Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterThe USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Facebook
TwitterThis project includes a series of Excel files demonstrating key Excel functionalities, including:
You can download the original Excel file with all formatting here: https://www.kaggle.com/datasets/carinacruz/excel-project
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains video game sales data prepared for an Excel data analysis and dashboard project.
It includes detailed information on:
Game titles
Platforms
Genres
Publishers
Regional and global sales
The dataset was cleaned, structured, and analyzed in Microsoft Excel to explore patterns in the global video game market. It can be used to:
Practice data cleaning and pivot tables
Build interactive dashboards
Perform sales comparisons across regions and genres
Develop business insights from entertainment data
🧩 File Information
Format: .xlsx (Excel Workbook)
Columns: Name, Platform, Year, Genre, Publisher, NA_Sales, EU_Sales, JP_Sales, Other_Sales, Global_Sales
💡 Use Cases
Excel dashboard and chart creation
Data visualization and storytelling
Business and market analysis practice
Portfolio or learning projects
👤 Prepared by
Adewale Lateef W — for data analysis and Excel dashboard learning purposes.
Facebook
TwitterDownload Employee Vehicle Personal Use Excel SheetThis dataset lists the employee name and taxable benefit for personal use of City of Greater Sudbury Vehicle as travel expenses for the year 2020. Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Data for other years is available in separate datasets. Updated quarterly when expenses are prepared.
Facebook
TwitterAdditionally, all P-values used to determine statistical significance have also been included in this file. (XLSX)
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
In this project, I conducted a comprehensive analysis of retail and warehouse sales data to derive actionable insights. The primary objective was to understand sales trends, evaluate performance across channels, and identify key contributors to overall business success.
To achieve this, I transformed raw data into interactive Excel dashboards that highlight sales performance and channel contributions, providing a clear and concise representation of business metrics.
Key Highlights of the Project:
Created two dashboards: Sales Dashboard and Contribution Dashboard. Answered critical business questions, such as monthly trends, channel performance, and top contributors. Presented actionable insights with professional visuals, making it easy for stakeholders to make data-driven decisions.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterBrain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1.Introduction
Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.
One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.
This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.
Please cite the following papers when using this dataset:
I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted
The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.
3.1 Data Collection
The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.
The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.
Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.
It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.
The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).
File
Period
Number of Samples (days)
product 1 2020.xlsx
01/01/2020–31/12/2020
363
product 1 2021.xlsx
01/01/2021–31/12/2021
364
product 1 2022.xlsx
01/01/2022–31/12/2022
365
product 2 2020.xlsx
01/01/2020–31/12/2020
363
product 2 2021.xlsx
01/01/2021–31/12/2021
364
product 2 2022.xlsx
01/01/2022–31/12/2022
365
product 3 2020.xlsx
01/01/2020–31/12/2020
363
product 3 2021.xlsx
01/01/2021–31/12/2021
364
product 3 2022.xlsx
01/01/2022–31/12/2022
365
product 4 2020.xlsx
01/01/2020–31/12/2020
363
product 4 2021.xlsx
01/01/2021–31/12/2021
364
product 4 2022.xlsx
01/01/2022–31/12/2022
364
product 5 2020.xlsx
01/01/2020–31/12/2020
363
product 5 2021.xlsx
01/01/2021–31/12/2021
364
product 5 2022.xlsx
01/01/2022–31/12/2022
365
product 6 2020.xlsx
01/01/2020–31/12/2020
362
product 6 2021.xlsx
01/01/2021–31/12/2021
364
product 6 2022.xlsx
01/01/2022–31/12/2022
365
product 7 2020.xlsx
01/01/2020–31/12/2020
362
product 7 2021.xlsx
01/01/2021–31/12/2021
364
product 7 2022.xlsx
01/01/2022–31/12/2022
365
3.2 Dataset Overview
The following table enumerates and explains the features included across all of the included files.
Feature
Description
Unit
Day
day of the month
-
Month
Month
-
Year
Year
-
daily_unit_sales
Daily sales - the amount of products, measured in units, that during that specific day were sold
units
previous_year_daily_unit_sales
Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year
units
percentage_difference_daily_unit_sales
The percentage difference between the two above values
%
daily_unit_sales_kg
The amount of products, measured in kilograms, that during that specific day were sold
kg
previous_year_daily_unit_sales_kg
Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year
kg
percentage_difference_daily_unit_sales_kg
The percentage difference between the two above values
kg
daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned
%
previous_year_daily_unit_returns_kg
The percentage of the products that were shipped to selling points and were returned the previous year
%
points_of_distribution
The amount of sales representatives through which the product was sold to the market for this year
previous_year_points_of_distribution
The amount of sales representatives through which the product was sold to the market for the same day for the previous year
Table 1 – Dataset Feature Description
4.1 Dataset Structure
The provided dataset has the following structure:
Where:
Name
Type
Property
Readme.docx
Report
A File that contains the documentation of the Dataset.
product X
Folder
A folder containing the data of a product X.
product X YYYY.xlsx
Data file
An excel file containing the sales data of product X for year YYYY.
Table 2 - Dataset File Description
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).
References
[1] MEVGAL is a Greek dairy production company
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Chemistry is increasingly data centric and the undergraduate curriculum needs to adjust to keep up. To address this, we created the Air Quality Activity, a new first-year undergraduate activity where students use Microsoft Excel to analyze a unique subset of atmospheric ozone (O3) and nitrogen dioxide (NO2) measurements from the Canadian National Air Pollution Surveillance (NAPS) program. Through this activity students develop their numeracy, graphicacy, and proficiency with Excel. Moreover, students are equipped with a foundational approach to data analysis they can leverage throughout their studies. To make this activity possible, we developed an open-source webbook detailing pertinent Excel operations for first-year students, and an interactive web-app for the generation, distribution, and exploration of NAPS data. Students were excited by the analysis of real-world chemical phenomena in comparison to traditional first-year lab exercises and appreciated their acquired Excel skills. The Air Quality Activity is readily adaptable for both virtual and in-person implementation, entirely open-source, and readily deployable at any institution wishing to teach data analysis in a chemistry context.
Facebook
TwitterThere is a requirement that public authorities, like Ofsted, must publish updated versions of datasets which are disclosed as a result of Freedom of Information requests.
Some information which is requested is exempt from disclosure to the public under the Freedom of Information Act; it is therefore not appropriate for this information to be made available. Examples of information which it is not appropriate to make available includes the locations of women’s refuges, some military bases and all children’s homes and the personal data of providers and staff. Ofsted also considers that the names and addresses of registered childminders are their personal data which it is not appropriate to make publicly available unless those individuals have given their explicit consent to do so. This information has therefore not been included in the datasets.
Data for both childcare and childminders are included in the excel file.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">16.6 MB</span></p>
<p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
<details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
Request an accessible format.
If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@ofsted.gov.uk" target="_blank" class="govuk-link">enquiries@ofsted.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
Facebook
Twitter
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Analyzing Coffee Shop Sales: Excel Insights 📈
In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕
DATA CLEANING 🧹
• REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.
• FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.
• CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.
DATA MANIPULATION 🛠️
• UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.
• IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.
• APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.
• CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.
PIVOTING THE DATA 𝄜
• CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.
• FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.
VISUALIZATION 📊
• KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.
• SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.
• PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.
• TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.
*I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.
While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.
THANKS TO: WsCube Tech Mo Chen Alex Freberg
TOOLS USED: Microsoft Excel
Facebook
TwitterWith this add in it is possible to create map templates from GIS files in KML format, and create choropleths with them. Providing you have access to KML format map boundary files, it is possible to create your own quick and easy choropleth maps in Excel. The KML format files can be converted from 'shape' files. Many shape files are available to download for free from the web, including from Ordnance Survey and the London Datastore. Standard mapping packages such as QGIS (free to download) and ArcGIS can convert the files to KML format. A sample of a KML file (London wards) can be downloaded from this page, so that users can easily test the tool out. Macros must be enabled for the tool to function. When creating the map using the Excel tool, the 'unique ID' should normally be the area code, the 'Name' should be the area name and then if required and there is additional data in the KML file, further 'data' fields can be added. These columns will appear below and to the right of the map. If not, data can be added later on next to the codes and names. In the add-in version of the tool the final control, 'Scale (% window)' should not normally be changed. With the default value 0.5, the height of the map is set to be half the total size of the user's Excel window. To run a choropleth, select the menu option 'Run Choropleth' to get this form. To specify the colour ramp for the choropleth, the user needs to enter the number of boxes into which the range is to be divided, and the colours for the high and low ends of the range, which is done by selecting coloured option boxes as appropriate. If wished, hit the 'Swap' button to change which colours are for the different ends of the range. Then hit the 'Choropleth' button. The default options for the colours of the ends of the choropleth colour range are saved in the add in, but different values can be selected but setting up a column range of up to twelve cells, anywhere in Excel, filled with the option colours wanted. Then use the 'Colour range' control to select this range, and hit apply, having selected high or low values as wished. The button 'Copy' sets up a sheet 'ColourRamp' in the active workbook with the default colours, which can just be extended or deleted with just a few cells, so saving the user time. The add-in was developed entirely within the Excel VBA IDE by Tim Lund. He is kindly distributing the tool for free on the Datastore but suggests that users who find the tool useful make a donation to the Shelter charity. It is not intended to keep the actively maintained, but if any users or developers would like to add more features, email the author. Acknowledgments Calculation of Excel freeform shapes from latitudes and longitudes is done using calculations from the Ordnance Survey.
Facebook
TwitterThe Home Office has changed the format of the published data tables for a number of areas (asylum and resettlement, entry clearance visas, extensions, citizenship, returns, detention, and sponsorship). These now include summary tables, and more detailed datasets (available on a separate page, link below). A list of all available datasets on a given topic can be found in the ‘Contents’ sheet in the ‘summary’ tables. Information on where to find historic data in the ‘old’ format is in the ‘Notes’ page of the ‘summary’ tables.
The Home Office intends to make these changes in other areas in the coming publications. If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
Immigration statistics, year ending September 2020
Immigration Statistics Quarterly Release
Immigration Statistics User Guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/602bab69e90e070562513e35/asylum-summary-dec-2020-tables.xlsx">Asylum and resettlement summary tables, year ending December 2020 (MS Excel Spreadsheet, 359 KB)
Detailed asylum and resettlement datasets
https://assets.publishing.service.gov.uk/media/602bab8fe90e070552b33515/sponsorship-summary-dec-2020-tables.xlsx">Sponsorship summary tables, year ending December 2020 (MS Excel Spreadsheet, 67.7 KB)
https://assets.publishing.service.gov.uk/media/602bf8708fa8f50384219401/visas-summary-dec-2020-tables.xlsx">Entry clearance visas summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.3 KB)
Detailed entry clearance visas datasets
https://assets.publishing.service.gov.uk/media/602bac148fa8f5037f5d849c/passenger-arrivals-admissions-summary-dec-2020-tables.xlsx">Passenger arrivals (admissions) summary tables, year ending December 2020 (MS Excel Spreadsheet, 70.6 KB)
Detailed Passengers initially refused entry at port datasets
https://assets.publishing.service.gov.uk/media/602bac3d8fa8f50383c41f7c/extentions-summary-dec-2020-tables.xlsx">Extensions summary tables, year ending December 2020 (MS Excel Spreadsheet, 41.5 KB)
<a href="https://www.gov.uk/governmen
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.
The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:
· Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book
The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.
The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.
ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.
This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.
The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.
The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.
The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.
The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.
A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):
· I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.
The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk
Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science
Facebook
TwitterThe excel spreadsheet includes data used to create figures and tables used in the manuscript. Tabs in spreadsheet refer to the appropriate figure or table. This dataset is associated with the following publication: Dore, E., C. Formal, C. Muhlen, D. Williams, S. Harmon, M. Pham, S. Triantafyllidou, and D. Lytle. Effectiveness of point-of-use and pitcher filters at removing lead phosphate nanoparticles from drinking water. WATER RESEARCH. Elsevier Science Ltd, New York, NY, USA, 201: 117285, (2021).
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).