6 datasets found
  1. Data from: Higher Education Institutions in Poland Dataset

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Sep 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson Junior; Jackson Junior; Paulina Rutecka; Paulina Rutecka; Pedro Pinto; Pedro Pinto (2023). Higher Education Institutions in Poland Dataset [Dataset]. http://doi.org/10.5281/zenodo.8333574
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 11, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jackson Junior; Jackson Junior; Paulina Rutecka; Paulina Rutecka; Pedro Pinto; Pedro Pinto
    License

    Attribution 1.0 (CC BY 1.0)https://creativecommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    Poland
    Description

    Higher Education Institutions in Poland Dataset

    This repository contains a dataset of higher education institutions in Poland. The dataset comprises 131 public higher education institutions and 216 private higher education institutions in Poland. The data was collected on 24/11/2022.
    This dataset was compiled in response to a cybersecurity investigation of Poland's higher education institutions' websites [1]. The data is being made publicly available to promote open science principles [2].

    Data

    The data includes the following fields for each institution:

    • Id: A unique identifier assigned to each institution.
    • Region: The federal state in which the institution is located.
    • Name: The original name of the institution in Polish.
    • Name_EN: The international name of the institution in English.
    • Category: Indicates whether the institution is public or private.
    • Url: The website of the institution.

    Methodology

    The dataset was compiled using data from two primary sources:

    • Public Higher Education Institutions: Data was sourced from the official website of the Ministry of Education and Science of Poland [3].
    • Private Higher Education Institutions: Data was obtained from the RAD-on system, which is part of the Integrated Information Network on Science and Higher Education [4].

    For the international names in English, the following methodology was employed:

    Both Polish and English names were retained for each institution. This decision was based on the fact that some universities do not have their English versions available in official sources.

    English names were primarily sourced from:

    • The Polish National Agency for Academic Exchange's official document [5].
    • The website Studies in English [6].
    • Official websites of the respective Higher Education Institutions.

    In instances where English names were not readily available from the aforementioned sources, the GPT-3.5 model was employed to propose suitable names. These proposed names are distinctly marked in blue within the dataset file (hei_poland_en.xls).

    Usage

    This data is available under the Creative Commons Zero (CC0) license and can be used for academic research purposes. We encourage the sharing of knowledge and the advancement of research in this field by adhering to open science principles [2].

    If you use this data in your research, please cite the source and include a link to this repository. To properly attribute this data, please use the following DOI:
    10.5281/zenodo.8333573

    Contribution

    If you have any updates or corrections to the data, please feel free to open a pull request or contact us directly. Let's work together to keep this data accurate and up-to-date.

    Acknowledgment

    We would like to express our gratitude to the Ministry of Education and Science of Poland and the RAD-on system for providing the information used in this dataset.

    We would like to acknowledge the support of the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within the project "Cybers SeC IP" (NORTE-01-0145-FEDER-000044). This study was also developed as part of the Master in Cybersecurity Program at the Polytechnic University of Viana do Castelo, Portugal.

    References

    1. Pending.
    2. S. Bezjak, A. Clyburne-Sherin, P. Conzett, P. Fernandes, E. Görögh, K. Helbig, B. Kramer, I. Labastida, K. Niemeyer, F. Psomopoulos, T. Ross-Hellauer, R. Schneider, J. Tennant, E. Verbakel, H. Brinken, and L. Heller, Open Science Training Handbook. Zenodo, Apr. 2018. [Online]. Available: [https://doi.org/10.5281/zenodo.1212496]
    3. Ministry of Education and Science of Poland. "Wykaz uczelni publicznych nadzorowanych przez Ministra właściwego ds. szkolnictwa wyższego - publiczne uczelnie akademickie." Nov 2022. [Online]. Available: https://www.gov.pl/web/edukacja-i-nauka/wykaz-uczelni-publicznych-nadzorowanych-przez-ministra-wlasciwego-ds-szkolnictwa-wyzszego-publiczne-uczelnie-akademickie
    4. RAD-on System. "Dane instytucji systemu szkolnictwa wyższego i nauki." Nov 2022. [Online]. Available: https://radon.nauka.gov.pl/dane/instytucje-systemu-szkolnictwa-wyzszego-i-nauki
    5. Polish National Agency for Academic Exchange. "List of the university-type HEIs." 2023. [Online]. Available: https://nawa.gov.pl/images/Aktualnosci/2023/Att.-2.-List-of-the-university-type-HEIs.pdf
    6. Studies in English. [Online]. Available: www.studies-in-english.pl
  2. Higher Education Institutions in Germany Dataset 2025

    • zenodo.org
    zip
    Updated Oct 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson Barreto; Jackson Barreto; Rodrigo Costa; Rodrigo Costa (2025). Higher Education Institutions in Germany Dataset 2025 [Dataset]. http://doi.org/10.5281/zenodo.14960633
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 22, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jackson Barreto; Jackson Barreto; Rodrigo Costa; Rodrigo Costa
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    Higher Education Institutions in Germany Dataset 2025

    This repository contains a dataset of higher education institutions in Germany. This includes 400 higher education institutions in Germany, including universities, universities of applied sciences and Higher Institutes as Higher Institute of Engineering, Higher Institute of biotechnologies and few others. This dataset was compiled in response to a cybersecurity investigation of Germany higher education institutions' websites [1]. The data is being made publicly available to promote open science principles [2].

    Data

    The data includes the following fields for each institution:

    • ETER_Id: A unique identifier assigned to each institution.
    • Name: The full name of the institution.
    • Category: Indicates whether the institution is public or private.
    • Institution_Category_Standardized: Indicates whether the institution is University, University of applied sciences or other.
    • Member_of_European_University_alliance: Indicates if the institution is member of European University Alliance (A kind of collaborative higher education institutions network in Europe).
    • Url: The website of the institution.
    • NUTS2: Nomenclature of Territorial Units for Statistics (NUTS): A classification by the European Union to divide member states' territories into statistical units. The NUTS system has three hierarchical levels, with NUTS2 being the second level.
    • NUTS2_Label_2016: Refers to the classification of regions at the NUTS2 level according to the 2016 criteria set by the European Union.
    • NUTS2_Label_2021: Refers to the classification of regions at the NUTS2 level according to the 2021 criteria set by the European Union.
    • NUTS3: Nomenclature of Territorial Units for Statistics (NUTS): A classification by the European Union to divide member states' territories into statistical units. The NUTS system has three hierarchical levels, with NUTS3 being the third level.
    • NUTS3_Label_2016: Refers to the classification of regions at the NUTS3 level according to the 2016 criteria set by the European Union.
    • NUTS3_Label_2021: Refers to the classification of regions at the NUTS3 level according to the 2021 criteria set by the European Union.

    Methodology

    The methodology for creating the dataset involved obtaining data from two sources: The European Higher Education Sector Observatory (ETER)[3]. The data was collected on December 26, 2024, the Eurostat for NUTS - Nomenclature of territorial units for statistics 2013-16[4] and 2021[5].

    This section outlines the methodology used to create the dataset for Higher Education Institutions (HEIs) in France. The dataset consolidates information from various sources, processes the data, and enriches it to provide accurate and reliable insights.

    Data Sources

    1. ETER Database: The primary dataset was sourced from the ETER database, containing detailed information about HEIs in Europe.
      • File: eter-export-2021-DE.xlsx
    2. Eurostat NUTS Data: Two datasets from Eurostat were used for regional information:
      • NUTS 2013-2016 regions: NUTS2013-NUTS2016.xlsx
      • NUTS 2021 regions: NUTS2021.xlsx

    Data Cleaning and Preprocessing Column Renaming Columns in the raw dataset were renamed for consistency and readability. Examples include:

    • ETER IDETER_ID
    • Institution NameName
    • Legal statusCategory

    Value Replacement

    1. HEI Categories: The Category column was cleaned, with government-dependent institutions classified as "public."
    2. Standardized Institution Categories: Mapped numerical values to descriptive labels such as "University" and "University of applied sciences."
    3. European University Alliance Membership: Replaced binary values with "Yes" or "No."

    Handling Missing or Incorrect Data

    1. Specific entries with missing or incorrect data were updated manually based on their ETER_ID. For instance:
      • Adjusted URLs for entries like DE0012 (updated to www.zeppelin-university.com)
      • Adjusted URLs for entries like FR0906 (updated to hmtm.de)
      • Adjusted URLs for entries like FR0104 (updated to www.dhfpg.de)
      • Adjusted URLs for entries like FR0466 (updated to fhf.brandenburg.de)
      • Adjusted URLs for entries like FR0907 (updated to hr-nord.niedersachsen.de)
      • Adjusted URLs for entries like FR0333 (updated to www.srh-university.de)

    Regional Data Integration

    1. Merged NUTS 2016 and NUTS 2021 data to enrich the dataset with regional labels.

    Final Dataset The final dataset was saved as a CSV file: germany-heis.csv, encoded in UTF-8 for compatibility. It includes detailed information about HEIs in France, their categories, regional affiliations, and membership in European alliances.

    Summary This methodology ensures that the dataset is accurate, consistent, and enriched with valuable regional and institutional details. The final dataset is intended to serve as a reliable resource for analyzing French HEIs.

    Usage

    This data is available under the Creative Commons Zero (CC0) license and can be used for any purpose, including academic research purposes. We encourage the sharing of knowledge and the advancement of research in this field by adhering to open science principles [2].

    If you use this data in your research, please cite the source and include a link to this repository. To properly attribute this data, please use the following DOI: 10.5281/zenodo.7614862

    Contribution

    If you have any updates or corrections to the data, please feel free to open a pull request or contact us directly. Let's work together to keep this data accurate and up-to-date.

    Acknowledgment

    We would like to acknowledge the support of the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within the project "Cybers SeC IP" (NORTE-01-0145-FEDER-000044). This study was also developed as part of the Master in Cybersecurity Program at the Instituto Politécnico de Viana do Castelo, Portugal.

    References

    1. Pending
    2. S. Bezjak, A. Clyburne-Sherin, P. Conzett, P. Fernandes, E. Görögh, K. Helbig, B. Kramer, I. Labastida, K. Niemeyer, F. Psomopoulos, T. Ross-Hellauer, R. Schneider, J. Tennant, E. Verbakel, H. Brinken, and L. Heller, Open Science Training Handbook. Zenodo, Apr. 2018. [Online]. Available: [https://doi.org/10.5281/zenodo.1212496]
    3. The European Higher Education Sector Observatory, Dec 2024. Available: ETER
    4. NUTS - Nomenclature of territorial units for statistics, Dec 2024. Available: NUTS-2013-2016
    5. NUTS - Nomenclature of territorial units for statistics, Dec 2024. Available: NUTS-2021.
  3. Higher Education Institutions in the USA

    • kaggle.com
    zip
    Updated Apr 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson Júnior (2023). Higher Education Institutions in the USA [Dataset]. https://www.kaggle.com/datasets/jacksonbarreto/higher-education-institutions-in-the-usa/data
    Explore at:
    zip(35907 bytes)Available download formats
    Dataset updated
    Apr 8, 2023
    Authors
    Jackson Júnior
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Higher Education Institutions in the United States of America Dataset

    This repository contains a dataset of higher education institutions in the United States of America. This dataset was compiled in response to a cybersecurity research of American higher education institutions' websites [1]. The data is being made publicly available to promote open science principles [2].

    Data

    The data includes the following fields for each institution:

    • Id: A unique identifier assigned to each institution.
    • Region: The federal state in which the institution is located.
    • Name: The full name of the institution.
    • Category: Indicates whether the institution is public or private.
    • Url: The website of the institution.

    Methodology

    The dataset was obtained from the Higher Education Integrated Data System (IPEDS) website [3], which is administered by the National Center for Education Statistics (NCES). NCES serves as the primary federal entity for collecting and analyzing education-related data in the United States. The data was collected on February 2, 2023.

    The initial list of institutions was derived from the IPEDS database using the following criteria: (1) US institutions only, (2) degree-granting institutions, primarily bachelor's or higher, and (3) industry classification, which includes: public 4 - year or above, private not-for-profit 4 years or more, private for-profit 4 years or more, public 2 years, private not-for-profit 2 years, private for-profit 2 years, public less than 2 years, private not-for-profit for-profit less than 2 years and private for-profit less than 2 years.

    The following variables have been added to the list of institutions: Control of the institution, state abbreviation, degree-granting status, Status of the institution, and Institution's internet website address. This resulted in a report with 1,979 institutions.

    The institution's status was labeled with the following values: A (Active), N (New), R (Restored), M (Closed in the current year), C (Combined with another institution), D (Deleted out of business), I (Inactive due to hurricane-related issues), O (Outside IPEDS scope), P (Potential new/add institution), Q (Potential institution reestablishment), W (Potential addition outside IPEDS scope), X ( Potential restoration outside the scope of IPEDS) and G (Perfect Children's Campus).

    A filter was applied to the report to retain only institutions with an A, N, or R status, resulting in 1,978 institutions. Finally, a data cleaning process was applied, which involved removing the whitespace at the beginning and end of cell content and duplicate whitespace. The final data were compiled into the dataset included in this repository.

    Usage

    This data is available under the Creative Commons Zero (CC0) license and can be used for any purpose, including academic research purposes. We encourage the sharing of knowledge and the advancement of research in this field by adhering to open science principles [2].

    If you use this data in your research, please cite the source and include a link to this repository. To properly attribute this data, please use the following DOI: 10.5281/zenodo.7614862

    DOI

    Contribution

    If you have any updates or corrections to the data, please feel free to open a pull request or contact us directly. Let's work together to keep this data accurate and up-to-date.

    Acknowledgment

    We would like to acknowledge the support of the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within the project "Cybers SeC IP" (NORTE-01-0145-FEDER-000044). This study was also developed as part of the Master in Cybersecurity Program at the Instituto Politécnico de Viana do Castelo, Portugal.

    References

    1. Pending.
    2. S. Bezjak, A. Clyburne-Sherin, P. Conzett, P. Fernandes, E. Görögh, K. Helbig, B. Kramer, I. Labastida, K. Niemeyer, F. Psomopoulos, T. Ross-Hellauer, R. Schneider, J. Tennant, E. Verbakel, H. Brinken, and L. Heller, Open Science Training Handbook. Zenodo, Apr. 2018. [Online]. Available: [https://doi.org/10.5281/zenodo.1212496]
    3. Integrated Postsecondary Education Data System, "Compare Institutions", Fev 2023. [online]. Available: https://nces.ed.gov/ipeds/use-the-data
  4. Z

    Data used in the manuscript - A Hierarchical Approach for Evaluating Athlete...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thiago de Paula Oliveira (2023). Data used in the manuscript - A Hierarchical Approach for Evaluating Athlete Performance with an Application in Elite Basketball [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8056756
    Explore at:
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    School of Mathematical and Statistical Sciences, University of Galway, Ireland
    Authors
    Thiago de Paula Oliveira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The database contains several datasets and files with NBA statistical data spanning four seasons (2015-2016 to 2018-2019). These datasets were procured from the Basketball Reference database (https://www.basketball-reference.com/), a publicly accessible source of NBA data.

    The main file, dat.cleaned.csv, includes the Win/Loss records for all thirty NBA teams, along with box scores and advanced statistics. The data captured over the four seasons correspond to about 4,920 regular-season games. A distinguishing feature of this dataset is the repeated measurements per player within a team across the seasons. However, it's important to note that these repeated measurements are not independent, necessitating the use of hierarchical modelling to properly handle the data.

    Two sets of additional text files (per_2017.txt, per_2018.txt, rpm_2017.txt, rpm_2018.txt) provide specific metrics for player performance. The 'PER' files contain the Athlete Efficiency Rating (PER) for the years 2017 and 2018. The 'RPM' files contain the ESPN-developed score called Real Plus-Minus (RPM) for the same years.

    However, potential biases or limitations within the datasets should be acknowledged. For instance, the Basketball Reference website might not include data from some matches or may exclude certain variables, potentially affecting the quality and accuracy of the dataset.

  5. U.S. Facebook data requests from government agencies 2013-2023

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, U.S. Facebook data requests from government agencies 2013-2023 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Facebook received 73,390 user data requests from federal agencies and courts in the United States during the second half of 2023. The social network produced some user data in 88.84 percent of requests from U.S. federal authorities. The United States accounts for the largest share of Facebook user data requests worldwide.

  6. Facebook users worldwide 2017-2027

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jackson Junior; Jackson Junior; Paulina Rutecka; Paulina Rutecka; Pedro Pinto; Pedro Pinto (2023). Higher Education Institutions in Poland Dataset [Dataset]. http://doi.org/10.5281/zenodo.8333574
Organization logo

Data from: Higher Education Institutions in Poland Dataset

Related Article
Explore at:
zipAvailable download formats
Dataset updated
Sep 11, 2023
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Jackson Junior; Jackson Junior; Paulina Rutecka; Paulina Rutecka; Pedro Pinto; Pedro Pinto
License

Attribution 1.0 (CC BY 1.0)https://creativecommons.org/licenses/by/1.0/
License information was derived automatically

Area covered
Poland
Description

Higher Education Institutions in Poland Dataset

This repository contains a dataset of higher education institutions in Poland. The dataset comprises 131 public higher education institutions and 216 private higher education institutions in Poland. The data was collected on 24/11/2022.
This dataset was compiled in response to a cybersecurity investigation of Poland's higher education institutions' websites [1]. The data is being made publicly available to promote open science principles [2].

Data

The data includes the following fields for each institution:

  • Id: A unique identifier assigned to each institution.
  • Region: The federal state in which the institution is located.
  • Name: The original name of the institution in Polish.
  • Name_EN: The international name of the institution in English.
  • Category: Indicates whether the institution is public or private.
  • Url: The website of the institution.

Methodology

The dataset was compiled using data from two primary sources:

  • Public Higher Education Institutions: Data was sourced from the official website of the Ministry of Education and Science of Poland [3].
  • Private Higher Education Institutions: Data was obtained from the RAD-on system, which is part of the Integrated Information Network on Science and Higher Education [4].

For the international names in English, the following methodology was employed:

Both Polish and English names were retained for each institution. This decision was based on the fact that some universities do not have their English versions available in official sources.

English names were primarily sourced from:

  • The Polish National Agency for Academic Exchange's official document [5].
  • The website Studies in English [6].
  • Official websites of the respective Higher Education Institutions.

In instances where English names were not readily available from the aforementioned sources, the GPT-3.5 model was employed to propose suitable names. These proposed names are distinctly marked in blue within the dataset file (hei_poland_en.xls).

Usage

This data is available under the Creative Commons Zero (CC0) license and can be used for academic research purposes. We encourage the sharing of knowledge and the advancement of research in this field by adhering to open science principles [2].

If you use this data in your research, please cite the source and include a link to this repository. To properly attribute this data, please use the following DOI:
10.5281/zenodo.8333573

Contribution

If you have any updates or corrections to the data, please feel free to open a pull request or contact us directly. Let's work together to keep this data accurate and up-to-date.

Acknowledgment

We would like to express our gratitude to the Ministry of Education and Science of Poland and the RAD-on system for providing the information used in this dataset.

We would like to acknowledge the support of the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within the project "Cybers SeC IP" (NORTE-01-0145-FEDER-000044). This study was also developed as part of the Master in Cybersecurity Program at the Polytechnic University of Viana do Castelo, Portugal.

References

  1. Pending.
  2. S. Bezjak, A. Clyburne-Sherin, P. Conzett, P. Fernandes, E. Görögh, K. Helbig, B. Kramer, I. Labastida, K. Niemeyer, F. Psomopoulos, T. Ross-Hellauer, R. Schneider, J. Tennant, E. Verbakel, H. Brinken, and L. Heller, Open Science Training Handbook. Zenodo, Apr. 2018. [Online]. Available: [https://doi.org/10.5281/zenodo.1212496]
  3. Ministry of Education and Science of Poland. "Wykaz uczelni publicznych nadzorowanych przez Ministra właściwego ds. szkolnictwa wyższego - publiczne uczelnie akademickie." Nov 2022. [Online]. Available: https://www.gov.pl/web/edukacja-i-nauka/wykaz-uczelni-publicznych-nadzorowanych-przez-ministra-wlasciwego-ds-szkolnictwa-wyzszego-publiczne-uczelnie-akademickie
  4. RAD-on System. "Dane instytucji systemu szkolnictwa wyższego i nauki." Nov 2022. [Online]. Available: https://radon.nauka.gov.pl/dane/instytucje-systemu-szkolnictwa-wyzszego-i-nauki
  5. Polish National Agency for Academic Exchange. "List of the university-type HEIs." 2023. [Online]. Available: https://nawa.gov.pl/images/Aktualnosci/2023/Att.-2.-List-of-the-university-type-HEIs.pdf
  6. Studies in English. [Online]. Available: www.studies-in-english.pl
Search
Clear search
Close search
Google apps
Main menu