100+ datasets found
  1. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  2. M

    DNR QuickLayers for ArcGIS Pro 3

    • gisdata.mn.gov
    esri_addin
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR QuickLayers for ArcGIS Pro 3 [Dataset]. https://gisdata.mn.gov/dataset/quick-layers-pro3
    Explore at:
    esri_addinAvailable download formats
    Dataset updated
    Nov 13, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The way to access Layers Quickly.

    Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11

    To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.

    Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.

    Installation:

    After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
    1. Open ArcGIS Pro
    2. Project -> Add-In Manager -> Options
    3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
    4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar

    The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.

  3. Terrain

    • hub.arcgis.com
    • pacificgeoportal.com
    • +2more
    Updated Jul 5, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Terrain [Dataset]. https://hub.arcgis.com/datasets/58a541efc59545e6b7137f961d7de883
    Explore at:
    Dataset updated
    Jul 5, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  4. Data from: Automated Detection of On-Farm Irrigation Reservoirs: A Necessary...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Automated Detection of On-Farm Irrigation Reservoirs: A Necessary Precursor for Conjunctive Water Management in Two Critical Groundwater Regions of Arkansas [Dataset]. https://catalog.data.gov/dataset/data-from-automated-detection-of-on-farm-irrigation-reservoirs-a-necessary-precursor-for-c
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    The Inventory from Model (White)Model Reservoirs (Red)Mary and Co's reservoirs (Blue)NHD water (Orange)CDL water (Yellow)The Inventory from Model map (1) represents all the water found within the three areas identified the 2023 project; (2) is where the model indicates a reservoir based on the elevation difference based on the Yeager et al. (2017) reservoirs; (3) is based on the Yeager et al. (2017) reservoir boundaries which were plugged into the fifth step of the model (the water identification steps were skipped). Then the model was used to evaluate and classify them into elevation classes. NHD Water map (4) is every waterbody polygon from the National Hydrography Dataset that falls within the three study area areas. The CDL Water map (5) is every open water and aquaculture polygon vectorized from the Cropland Data Layer raster within the three study areas.This Data is a zipped, ArcGIS Pro (V3.1.2) project. The project geodatabase contains the model. In this project there are five maps representing different datasets.NOTE (2024-05-13): ISO xml metadata files added to the root of the zipped folder, describing specific items in the project, saved in ArcGIS Pro V.3.2.2.

  5. Digital Environmental Geologic-GIS Map for San Antonio Missions National...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas (NPS, GRD, GRI, SAAN, SAAN_environmental digital map) adapted from a Texas Bureau of Economic Geology, University of Texas at Austin unpublished map by the Texas Bureau of Economic Geology (1985) [Dataset]. https://catalog.data.gov/dataset/digital-environmental-geologic-gis-map-for-san-antonio-missions-national-historical-park-a
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Texas, San Antonio, Austin
    Description

    The Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saan_environmental_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saan_environmental_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saan_environmental_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (saan_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saan_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saan_environmental_geology_metadata_faq.pdf). Please read the saan_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saan_environmental_geology_metadata.txt or saan_environmental_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). Purpose:

  6. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  7. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    Updated Oct 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. Digital Geologic-GIS Map of the Moore Hill Quadrangle, Wyoming (NPS, GRD,...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the Moore Hill Quadrangle, Wyoming (NPS, GRD, GRI, DETO, MOOH digital map) adapted from a U.S. Geological Survey Miscellaneous Geologic Investigations Map by Izett (1963) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-moore-hill-quadrangle-wyoming-nps-grd-gri-deto-mooh-digita
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geologic-GIS Map of the Moore Hill Quadrangle, Wyoming is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mooh_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (mooh_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mooh_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (deto_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (deto_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mooh_geology_metadata_faq.pdf). Please read the deto_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mooh_geology_metadata.txt or mooh_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. d

    Residential Schools Locations Dataset (Geodatabase)

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Orlandini, Rosa (2023). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Orlandini, Rosa
    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  10. Digital Geohazard-GIS Map of the Zion National Park Study Area, Utah (NPS,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geohazard-GIS Map of the Zion National Park Study Area, Utah (NPS, GRD, GRI, ZION, ZION_geohazards digital map) adapted from a Utah Geological Survey Special Study Map by Lund, Knudsen, and Sharrow (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geohazard-gis-map-of-the-zion-national-park-study-area-utah-nps-grd-gri-zion-zion-
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Utah
    Description

    The Digital Geohazard-GIS Map of the Zion National Park Study Area, Utah is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (zion_geohazards.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (zion_geohazards.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (zion_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (zion_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (zion_geohazards_metadata_faq.pdf). Please read the zion_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Utah Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (zion_geohazards_metadata.txt or zion_geohazards_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. r

    India: Land Cover

    • opendata.rcmrd.org
    • goa-state-gis-esriindia1.hub.arcgis.com
    • +1more
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Land Cover [Dataset]. https://opendata.rcmrd.org/maps/9aeb44fb438645e8ae8387231f5c2815
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  12. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • pacificgeoportal.com
    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  13. a

    Soil Survey Geographic Database (SSURGO) Downloader

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Soil Survey Geographic Database (SSURGO) Downloader [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/documents/305ef916da574a71877edb15c3f47f08
    Explore at:
    Dataset updated
    Jun 17, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Description

    The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updatesTitle: Soil Survey Geographic Database (SSURGO) DownloaderItem Type: Web Mapping Application URLSummary: Download ready-to-use project packages with over 170 attributes derived from the SSURGO (Soil Survey Geographic Database) dataset.Notes: Prepared by: Uploaded by EMcRae_NMCDCSource: https://nmcdc.maps.arcgis.com/home/item.html?id=cdc49bd63ea54dd2977f3f2853e07fff link to Esri web mapping applicationFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=305ef916da574a71877edb15c3f47f08#overviewUID: 26Data Requested: Ag CensusMethod of Acquisition: Esri web mapDate Acquired: 6/16/22Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 8Tags: PENDINGDOCUMENTATION FROM DATA SOURCE URL: This application provides quick access to ready-to-use project packages filled with useful soil data derived from the SSURGO dataset.To use this application, navigate to your study area and click the map. A pop-up window will open. Click download and the project package will be copied to your computer. Double click the downloaded package to open it in ArcGIS Pro. Alt + click on the layer in the table of contents to zoom to the subbasin.Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryThe map packages were created from the October 2021 SSURGO snapshot. The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data. The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a

  14. Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical Park and Vicinity, New Hampshire (NPS, GRD, GRI, SAGA, SAGA_bedrock digital map) adapted from U.S. Geological Survey Scientific Investigations Maps by Walsh, Valley, Thompson, Ratcliffe, Proctor and Sicard (2020), and Walsh (2016) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-the-saint-gaudens-national-historical-park-and-vicinit
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Bedrock Geologic-GIS Map of the Saint-Gaudens National Historical Park and Vicinity, New Hampshire is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saga_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saga_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saga_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (saga_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saga_bedrock_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saga_bedrock_geology_metadata_faq.pdf). Please read the saga_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saga_bedrock_geology_metadata.txt or saga_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  15. c

    Land Cover 1992-2020

    • cacgeoportal.com
    • opendata.rcmrd.org
    • +1more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  16. W

    Burn areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    csv, esri rest +4
    Updated Sep 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). Burn areas [Dataset]. https://wifire-data.sdsc.edu/dataset/burn-areas
    Explore at:
    csv, geojson, html, kml, zip, esri restAvailable download formats
    Dataset updated
    Sep 27, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This layer contains the fire perimeters from the previous calendar year, and those dating back to 1878, for California. Perimeters are sourced from the Fire and Resource Assessment Program (FRAP) and are updated shortly after the end of each calendar year. Information below is from the FRAP web site. There is also a tile cache version of this layer.


    About the Perimeters in this Layer

    Initially CAL FIRE and the USDA Forest Service jointly developed a fire perimeter GIS layer for public and private lands throughout California. The data covered the period 1950 to 2001 and included USFS wildland fires 10 acres and greater, and CAL FIRE fires 300 acres and greater. BLM and NPS joined the effort in 2002, collecting fires 10 acres and greater. Also in 2002, CAL FIRE’s criteria expanded to include timber fires 10 acres and greater in size, brush fires 50 acres and greater in size, grass fires 300 acres and greater in size, wildland fires destroying three or more structures, and wildland fires causing $300,000 or more in damage. As of 2014, the monetary requirement was dropped and the damage requirement is 3 or more habitable structures or commercial structures.

    In 1989, CAL FIRE units were requested to fill in gaps in their fire perimeter data as part of the California Fire Plan. FRAP provided each unit with a preliminary map of 1950-89 fire perimeters. Unit personnel also verified the pre-1989 perimeter maps to determine if any fires were missing or should be re-mapped. Each CAL FIRE Unit then generated a list of 300+ acre fires that started since 1989 using the CAL FIRE Emergency Activity Reporting System (EARS). The CAL FIRE personnel used this list to gather post-1989 perimeter maps for digitizing. The final product is a statewide GIS layer spanning the period 1950-1999.

    CAL FIRE has completed inventory for the majority of its historical perimeters back to 1950. BLM fire perimeters are complete from 2002 to the present. The USFS has submitted records as far back as 1878. The NPS records date to 1921.


    About the Program

    FRAP compiles fire perimeters and has established an on-going fire perimeter data capture process. CAL FIRE, the United States Forest Service Region 5, the Bureau of Land Management, and the National Park Service jointly develop the fire perimeter GIS layer for public and private lands throughout California at the end of the calendar year. Upon release, the data is current as of the last calendar year.

    The fire perimeter database represents the most complete digital record of fire perimeters in California. However it is still incomplete in many respects. Fire perimeter database users must exercise caution to avoid inaccurate or erroneous conclusions. For more information on potential errors and their source please review the methodology section of these pages.

    The fire perimeters database is an Esri ArcGIS file geodatabase with three data layers (feature classes):

    • A layer depicting wildfire perimeters from contributing agencies current as of the previous fire year;
    • A layer depicting prescribed fires supplied from contributing agencies current as of the previous fire year;
    • A layer representing non-prescribed fire fuel reduction projects that were initially included in the database. Fuels reduction projects that are non prescribed fire are no longer included.

    Recommended Uses

    There are many uses for fire perimeter data. For example, it is used on incidents to locate recently burned areas that may affect fire behavior (see map left).

    Other uses include:

    • Improving fire prevention, suppression, and initial attack success.
    • Reduce and track hazards and risks in urban interface areas.
    • Provide information for fire ecology studies for example studying fire effects on vegetation over time.

    Download the Fire Perimeter GIS data here

    Download a statewide map of Fire Perimeters here


    Source: Fire and Resource Assessment Program (FRAP)

  17. Digital Geologic-GIS Map of Yukon-Charley Rivers National Preserve and...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Yukon-Charley Rivers National Preserve and Vicinity, Alaska (NPS, GRD, GRI, YUCH, YUCH digital map) adapted from U.S. Geological Survey Scientific Investigations Map by Wilson an others (2015), and U.S. Geological Survey Open-File Report maps by Rombach, Freeman, Schaefer, Cameron, Werdon and others (1998, 1999, 2000, 2004 and 2008) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yukon-charley-rivers-national-preserve-and-vicinity-alaska-nps
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Alaska
    Description

    The Digital Geologic-GIS Map of Yukon-Charley Rivers National Preserve and Vicinity, Alaska is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yuch_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yuch_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yuch_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yuch_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yuch_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yuch_geology_metadata_faq.pdf). Please read the yuch_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yuch_geology_metadata.txt or yuch_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 417 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Santa Rosa Island, California
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. d

    Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS,...

    • datasets.ai
    • s.cnmilf.com
    • +1more
    33, 57
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2023). Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS, GRD, GRI, MORA, MORA_geology digital map) adapted from a U.S. Geological Survey Miscellaneous Geologic Investigations Map by Fiske, Hopson and Waters (1964) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-mount-rainier-national-park-washington-nps-grd-gri-mora-mora-g
    Explore at:
    57, 33Available download formats
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Mount Rainier
    Description

    The Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.

  20. WorldClim Global Mean Precipitation

    • pacificgeoportal.com
    • cacgeoportal.com
    • +6more
    Updated Mar 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). WorldClim Global Mean Precipitation [Dataset]. https://www.pacificgeoportal.com/datasets/e6ab693056a9465cbc3b26414f0ddd2c
    Explore at:
    Dataset updated
    Mar 25, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    WorldClim 2.1 provides downscaled estimates of climate variables as monthly means over the period of 1970-2000 based on interpolated station measurements. Here we provide analytical image services of precipitation for each month along with an annual mean. Each time step is accessible from a processing template.Time Extent: Monthly/Annual 1970-2000Units: mm/monthCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 16 Bit IntegerData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim v2.1Using Processing Templates to Access TimeThere are 13 processing templates applied to this service, each providing access to the 12 monthly and 1 annual mean precipitation layers. To apply these in ArcGIS Online, select the Image Display options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left-hand menu. From the Processing Template pull down menu, select the version to display.What can you do with this layer?This layer may be added to maps to visualize and quickly interrogate each pixel value. The pop-up provides a graph of the time series along with the calculated annual mean value.This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro and an area count of precipitation may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from month to month to show seasonal patterns.To calculate precipitation by land area, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Source Data: The datasets behind this layer were extracted from GeoTIF files produced by WorldClim at 2.5 minutes resolution. The mean of the 12 GeoTIFs was calculated (annual), and the 13 rasters were converted to Cloud Optimized GeoTIFF format and added to a mosaic dataset.Citation: Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
Organization logo

National Hydrography Dataset Plus Version 2.1

Explore at:
53 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 16, 2022
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

Search
Clear search
Close search
Google apps
Main menu