons 0 license.
Contact. Vincent Labatut <vincent.labatut@univ-avignon.fr> & Rosa Figueiredo <rosa.figueiredo@univ-avignon.fr>
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
PublicationPrimahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387Description of R codes and data files in the repositoryThis repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt. Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.
Facebook
TwitterFile List e001_arssnlvl0.csv (MD5: 75f21b9949b87c018f3499b5d2a093e7) e001_arssnlvl3.csv (MD5: 02cefd1cdb16fc25968f4e7d96a43378) e026_aslit.csv (MD5: eea09f91f81dc7e5801d8f67ccded5c1) e054_arssprecip.csv (MD5: 1d62c9ab92a6a1fc4caa53787d2c0cf1) e120_bmins.csv (MD5: e8699cfd2d2c9a11d43abd572b6f3cd8) e120_invnit1_2.csv (MD5: 6c023c438eb4c6e2625f526fafd9c17d) e120_invnit4_8.csv (MD5: a304786a833b5c6e53063472b97ef93d) e120_invnit16.csv (MD5: bda824cec8f8fdc2992c8732e03aa109) e120_nitbm.csv (MD5: 212637b7ab08d0cc2146f26602061b64) find_number_of_observations.R (MD5: a6a097d6633ee66b9c3531676320b929) multispatialCCM.zip (MD5: 64647cc7d14d2df5398a76af9ec73e2a) Description e001_arssnlvl0.csv is a comma-separated text file containing the data for Agroypron (Elymus) repens and Schizachyrium scoparium dynamics in unfertilized plots for experiment 001 at Cedar Creek. Column definitions are: 1."index": concatenated text including the plot, field, and year sampled 2. "Exp": Cedar Creek experiment number 3. "Year": year data was sampled 4. "Field": ID for field that was sampled 5. "Plot": plot number for sample 6. "Ntrt": categorical fertilization treatment 7. "Nadd": g nitrogen added per square meter per year for each treatment 8. "NitrAdd": g nitrate added per square meter per year for each treatment 9. "Natm.Nadd": g nitrogen added per square meter per year for each treatment, including 1 g/m2/year atmospheric deposition 10. "fg": plant functional group: C3/C4 for grasses with C3/C4 photosynthetic pathway, F for non-legume forb, L for legume. 11. "isspecies": Binary indicator describing whether or not a row had plant species found in it that year (should be 1 for all rows) 12. "richness": Species richness for all species found in the sample 13. "Agropyron repens": g dry aboveground biomass per meter square of A. repens 14. "Schizachyrium scoparium": g dry aboveground biomass per meter square of S. scoparium 15. "Miscellaneous litter": g dry aboveground biomass per meter square of leaf litter 16. "Ncat": Fertilization intensity category, with 1 being the lowest and 3 being the highest 17. "FieldPlot": concatenated text including the field and plot e001_arssnlvl3.csv is a comma-separated text file containing the data for Agroypron (Elymus) repens and Schizachyrium scoparium dynamics in heavily plots for experiment 001 at Cedar Creek. Column definitions are as described for e001_arssnlvl0.csv. e026_aslit.csv is a comma-separated text file containing the data for Agrostic scabra and leaf litter dynamics in plots with varying soil fertility in experiment 026 at Cedar Creek. Column definitions are: 1. "monoculture": plant species grown in subplot (should always be A. scabra) 2. "litbiomass": g dry aboveground biomass per meter square of leaf litter 3. "year": year of sampling 4. "plot": plot sampled (soil N treatments vary among plots) 5. "subplot": subplot sampled 6. "abvbiomass": g dry aboveground biomass per meter square of A. scabra 7. "totaln": total soil nitrogen (in percent of soil by mass) 8. "exp": Cedar Creek experiment number 9. "yearest": year in which the experiment was established 10. "nlevel": categorical level for total soil nitrogen treatment 11. "plotsubplot": concatenated text including the plot and subplot 12. "Field": ID for field that was sampled 13. "FieldPlot": concatenated text including the field and plot e054_arssprecip.csv is a comma-separated text file containing the data for A. repens, S. scoparium, leaf litter, and precipitation dynamics for experiment 054 at Cedar Creek. Column definitions are: 1. "index": concatenated text including the year, field, plot, transect sampled 2. "Exp": experiment number 3. "Year": year of sample 4. "OldField": old field ID 5. "Plot": plot number for sample 6. "Transect": transect ID 7. "YearAb": Year that the field was abandoned from agricultural use 8. "Agropyron repens": g dry aboveground biomass per meter square of A. repens 9. "Schizachyrium scoparium": g dry aboveground biomass per meter square of S. scoparium 10: "Miscellaneous litter": g dry aboveground biomass per meter square of leaf litter 11: "precipmm": total summer annual precipitation (June-August) in mm 12: "FieldPlot": concatenated text including the field and plot e120_bmins.csv is a comma-separated text file describing plant biomass and insect dynamics for Cedar Creek experiment 120. Column definitions are: 1. "Exp": Cedar Creek experiment number 2. "Year": sampling year 3. "Month": sampling month 4. "Plot": plot sampled 5. "NumSp": number of species in treatment 6. "SpNum": number of species maintained in plot 7. "AbvBioAnnProd": g plant aboveground biomass harvested per square meter per year 8. "noh020tot": mg soil nitrate per kg soil, sampled in top 20 cm of soil 9. "insectcount": number of insect individuals in sweep net sample 10. "insectsp": number of insect species in sweep net sample 11. "Field": field ID 12. "FieldPlot": concatenated text including the field and plot e120_invnit1_2.csv is a comma-separated text file describing invading plant species dynamics and soil nitrate dynamics in monoculture plots for experiment 120 at Cedar Creek. Column definitions are as described for e120_bmins.csv, except for: 9. “invrichness”: number of non-planted “invading” plant species e120_invnit4_8.csv is a comma-separated text file describing invading plant species dynamics and soil nitrate dynamics in 4 and 8 species mixture plots for experiment 120 at Cedar Creek. Column definitions are as described for e120_invnit1_2.csv. e120_invnit16.csv is a comma-separated text file describing invading plant species dynamics and soil nitrate dynamics in 16 species mixture plots for experiment 120 at Cedar Creek. Column definitions are as described for e120_invnit1_2.csv. e120_nitbm.csv is a comma-separated text file describing soil nitrate and aboveground plant biomass dynamics. Column definitions are as described for e120_bmins.csv. find_number_of_observations.R is an R source code file that can be used to determine the number of sequential observations in subplots for all of the data sets listed above. The data should be in the working directory of R when the R code is run. multispatialCCM.zip...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder contains R codes and datasets for sub-figures of Figure 2.Figure 2A codes make a matrix based on Supplemental Table 6.Figure 2B codes read in csv data "figure2b.csv".
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
This dataset is the repository for the following paper submitted to Data in Brief:
Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).
The Data in Brief article contains the supplement information and is the related data paper to:
Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).
Description/abstract
The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.
Folder structure
The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:
“code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.
“MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.
“mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).
“yield_productivity” contains .csv files of yield information for all countries listed above.
“population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).
“GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.
“built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.
Code structure
1_MODIS_NDVI_hdf_file_extraction.R
This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.
2_MERGE_MODIS_tiles.R
In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").
3_CROP_MODIS_merged_tiles.R
Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS.
The repository provides the already clipped and merged NDVI datasets.
4_TREND_analysis_NDVI.R
Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.
To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.
5_BUILT_UP_change_raster.R
Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.
6_POPULATION_numbers_plot.R
For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.
7_YIELD_plot.R
In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.
8_GLDAS_read_extract_trend
The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection).
Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.
From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).
From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.
Facebook
TwitterEximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset and scripts used for manuscript: High consistency and repeatability in the breeding migrations of a benthic shark.
Project title: High consistency and repeatability in the breeding migrations of a benthic sharkDate:23/04/2024
Folders:- 1_Raw_data - Perpendicular_Point_068151, Sanctuary_Point_068088, SST raw data, sst_nc_files, IMOS_animal_measurements, IMOS_detections, PS&Syd&JB tags, rainfall_raw, sample_size, Point_Perpendicular_2013_2019, Sanctuary_Point_2013_2019, EAC_transport- 2_Processed_data - SST (anomaly, historic_sst, mean_sst_31_years, week_1992_sst:week_2022_sst including week_2019_complete_sst) - Rain (weekly_rain, weekly_rainfall_completed) - Clean (clean, cleaned_data, cleaned_gam, cleaned_pj_data)- 3_Script_processing_data - Plots(dual_axis_plot (Fig. 1 & Fig. 4).R, period_plot (Fig. 2).R, sd_plot (Fig. 5).R, sex_plot (Fig. 3).R - cleaned_data.R, cleaned_data_gam.R, weekly_rainfall_completed.R, descriptive_stats.R, sst.R, sst_2019b.R, sst_anomaly.R- 4_Script_analyses - gam.R, gam_eac.R, glm.R, lme.R, Repeatability.R- 5_Output_doc - Plots (arrival_dual_plot_with_anomaly (Fig. 1).png, period_plot (Fig.2).png, sex_arrival_departure (Fig. 3).png, departure_dual_plot_with_anomaly (Fig. 4).png, standard deviation plot (Fig. 5).png) - Tables (gam_arrival_eac_selection_table.csv (Table S2), gam_departure_eac_selection_table (Table S5), gam_arrival_selection_table (Table. S3), gam_departure_selection_table (Table. S6), glm_arrival_selection_table, glm_departure_selection_table, lme_arrival_anova_table, lme_arrival_selection_table (Table S4), lme_departure_anova_table, lme_departure_selection_table (Table. S8))
Descriptions of scripts and files used:- cleaned_data.R: script to extract detections of sharks at Jervis Bay. Calculate arrival and departure dates over the seven breeding seasons. Add sex and length for each individual. Extract moon phase (numerical value) and period of the day from arrival and departure times. - IMOS_detections.csv: raw data file with detections of Port Jackson sharks over different sites in Australia. - IMOS_animal_measurements.csv: raw data file with morphological data of Port Jackson sharks - PS&Syd&JB tags: file with measurements and sex identification of sharks (different from IMOS, it was used to complete missing sex and length). - cleaned_data.csv: file with arrival and departure dates of the final sample size of sharks (N=49) with missing sex and length for some individuals. - clean.csv: completed file using PS&Syd&JB tags, note: tag ID 117393679 was wrongly identified as a male in IMOS and correctly identified as a female in PS&Syd&JB tags file as indicated by its large size. - cleaned_pj_data: Final data file with arrival and departure dates, sex, length, moon phase (numerical) and period of the day.
weekly_rainfall_completed.R: script to calculate average weekly rainfall and correlation between the two weather stations used (Point perpendicular and Sanctuary point). - weekly_rain.csv: file with the corresponding week number (1-28) for each date (01-06-2013 to 13-12-2019) - weekly_rainfall_completed.csv: file with week number (1-28), year (2013-2019) and weekly rainfall average completed with Sanctuary Point for week 2 of 2017 - Point_Perpendicular_2013_2019: Rainfall (mm) from 01-01-2013 to 31-12-2020 at the Point Perpendicular weather station - Sanctuary_Point_2013_2019: Rainfall (mm) from 01-01-2013 to 31-12-2020 at the Sanctuary Point weather station - IDCJAC0009_068088_2017_Data.csv: Rainfall (mm) from 01-01-2017 to 31-12-2017 at the Sanctuary Point weather station (to fill in missing value for average rainfall of week 2 of 2017)
cleaned_data_gam.R: script to calculate weekly counts of sharks to run gam models and add weekly averages of rainfall and sst anomaly - cleaned_pj_data.csv - anomaly.csv: weekly (1-28) average sst anomalies for Jervis Bay (2013-2019) - weekly_rainfall_completed.csv: weekly (1-28) average rainfall for Jervis Bay (2013-2019_ - sample_size.csv: file with the number of sharks tagged (13-49) for each year (2013-2019)
sst.R: script to extract daily and weekly sst from IMOS nc files from 01-05 until 31-12 for the following years: 1992:2022 for Jervis Bay - sst_raw_data: folder with all the raw weekly (1:28) csv files for each year (1992:2022) to fill in with sst data using the sst script - sst_nc_files: folder with all the nc files downloaded from IMOS from the last 31 years (1992-2022) at the sensor (IMOS - SRS - SST - L3S-Single Sensor - 1 day - night time – Australia). - SST: folder with the average weekly (1-28) sst data extracted from the nc files using the sst script for each of the 31 years (to calculate temperature anomaly).
sst_2019b.R: script to extract daily and weekly sst from IMOS nc file for 2019 (missing value for week 19) for Jervis Bay - week_2019_sst: weekly average sst 2019 with a missing value for week 19 - week_2019b_sst: sst data from 2019 with another sensor (IMOS – SRS – MODIS - 01 day - Ocean Colour-SST) to fill in the gap of week 19 - week_2019_complete_sst: completed average weekly sst data from the year 2019 for weeks 1-28.
sst_anomaly.R: script to calculate mean weekly sst anomaly for the study period (2013-2019) using mean historic weekly sst (1992-2022) - historic_sst.csv: mean weekly (1-28) and yearly (1992-2022) sst for Jervis Bay - mean_sst_31_years.csv: mean weekly (1-28) sst across all years (1992-2022) for Jervis Bay - anomaly.csv: mean weekly and yearly sst anomalies for the study period (2013-2019)
Descriptive_stats.R: script to calculate minimum and maximum length of sharks, mean Julian arrival and departure dates per individual per year, mean Julian arrival and departure dates per year for all sharks (Table. S10), summary of standard deviation of julian arrival dates (Table. S9) - cleaned_pj_data.csv
gam.R: script used to run the Generalized additive model for rainfall and sea surface temperature - cleaned_gam.csv
glm.R: script used to run the Generalized linear mixed models for the period of the day and moon phase - cleaned_pj_data.csv - sample_size.csv
lme.R: script used to run the Linear mixed model for sex and size - cleaned_pj_data.csv
Repeatability.R: script used to run the Repeatability for Julian arrival and Julian departure dates - cleaned_pj_data.csv
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
Data points present in this dataset were obtained following the subsequent steps: To assess the secretion efficiency of the constructs, 96 colonies from the selection plates were evaluated using the workflow presented in Figure Workflow. We picked transformed colonies and cultured in 400 μL TAP medium for 7 days in Deep-well plates (Corning Axygen®, No.: PDW500CS, Thermo Fisher Scientific Inc., Waltham, MA), covered with Breathe-Easy® (Sigma-Aldrich®). Cultivation was performed on a rotary shaker, set to 150 rpm, under constant illumination (50 μmol photons/m2s). Then 100 μL sample were transferred clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA) and fluorescence was measured using an Infinite® M200 PRO plate reader (Tecan, Männedorf, Switzerland). Fluorescence was measured at excitation 575/9 nm and emission 608/20 nm. Supernatant samples were obtained by spinning Deep-well plates at 3000 × g for 10 min and transferring 100 μL from each well to the clear bottom 96-well plate (Corning Costar, Tewksbury, MA, USA), followed by fluorescence measurement. To compare the constructs, R Statistic version 3.3.3 was used to perform one-way ANOVA (with Tukey's test), and to test statistical hypotheses, the significance level was set at 0.05. Graphs were generated in RStudio v1.0.136. The codes are deposit herein.
Info
ANOVA_Turkey_Sub.R -> code for ANOVA analysis in R statistic 3.3.3
barplot_R.R -> code to generate bar plot in R statistic 3.3.3
boxplotv2.R -> code to generate boxplot in R statistic 3.3.3
pRFU_+_bk.csv -> relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
sup_+_bl.csv -> supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
sup_raw.csv -> supernatant mCherry fluorescence dataset of 96 colonies for each construct.
who_+_bl2.csv -> whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
who_raw.csv -> whole culture mCherry fluorescence dataset of 96 colonies for each construct.
who_+_Chlo.csv -> whole culture chlorophyll fluorescence dataset of 96 colonies for each construct.
Anova_Output_Summary_Guide.pdf -> Explain the ANOVA files content
ANOVA_pRFU_+_bk.doc -> ANOVA of relative supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_sup_+_bk.doc -> ANOVA of supernatant mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_who_+_bk.doc -> ANOVA of whole culture mCherry fluorescence dataset of positive colonies, blanked with parental wild-type cc1690 cell of Chlamydomonas reinhardtii
ANOVA_Chlo.doc -> ANOVA of whole culture chlorophyll fluorescence of all constructs, plus average and standard deviation values.
Consider citing our work.
Molino JVD, de Carvalho JCM, Mayfield SP (2018) Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE 13(2): e0192433. https://doi.org/10.1371/journal. pone.0192433
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Plot-level field data were collected in the summer of 2014 to estimate aboveground and belowground biomass in the Great Dismal Swamp National Wildlife Refuge and Dismal Swamp State Park in North Carolina and Virginia. Data were collected at 85 plots. The location of the center of each plot was recorded with a Trimble ProXH global positioning system (GPS) and differentially corrected. Data files included 1: GDS_plots.csv, 2. GDS_FWD.csv, 3. GDS_LWD.csv, 4. GDS_Shrubs.csv, 5. GDS_Trees.csv, and 6. GDS_plot_summaries.csv. The data contained in GDS_plot_summaries.csv were calculated from the GDS_plots.csv, GDS_FWD.csv, GDS_LWD.csv, GDS_Shrubs.csv, GDS_Trees.csv files using the R statistical software environment (R Core Team, 2019) and code in GDS_AGB_Summaries.R. R Core Team, 2019, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete datasets and R scripts related to article published in Applied Vegetation Science: "Soil phosphorous availability determines the contribution of small, individual grassland remnants to the conservation of landscape-scale biodiversity"1. plot_metadata.csv - for all 162 vegetation plots the dataset provides a metadata on the geographical and environmental characteristics of the plot. 2. soil.csv - for all 162 vegetation plots the dataset provides the raw data on each of the four measured soil characteristics: Phosphorous, pH, Carbon and Nitrogen.3. vegdat.csv - for all 162 vegetation plots, this dataset provides the recorded abundance (ACFOR scale) of all 174 recorded species.4. planttraits.csv - for all 174 species, this dataset lists the level of habitat specialisation. 5. PlueBaeten_analyses.nb.html R scripts on the full statistical analyses of the data in html format6. PlueBaeten_analyses.Rmd R scripts on the full statistical analyses of the data in R Markdown format
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Cover crops provide many agroecosystem services, including weed suppression, which is partially exerted through release of allelopathic benzoxazinoid (BX) compounds. This research characterizes (1) changes in concentrations of BX compounds in shoots, roots, and soil at three growth stages (GS) of cereal rye (Secale cereale L.), and (2) their degradation over time following termination. Concentrations of shoot dominant BX compounds, DIBOA-glc and DIBOA, were least at GS 83 (boot). The root dominant BX compound, HMBOA-glc, concentration was least at GS 54 (elongation). Rhizosphere soil BX concentrations were 1000 times smaller than in root tissues. Dominant compounds in soil were HMBOA-glc and HMBOA. Concentrations of BX compounds were similar for soil near root crowns and between-rows. Soil BX concentrations following cereal rye termination declined exponentially over time in three of four treatments: incorporated shoots (S) and roots (R), no-till S+R (cereal rye rolled flat), and no-till R (shoots removed), but not in no-till S. On the day following cereal rye termination, soil concentrations of HMBOA-glc and HMBOA in these three treatments increased above initial concentrations. Concentrations of these two compounds decreased the fastest while DIBOA-glc declined the slowest (half-life of 4 d in no-till S+R soil). Placement of shoots on the surface of an area where cereal rye had not grown (no-till S) did not increase soil concentrations of BX compounds. The short duration and complex dynamics of BX compounds in soil prior to and following termination illustrate the limited window for enhancing weed suppression by cereal rye allelochemicals; valuable information for programs breeding for enhanced weed suppression. In addition to the data analyzed for this article, we also include the R code. Resources in this dataset:Resource Title: BX data following termination. File Name: FinalBXsForMatt-20200908.csvResource Description: For each sample, gives the time, depth, location, and plot treatment, and then the compound concentrations. This is the principal data set analyzed with the R (anal2-cleaned.r) code, see that code for use.Resource Title: BX compounds from 3rd sampling time before termination. File Name: soil2-20201123.csvResource Description: These data are for comparison with the post termination data. They were taken at the 3rd sampling time (pre-termination), a day prior to termination. Each sample is identified with a treatment, date, and plot location, in addition to the BX concentrations. See R code (anal2-cleaned.r) for how this file is used.Resource Title: Soil location (within row versus between row) values of BX compounds. File Name: s2b.csvResource Description: Each row gives the average BX compound for each soil location (within row versus between row) for the second sample for each plot. These data are combined with bx3 (the data set read in from the file , "FinalBXsForMatt-20200908.csv"). See R (anal2-cleaned.r) code for use.Resource Title: R code for analysis of the decay (post-termination) BX data.. File Name: anal2-cleaned.rResource Description: This is the R code used to analyze the termination data. It also creates and writes out some data subsets (used for analysis and plots) that are later read in.Resource Software Recommended: R version 3.6.3,url: https://www.R-project.org/ Resource Title: Tissue BX compounds. File Name: tissues20210728b.csvResource Description: Data file holding results from a tissue analysis for BX compounds, in ug, from shoots and roots, and at various sampling times. Read into the R file, anal1-cleaned.r where it is used in a statistical analysis and to create figures.Resource Title: BX compounds from soil with a live rye cover crop. File Name: soil2-20201214.csvResource Description: BX compounds (in ng/g dry wt), by treatment, sampling time, date, and plot ID. These are data are read into the R program, anal1-cleaned.r, for analysis and to create figures. These are soil samples taken from locations with a live rye plant cover crop.Resource Title: R code for BX analyses of soil under rye and plant tissues. File Name: anal1-cleaned.rResource Description: R code for analysis of the soil BX compounds under a live rye cover crop at different growing stages, and for the analysis of tissue BX compounds. In addition to statistical analyses, code in this file creates figures, also some statistical output that is used to create a file that is later read in for figure creation (s2-CLD20220730-Stage.csv).Resource Software Recommended: R version 3.6.3,url: https://www.R-project.org/ Resource Title: Description of data files for anal2-cleaned.r. File Name: readme2.txtResource Description: Describes the input files used in the R code in anal2-cleaned.r, including descriptions and formats for each field. The file also describes some output (results) files that were uploaded to this site. This is a plain ASCII text file.Resource Title: Estimates produced by anal2-cleaned.r from statistical modeling.. File Name: Estimates20201110.csvResource Description: Estimates produced by anal2-cleaned.r from statistical modeling (see readme2.txt)Resource Title: Summary statistics from anal2-cleaned.r. File Name: CV20210412.csvResource Description: Summary statistics from anal2-cleaned.r, used for plotsResource Title: Data summaries (same as CV20210412.csv), rescaled. File Name: RESCALE-20210412.csvResource Description: Same as "CV20210412.csv" except log of data have been rescaled to minimum at least zero and maximum one, see readme2.txtResource Title: Statistical summaries for different stages. File Name: s2-CLD20220730-Stage.csvResource Description: Statistical summaries used for creating a figure (not used in paper), used in anal1-cleaned.r; data for soil BX under living rye.Resource Title: Description of data files for anal1-cleaned.r. File Name: readme1.txtResource Description: Contains general descriptions of data imported into anal1-cleaned.r, and a description of each field. Also contains some descriptions of files output by anal1-cleaned.r, used to create tables or figures.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset links to the study titled “Exploring characteristics of national forest inventories for integration with global space-based forest biomass data”. This study is published in the journal “Science of the Total Environment” and the publication can be found at https://doi.org/10.1016/j.scitotenv.2022.157788. The dataset contains four csv files that were used to produce the results and other figures in the paper. The description of the individual data files contained in the dataset is given below.
NFI availability and characteristics data: The data file “NFI_availability_characteristics.csv” contains data on the total number of NFIs, the NFI extent, and the year of the most recent NFI in countries with NFI as reported in FRA 2020 country reports. The respective data variables in the data file are termed as Number_of_NFI, Latest_NFI_extent_FRA2020, and Latest_NFI_year_FRA2020 (NFI years generally refer to the years of data collection). In addition, the data file contains data on the region and tropical domain per country. The tropical and subtropical countries were considered tropical in the analysis and interpretation of the results. These data were used to produce Figure 2 of the study. ArcMap 10.7.1 was used for this purpose.
National biomass intercomparison data: The data file “national_biomass_intercomparison.csv” contains national forest AGB data for the year 2018 from FRA 2020 and CCI Biomass product that were used in the national biomass intercomparison analysis. The total (tons) and average space-based AGB (tons/ha) are extracted directly from the CCI Biomass Map 2018 for each country included in the study. The processing is done in Python and R environments. The spatial resolution of the map is 100 m. The average FRA AGB data in tons per ha was compiled from FRA 2020 country reports. The total FRA AGB data (tons) was estimated by multiplying each country's average FRA AGB data with FRA forest area data (in ha).
The data unit for total AGB was converted from tons to gigaton (Gt) in intercomparison analysis. The total CCI Map AGB estimates used in the analysis are termed as CCI_MAP_AGB_Gt in the data file and the average as CCI_Map_AGB_tons.ha. Similarly, the total FRA AGB data are termed as FRA_AGB_Gt and the average as FRA_AGB_ton.ha. The NFI availability and temporality were also used in intercomparison analysis and this data is termed as Latest_NFI_year_FRA2020 in the data file. The data were used to produce Figure 3 of the study in the R environment.
NFI plot design characteristics: The data file named “NFI_plot_design_characteristics.csv” contains data on variables that were used in the analysis of NFI plot designs in 46 tropical countries. This data file mainly contains the data that was used to produce Figure 4 and Figure 6 in the R environment. The value “uniform” in the sampling_stratification variable means no stratification was used in the sampling design. The variable name “psu” stands for primary sampling unit (both cluster and single plots), “psu_distance_km” for the distance between primary sampling units in km, “cluster_plotdis_m” for the distance between plots in meter in the cluster, “plotsize_ha” for plot (single and cluster plots ) size in ha, “plotshape” for plot shapes (single and cluster plots), “ILUA” for Integrated Land Use Assessment. The data were compiled from the latest NFI design manuals and NFI reports.
NFI years: The data file “NFI_years_tropical_countries_data.csv” contains data on NFI years of the latest NFI in 46 tropical countries that were used to produce Figure 1 using ArcMap 10.7.1. The years generally refer to the last years of data collection. Data were compiled from the latest country NFI design manual or NFI report. This included both ongoing and completed NFI.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains the data and scripts used for: Goeking, S. A. and D. G. Tarboton, (2022). Spatially distributed overstory and understory leaf area index estimated from forest inventory data. Water. https://doi.org/10.3390/w1415241.
Abstract from the paper: Abstract: Forest change affects the relative magnitudes of hydrologic fluxes such as evapotranspiration (ET) and streamflow. However, much is unknown about the sensitivity of streamflow response to forest disturbance and recovery. Several physically based models recognize the different influences that overstory versus understory canopies exert on hydrologic processes, yet most input datasets consist of total leaf area index (LAI) rather than individual canopy strata. Here, we developed stratum-specific LAI datasets with the intent of improving the representation of vegetation for ecohydrologic modeling. We applied three pre-existing methods for estimating overstory LAI, and one new method for estimating both overstory and understory LAI, to measurements collected from a probability-based plot network established by the US Forest Service’s Forest Inventory and Analysis (FIA) program, for a modeling domain in Montana, MT, USA. We then combined plot-level LAI estimates with spatial datasets (i.e., biophysical and re-mote sensing predictors) in a machine learning algorithm (random forests) to produce annual gridded LAI datasets. Methods that estimate only overstory LAI tended to underestimate LAI relative to Landsat-based LAI (mean bias error ≥ 0.83), while the method that estimated both overstory and understory layers was most strongly correlated with Landsat-based LAI (r2 = 0.80 for total LAI, with mean bias error of -0.99). During 1984-2019, interannual variability of under-story LAI exceeded that for overstory LAI; this variability may affect partitioning of precipitation to ET vs. runoff at annual timescales. We anticipate that distinguishing overstory and understory components of LAI will improve the ability of LAI-based models to simulate how for-est change influences hydrologic processes.
This resource contains one CSV file, two shapefiles (each within a zip file), two R scripts, and multiple raster datasets. The two shapefiles represent the boundaries of the Middle Fork Flathead river and South Fork Flathead River watersheds. The raster datasets represent annual leaf area index (LAI) at 30 m resolution for the entire modeling domain used in this study. LAI was estimated using method LAI4, which produced separate overstory and understory LAI datasets. Filenames contain years, e.g., "LAI4_2019" is overstory LAI for 2019; "LAI4under_2019" is understory LAI for 2019.
The CSV files in this Resource contain annual time series of LAI and ET ratio (annual evapotranspiration divided by annual precipitation) for the South Fork Flathead River and Middle Fork Flathead River watersheds, 1984-2019. LAI methods represented in this time series are LAI1 and LAI4 from the paper. LAI1 consists of only overstory LAI, and LAI4 consists of overstory (LAI4), understory (LAI4_under), and total (LAI4_total) LAI. For each LAI estimation method, summary statistics of the entire watershed are included (min, first quartile, median, third quartile, and max).
The two R scripts (R language and environment for statistical computing) summarize Forest Inventory & Analysis (FIA) data from the FIA database (FIADB) to estimate LAI at FIA plots. 1) FIADB_queries_public.r: Script for compiling FIA plot measurements prior to estimating LAI 2) LAI_estimation_public: Script for estimating LAI at FIA plots using the four methods described in this paper
Before running the R scripts, users must obtain several FIADB tables (PLOT, COND, TREE, and P2VEG_SUBP_STRUCTURE; all four tables must be renamed with lower-case names, e.g., "plot"). These tables can be obtained using one of two methods: 1) By downloading CSV files for the appropriate U.S. state(s) from the FIA DataMart (https://apps.fs.usda.gov/fia/datamart/datamart.html). If this method is used, the CSV files must be imported (read) into R before proceeding. 2) By using r package 'rFIA' to download the tables from FIADB for the U.S. state(s) of interest.
Note that publicly available plot coordinates are accurate within 1 km and are not true plot locations, which are legally confidential to protect the integrity of the sample locations and the privacy of landowners. Access to true plot location data requires review by FIA's Spatial Data Services unit, who can be contacted at SM.FS.RMRSFIA_Help@usda.gov.
Facebook
TwitterOpen Access# Data and R code used in: Plant geographic distribution influences chemical defenses in native and introduced Plantago lanceolata populations ## Description of the data and file structure * 00_ReadMe_DescriptonVariables.csv: A list with the description of variables from each file used. * 00_Metadata_Coordinates.csv : A dataset that includes the coordinates of each Plantago lanceolata population used. * 00_Metadata_Climate.csv : A dataset that includes coordinates, bioclimatic parameters, and the results of PCA. The dataset was created based on the script '1_Environmental variables.qmd' * 00_Metadata_Individuals.csv: A dataset that includes general information about each plant individual. Information about root traits and chemistry is missing in four samples since we lost the samples. * 01_Datset_PlantTraits.csv: Size-related and resource allocation traits measured of Plantago lanceolata and herbivore damage. * 02_Dataset_TargetedCompounds.csv: Phytohormones, Iridoid glycosides, Verbascoside and Flavonoids quantification of the leaves and roots of Plantago lanceolata. Data generated from HPLC * 03_Dataset_Volatiles_Area.csv: Area of identified volatile compounds. Data generated from GC-FID * 03_Dataset_Volatiles_Compounds.csv: Information on identified volatile compounds. Data generated from GC-MS. * 04_Dataset_Metabolome_Negative_Metadata.txt: Metadata for files in negative mode * 04_Dataset_Metabolome_Negative_Intensity.xlsx : File with the intensity of the metabolite features in negative mode. The file was generated from Metaboscape and adapted as required for the Notame package. * 04_Dataset_Metabolome_Negative_Intensity_filtered.xlsx: File generated after preprocessing of features in negative mode. During the notadame pacakged preprossesing 0 were converted to na * 04_Dataset_Metabolome_Negative.msmsonly.csv: File with a intensity of the the metabolite features in negative mode with ms/ms data. File generated from Metaboscape. * 04_Results_Metabolome_Negative_canopus_compound_summary.tsv: Feature classification. Results generated from Sirius software. * 04_Results_Metabolome_Negative_compound_identifications.tsv: Feature identification. Results generated from Sirius software. * 05_Dataset_Metabolome_Positive_Metadata.txt: Metadata for files in positive mode * 05_DatasetMetabolome_Positive_Intensity.xlsx : File with a intensity of the the metabolite features in positive mode. File generated from Metaboscape and adapted as required for the Notame package. * 05_Dataset_Metabolome_Positive_Intensity_filtered: File generated after preprocessing of features in positive mode.During the notadame pacakged preprossesing 0 were converted to na ## ## Code/Software * 1_Environmental vairables.qmd: Rscript to Retrieve bioclimatic variables from based on the coordinates of each population and then perform a principal components analysis to reduce the axes variation and included the first principal component as an explanatory variable in our model to estimate trait differences between native and introduced populations. Figure 1b and 1d * 2_PlantTraits_and_Herbivory: Rscript for statistical anaylsis of size-related traits, resource allocation traits and herbivore damage. Figure 2. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * 3_Metabolome: Rscript for statistical anaylsis of Plantago lanceolata metabolome. Figure 3. It needs to source: Metabolome_preprocessing_R, Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R. * 4_TargetedCompounds: Rscript for statistical anaylsis of Plantago lanceolata targeted compounds. Figure 4. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * 5_Volatilome: Rscript for statistical anaylsis of Plantago lanceolata metabolome. Figure 5. It needs to source: Model_1_Fucntion.R, Model_2_Fucntion.R, Plot_Function.R * Model_1_Function.R : Function to run statistical models * Model_2_Function.R : Function to run statistical models * Plots_Function.R : Function to run plot graphs * Metabolome_prepocessing.R: Script to preprocess features
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
{# General information# The script runs with R (Version 3.1.1; 2014-07-10) and packages plyr (Version 1.8.1), XLConnect (Version 0.2-9), utilsMPIO (Version 0.0.25), sp (Version 1.0-15), rgdal (Version 0.8-16), tools (Version 3.1.1) and lattice (Version 0.20-29)# --------------------------------------------------------------------------------------------------------# Questions can be directed to: Martin Bulla (bulla.mar@gmail.com)# -------------------------------------------------------------------------------------------------------- # Data collection and how the individual variables were derived is described in: #Steiger, S.S., et al., When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proceedings of the Royal Society B: Biological Sciences, 2013. 280(1764): p. 20131016-20131016. # Dale, J., et al., The effects of life history and sexual selection on male and female plumage colouration. Nature, 2015. # Data are available as Rdata file # Missing values are NA. # --------------------------------------------------------------------------------------------------------# For better readability the subsections of the script can be collapsed # --------------------------------------------------------------------------------------------------------}{# Description of the method # 1 - data are visualized in an interactive actogram with time of day on x-axis and one panel for each day of data # 2 - red rectangle indicates the active field, clicking with the mouse in that field on the depicted light signal generates a data point that is automatically (via custom made function) saved in the csv file. For this data extraction I recommend, to click always on the bottom line of the red rectangle, as there is always data available due to a dummy variable ("lin") that creates continuous data at the bottom of the active panel. The data are captured only if greenish vertical bar appears and if new line of data appears in R console). # 3 - to extract incubation bouts, first click in the new plot has to be start of incubation, then next click depict end of incubation and the click on the same stop start of the incubation for the other sex. If the end and start of incubation are at different times, the data will be still extracted, but the sex, logger and bird_ID will be wrong. These need to be changed manually in the csv file. Similarly, the first bout for a given plot will be always assigned to male (if no data are present in the csv file) or based on previous data. Hence, whenever a data from a new plot are extracted, at a first mouse click it is worth checking whether the sex, logger and bird_ID information is correct and if not adjust it manually. # 4 - if all information from one day (panel) is extracted, right-click on the plot and choose "stop". This will activate the following day (panel) for extraction. # 5 - If you wish to end extraction before going through all the rectangles, just press "escape". }{# Annotations of data-files from turnstone_2009_Barrow_nest-t401_transmitter.RData dfr-- contains raw data on signal strength from radio tag attached to the rump of female and male, and information about when the birds where captured and incubation stage of the nest1. who: identifies whether the recording refers to female, male, capture or start of hatching2. datetime_: date and time of each recording3. logger: unique identity of the radio tag 4. signal_: signal strength of the radio tag5. sex: sex of the bird (f = female, m = male)6. nest: unique identity of the nest7. day: datetime_ variable truncated to year-month-day format8. time: time of day in hours9. datetime_utc: date and time of each recording, but in UTC time10. cols: colors assigned to "who"--------------------------------------------------------------------------------------------------------m-- contains metadata for a given nest1. sp: identifies species (RUTU = Ruddy turnstone)2. nest: unique identity of the nest3. year_: year of observation4. IDfemale: unique identity of the female5. IDmale: unique identity of the male6. lat: latitude coordinate of the nest7. lon: longitude coordinate of the nest8. hatch_start: date and time when the hatching of the eggs started 9. scinam: scientific name of the species10. breeding_site: unique identity of the breeding site (barr = Barrow, Alaska)11. logger: type of device used to record incubation (IT - radio tag)12. sampling: mean incubation sampling interval in seconds--------------------------------------------------------------------------------------------------------s-- contains metadata for the incubating parents1. year_: year of capture2. species: identifies species (RUTU = Ruddy turnstone)3. author: identifies the author who measured the bird4. nest: unique identity of the nest5. caught_date_time: date and time when the bird was captured6. recapture: was the bird capture before? (0 - no, 1 - yes)7. sex: sex of the bird (f = female, m = male)8. bird_ID: unique identity of the bird9. logger: unique identity of the radio tag --------------------------------------------------------------------------------------------------------}