62 datasets found
  1. U

    USGS 1 arc-second Digital Elevation Model

    • portal.opentopography.org
    • search.dataone.org
    • +3more
    raster
    Updated Jun 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2021). USGS 1 arc-second Digital Elevation Model [Dataset]. http://doi.org/10.5069/G9HX19WN
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    OpenTopography
    Time period covered
    Jan 1, 1923 - Dec 31, 2017
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain.

    This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here.

    Click here for a broad overview of this dataset

  2. d

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/1-meter-digital-elevation-models-dems-usgs-national-map-3dep-downloadable-data-collection
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.

  3. d

    Shuttle Radar Topography Mission DTED Level 1 (3-arc second) Data (DTED-1)

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). Shuttle Radar Topography Mission DTED Level 1 (3-arc second) Data (DTED-1) [Dataset]. https://catalog.data.gov/dataset/shuttle-radar-topography-mission-dted-level-1-3-arc-second-data-dted-1
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    The Shuttle Radar Topography Mission (SRTM) successfully collected Interferometric Synthetic Aperture Radar (IFSAR) data over 80 percent of the landmass of the Earth between 60 degrees North and 56 degrees South latitudes in February 2000. The mission was co-sponsored by the National Aeronautics and Space Administration (NASA) and National Geospatial-Intelligence Agency (NGA). NASA's Jet Propulsion Laboratory (JPL) performed preliminary processing of SRTM data and forwarded partially finished data directly to NGA for finishing by NGA's contractors and subsequent monthly deliveries to the NGA Digital Products Data Wharehouse (DPDW). All the data products delivered by the contractors conform to the NGA SRTM products and the NGA Digital Terrain Elevation Data (DTED) to the Earth Resources Observation & Science (EROS) Center. The DPDW ingests the SRTM data products, checks them for formatting errors, loads the SRTM DTED into the NGA data distribution system, and ships the public domain SRTM DTED to the U.S. Geological Survey (USGS) Earth Resources Observation & Science (EROS) Center. Two resolutions of finished grade SRTM data are available through EarthExplorer from the collection held in the USGS EROS archive: 1 arc-second (approximately 30-meter) high resolution elevation data are only available for the United States. 3 arc-second (approximately 90-meter) medium resolution elevation data are available for global coverage. The 3 arc-second data were resampled using cubic convolution interpolation for regions between 60° north and 56° south latitude. [Summary provided by the USGS.]

  4. U

    1 Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • catalog.data.gov
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 Arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:35f9c4d4-b113-4c8d-8691-47c428c29a5b
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is 1 arc-second (approximately 30 m) resolution. The elevations in this Digital Elevation Model (DEM) represent the topographic bare-earth surface. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The seamless 1 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 ( ...

  5. a

    Elevation GMTED

    • hub.arcgis.com
    • cacgeoportal.com
    Updated Apr 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Elevation GMTED [Dataset]. https://hub.arcgis.com/maps/e080266017a04416b46730852788892d
    Explore at:
    Dataset updated
    Apr 20, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This Web Map is a subset of World Elevatuon GMTED image service.The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) dataset provides a 7.5 arcsecond (approximately 250 meter resolution) digital elevation model with world-wide coverage at a resolution suitable for regional to continental scale analyses. Dataset SummaryThis layer provides access to a 250m cell-sized raster created from the Global Multi-resolution Terrain Elevation Data 2010 7.5 arcsecond mean elevation product. The dataset represents a compilation and synthesis of 11 different existing raster data sources. The data were published in 2011 by the USGS and the National Geospatial-Intelligence Agency.The dataset is documented in the publication: Danielson and Gesch. 2011. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073, 26 p.The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  6. U

    USGS 1/3 arc-second Digital Elevation Model

    • portal.opentopography.org
    • search.dataone.org
    • +2more
    raster
    Updated Jun 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2021). USGS 1/3 arc-second Digital Elevation Model [Dataset]. http://doi.org/10.5069/G98K778D
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    OpenTopography
    Time period covered
    Jan 1, 1923 - Dec 31, 2017
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This collection of the 3D Elevation Program (3DEP) is at 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The vertical reference will vary in other areas. The seamless 1/3 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and in limited areas of Alaska. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. All 3DEP products are public domain.

    Click here for more details on this dataset

  7. M

    Medium Resolution Digital Elevation Model of Canada

    • portal.opentopography.org
    • wifire-data.sdsc.edu
    raster
    Updated Mar 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2025). Medium Resolution Digital Elevation Model of Canada [Dataset]. http://doi.org/10.5069/G9N8780J
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Mar 28, 2025
    Dataset provided by
    OpenTopography
    Time period covered
    Jan 1, 2006 - Mar 26, 2025
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    Natural Resources Canada
    Description

    The Medium Resolution Digital Elevation Model (MRDEM) product is a multi-source product that integrates elevation data from the Copernicus DEM acquired during the TanDEM-X Mission, and the High Resolution Digital Elevation Model data derived from airborne lidar. This product provides a complete, 30 meters resolution, nationwide coverage for Canada. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived products. The spatial coverage extends into the USA, where needed, to provide coverage for cross-border watersheds in support of hydrological studies and applications.

    The MRDEM DSM dataset is based on the GLO-30 version of the Copernicus DEM. The process to generate the MRDEM DTM dataset is more complex and involves different sources. Where available, the HRDEM Mosaic derived from lidar was used since it already provides reliable terrain elevation values. The HRDEM Mosaic data used was resampled from 1 meter to 30 meters. Elsewhere, the processing workflow combines a forest removal model and a settlement removal model that is applied to the GLO-30 values in order to estimate the terrain elevation values.

  8. USA Topo Maps

    • get-cops.opendata.arcgis.com
    • noveladata.com
    • +6more
    Updated Feb 10, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2012). USA Topo Maps [Dataset]. https://get-cops.opendata.arcgis.com/maps/931d892ac7a843d7ba29d085e0433465
    Explore at:
    Dataset updated
    Feb 10, 2012
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Mature Support Notice: This item is in mature support as of June 2021. A replacement item has not been identified at this time.This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada

  9. U

    Digital Elevation Models (DEM) Data

    • data.usgs.gov
    • s.cnmilf.com
    • +2more
    Updated Feb 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Grams; Laura Alvarez; Matthew Kaplinski; Scott Wright (2024). Digital Elevation Models (DEM) Data [Dataset]. http://doi.org/10.5066/P9O00Z44
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Paul Grams; Laura Alvarez; Matthew Kaplinski; Scott Wright
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Feb 6, 2008 - Mar 31, 2008
    Description

    These topographic/bathymetric digital elevation models (DEMs) were collected and compiled to characterize erosion and deposition in the Colorado River and in an adjacent zone of laterally recirculating flow (eddy) during both average flow conditions and during a controlled flood that occurred in March 2008. The objectives of the study were to measure changes sandbar morphology that occurred during changes in discharge associated with the controlled flood. These data were collected between February 6 and March 31, 2008 in a 1-mile study reach on the Colorado River within Grand Canyon National Park beginning 44.5 miles downstream from Lees Ferry, Arizona. These data were collected by the USGS Grand Canyon Monitoring and Research Center with cooperators from Northern Arizona University and funding provided by the Glen Canyon Dam Adaptive Management Program. All bathymetric data were collected with a multibeam sonar system (Reson Seabat 8124 sonar with TSS MAHRSS reference system for ...

  10. U

    5 Meter Alaska Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 5 Meter Alaska Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:e250fffe-ed32-4627-a3e6-9474b6dc6f0b
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2014 - 2022
    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) covering Alaska only, and is 5-meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard 5-meter DEMs are produced exclusively from interferometric synthetic aperture radar (Ifsar) source data of 5-meter or higher resolution. Five-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. This DEM is delivered in the original resolution, with the original spatial reference. All elevation units have been converted to meters. These data may be used as the source of updates to the seamless 1/3 ...

  11. n

    Shuttle Radar Topography Mission (SRTM) Images

    • cmr.earthdata.nasa.gov
    • datasets.ai
    • +5more
    Updated Jan 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Shuttle Radar Topography Mission (SRTM) Images [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220566448-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Feb 11, 2000 - Present
    Area covered
    Description

    Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:

    • Radar Image
    • Radar Image with Color as Height
    • Radar Image with Color Wrapped Fringes
      -Shaded Relief
    • Perspective View with B/W Radar Image Overlaid
    • Perspective View with Radar Image Overlaid, Color as Height
    • Perspective View of Shaded Relief
    • Perspective View with Landsat or other Image Overlaid
    • Contour Map - B/W with Contour Lines
    • Stereo Pair
    • Anaglypgh

    The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.

  12. h

    elevation-data-ASTER-compressed-retiled

    • huggingface.co
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco (2024). elevation-data-ASTER-compressed-retiled [Dataset]. https://huggingface.co/datasets/Upabjojr/elevation-data-ASTER-compressed-retiled
    Explore at:
    Dataset updated
    Aug 13, 2024
    Authors
    Francesco
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    World elevation dataset

    High resolution dataset containing the world elevation above the sea level in meters. See python example to get the estimated elevation from a coordinate.

      Info
    

    This dataset comprises global elevation data sourced from ASTER GDEM, which has been compressed and retiled for efficiency. The retiled data adheres to the common web map tile convention used by platforms such as OpenStreetMap, Google Maps, and Bing Maps, providing compatibility with zoom… See the full description on the dataset page: https://huggingface.co/datasets/Upabjojr/elevation-data-ASTER-compressed-retiled.

  13. a

    India: Elevation GMTED

    • up-state-observatory-esriindia1.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jan 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Elevation GMTED [Dataset]. https://up-state-observatory-esriindia1.hub.arcgis.com/datasets/india-elevation-gmted
    Explore at:
    Dataset updated
    Jan 31, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) dataset provides a 7.5 arcsecond (approximately 250 meter resolution) digital elevation model with world-wide coverage at a resolution suitable for regional to continental scale analyses. Dataset SummaryThis layer provides access to a 250m cell-sized raster created from the Global Multi-resolution Terrain Elevation Data 2010 7.5 arcsecond mean elevation product. The dataset represents a compilation and synthesis of 11 different existing raster data sources. The data were published in 2011 by the USGS and the National Geospatial-Intelligence Agency.The dataset is documented in the publication: Danielson and Gesch. 2011. Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073, 26 p.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  14. d

    Shuttle Radar Topography Mission 1 Arc-Second Digital Terrain Elevation Data...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Shuttle Radar Topography Mission 1 Arc-Second Digital Terrain Elevation Data - Global - National Geospatial Data Asset (NGDA) [Dataset]. https://catalog.data.gov/dataset/shuttle-radar-topography-mission-1-arc-second-digital-terrain-elevation-data-global-nation
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    The Shuttle Radar Topography Mission (SRTM) was a partnership between NASA and the National Geospatial-Intelligence Agency (NGA). Flown aboard the NASA Space Shuttle Endeavour (11-22 February 2000), SRTM fulfilled its mission to map the world in three dimensions. The USGS is under agreement with NGA and NASA's Jet Propulsion Laboratory to distribute SRTM elevation products derived from the C-band radar data. SRTM utilized interferometric C-band Spaceborne Imaging Radar to generate elevation data over 80 percent of the Earth's land surface. Global SRTM data at a resolution of 1 arc-second have been edited to delineate and flatten water bodies, better define coastlines, remove spikes and wells, and fill small voids. Larger areas of missing data or voids were filled by the NGA using interpolation algorithms in conjunction with other sources of elevation data. The SRTM 1 Arc-Second Global data offer worldwide coverage of void filled data at a resolution of 1 arc-second (30 meters) and provide open distribution of this high-resolution global data set.

  15. A

    2017 Digital Elevation Model - NW Corner

    • data.amerigeoss.org
    Updated Mar 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). 2017 Digital Elevation Model - NW Corner [Dataset]. https://data.amerigeoss.org/bg/dataset/0938bcc8-aa3a-411a-b9f3-7760333f7604
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Mar 23, 2022
    Dataset provided by
    United States
    License

    https://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/datahttps://www.arcgis.com/sharing/rest/content/items/89679671cfa64832ac2399a0ef52e414/data

    Description

    The 2017 Digital Terrain Model (DTM) is a 2 foot pixel resolution raster in Erdas IMG format. This was created using the ground (class = 2) lidar points and incorporating the breaklines.

    The DTMs were developed using LiDAR data. LiDAR is an acronym for LIght Detection And Ranging. Light detection and ranging is the science of using a laser to measure distances to specific points. A specially equipped airplane with positioning tools and LiDAR technology was used to measure the distance to the surface of the earth to determine ground elevation. The classified points were developed using data collected in April to May 2017. The LiDAR points, specialized software, and technology provide the ability to create a high precision three-dimensional digital elevation and/or terrain models (DEM/DTM). The use of LiDAR significantly reduces the cost for developing this information.

    The DTMs are intended to correspond to the orthometric heights of the bare surface of the county (no buildings or vegetation cover). DTM data is used by county agencies to study drainage issues such as flooding and erosion; contour generation; slope and aspect; and hill shade images. This dataset was compiled to meet the American Society for Photogrammetry and Remote Sensing (ASPRS) Accuracy Standards for Large-Scale Maps, CLASS 1 map accuracy.

    The U.S. Army Corps of Engineers Engineering and Design Manual for Photogrammetric Production (https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-1-1000.pdf) recommends that data intended for this usage scale be used for any of the following purposes: route location, preliminary alignment and design, preliminary project planning, hydraulic sections, rough earthwork estimates, or high-gradient terrain / low unit cost earthwork excavation estimates. The manual does not recommend that these data be used for final design, excavation and grading plans, earthwork computations for bid estimates or contract measurement and payment.

    This dataset does not take the place of an on-site survey for design, construction or regulatory purposes.

  16. v

    Topobathymetric elevation models of the upper Delaware River, USA - Version...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Topobathymetric elevation models of the upper Delaware River, USA - Version 1 [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/topobathymetric-elevation-models-of-the-upper-delaware-river-usa-version-1
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Delaware River, United States
    Description

    This dataset includes topographic elevations (in meters) surrounding and bathymetric elevations within the upper Delaware River (USA). Bathymetric lidar data was acquired using the Experimental Advanced Airborne Research Lidar, version B. The EAARL-B is a successor instrument to the original EAARL bathymetric LiDAR sensor developed for mapping coral reef environments in clear water, but subsequently used in river mapping. Both the original EAARL and the EAARL-B are small footprint, full waveform digitizing, green wavelength (532nm) airborne laser scanners, capable of acquiring laser returns from submerged as well as subaerial topography. Improvements from the original sensor include increased sample density, increased pulse rate, enhanced deep and shallow bathymetry performance, and improved data processing hardware. The EAARL-B sensor differs from the original in a 10x laser power increase, and incorporation of three shallow water receiving channels, as well as a deep water receiving channel. The EAARL-B splits each generated laser pulse into 3 pulses that are spaced 1.6m apart across the 250 m flight track and 2.0 m along track when flown at the nominal altitude of 300m above ground level at 100 knots per hour. Lidar data acquired with the EAARL-B was processed using the Airborne Lidar Processing System (ALPS) purpose-built software to analyze waveforms (for shallow bathymetry, deep bathymetry, and topography), geo-reference laser pulses, filter the resulting point cloud for noise, and to export standard lidar data format files (LAS). Additional processing included editing the point clouds to remove water surface and volume returns, off-ground objects, and erroneous returns. Topographic lidar point clouds from the Pennsylvania PAMAP program collected outside of the river channel were merged with the EAARL-B point clouds to create a complete topobathymetric elevation model of the active river area and riparian zone. Areas where the EAARL bathymetric lidar failed to map the river bottom (voids) were visually interpreted and the boundaries were digitized into a vector spatial data layer. Data is stored and processed in ALPS in 2 km x 2km tiles, organized into larger 10 km x 10 km tiles. The EAARL-B sensor was flown out of Salisbury, MD by the sensor developer (C. Wayne Wright) using USGS-owned, fixed-wing aircraft. Flights were conducted November 26, 28, and 29, and December 6, 14 and 20, 2012. Each flight day included multiple passes over a section of the river, and each river section may have been flown on multiple days, resulting in densifying the data collection over the entire river area flown, however, some river sections may have been flown with more over-passes than others. In total, over 200 river miles were surveyed (from Trenton, NJ to the reservoirs on the East and West Branch Delaware River), however, the data presented herein focuses only on the 122-river mile stretch between Hancock, NY, and Portland, PA.

  17. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    • +1more
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  18. i

    SOAR-Lake Vostok Survey surface elevation data

    • get.iedadata.org
    • search.dataone.org
    • +1more
    xml
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Studinger, Michael S.; Bell, Robin (2020). SOAR-Lake Vostok Survey surface elevation data [Dataset]. http://doi.org/10.1594/IEDA/306566
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Greenbelt, MD, USA, USA
    Authors
    Studinger, Michael S.; Bell, Robin
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Description

    Abstract: Surface Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Surface Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work

  19. i

    SOAR-Lake Vostok Survey bed elevation data

    • get.iedadata.org
    • usap-dc.org
    • +1more
    xml
    Updated Apr 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Studinger, Michael S.; Bell, Robin (2020). SOAR-Lake Vostok Survey bed elevation data [Dataset]. http://doi.org/10.1594/IEDA/306565
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Greenbelt, MD, USA, USA
    Authors
    Studinger, Michael S.; Bell, Robin
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Description

    Abstract: Bedrock Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Bedrock Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work

  20. G

    USGS 3DEP 1m National Map

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Geological Survey, USGS 3DEP 1m National Map [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_1m
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Description

    This is a tiled collection of images with 1m pixel size from the 3D Elevation Program (3DEP). The 3DEP data holdings serve as the elevation layer of The National Map and provide foundational elevation information for earth science studies and mapping applications in the United States. The elevations in this DEM represent the topographic bare-earth surface. USGS standard 1m pixel size DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of images with 1m pixel size or higher resolution. 1m pixel size DEM surfaces are seamless within collection projects but not necessarily seamless across projects. The spatial reference used for tiles of the 1m pixel size DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. In this and other cases of image overlaps, elevation values might be slightly different in different images covering the same area. The 1m pixel size DEM is the highest resolution standard DEM offered in the 3DEP product suite. The 10m 3DEP dataset is available at USGS_3DEP_10m.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
OpenTopography (2021). USGS 1 arc-second Digital Elevation Model [Dataset]. http://doi.org/10.5069/G9HX19WN

USGS 1 arc-second Digital Elevation Model

USGS30m

Explore at:
100 scholarly articles cite this dataset (View in Google Scholar)
rasterAvailable download formats
Dataset updated
Jun 18, 2021
Dataset provided by
OpenTopography
Time period covered
Jan 1, 1923 - Dec 31, 2017
Area covered
Variables measured
Area, Unit, RasterResolution
Dataset funded by
United States Geological Surveyhttp://www.usgs.gov/
Description

This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain.

This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here.

Click here for a broad overview of this dataset

Search
Clear search
Close search
Google apps
Main menu