100+ datasets found
  1. f

    Initial data analysis checklist for data screening in longitudinal studies.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner (2024). Initial data analysis checklist for data screening in longitudinal studies. [Dataset]. http://doi.org/10.1371/journal.pone.0295726.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 29, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Initial data analysis checklist for data screening in longitudinal studies.

  2. Z

    NoCORA - Northern Cameroon Observed Rainfall Archive

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lavarenne, Jérémy; Nenwala, Victor Hugo; Foulna Tcheobe, Carmel (2024). NoCORA - Northern Cameroon Observed Rainfall Archive [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10156437
    Explore at:
    Dataset updated
    Jul 10, 2024
    Dataset provided by
    Centre de Coopération Internationale en Recherche Agronomique pour le Développement
    Center for International Forestry Research
    Authors
    Lavarenne, Jérémy; Nenwala, Victor Hugo; Foulna Tcheobe, Carmel
    Area covered
    Cameroon, North Region
    Description

    Description: The NoCORA dataset represents a significant effort to compile and clean a comprehensive set of daily rainfall data for Northern Cameroon (North and Extreme North regions). This dataset, overing more than 1 million observations across 418 rainfall stations on a temporal range going from 1927 to 2022, is instrumental for researchers, meteorologists, and policymakers working in climate research, agricultural planning, and water resource management in the region. It integrates data from diverse sources, including Sodecoton rain funnels, the archive of Robert Morel (IRD), Centrale de Lagdo, the GHCN daily service, and the TAHMO network. The construction of NoCORA involved meticulous processes, including manual assembly of data, extensive data cleaning, and standardization of station names and coordinates, making it a hopefully robust and reliable resource for understanding climatic dynamics in Northern Cameroon. Data Sources: The dataset comprises eight primary rainfall data sources and a comprehensive coordinates dataset. The rainfall data sources include extensive historical and contemporary measurements, while the coordinates dataset was developed using reference data and an inference strategy for variant station names or missing coordinates. Dataset Preparation Methods: The preparation involved manual compilation, integration of machine-readable files, data cleaning with OpenRefine, and finalization using Python/Jupyter Notebook. This process should ensured the accuracy and consistency of the dataset. Discussion: NoCORA, with its extensive data compilation, presents an invaluable resource for climate-related studies in Northern Cameroon. However, users must navigate its complexities, including missing data interpretations, potential biases, and data inconsistencies. The dataset's comprehensive nature and historical span require careful handling and validation in research applications. Access to Dataset: The NoCORA dataset, while a comprehensive resource for climatological and meteorological research in Northern Cameroon, is subject to specific access conditions due to its compilation from various partner sources. The original data sources vary in their openness and accessibility, and not all partners have confirmed the open-access status of their data. As such, to ensure compliance with these varying conditions, access to the NoCORA dataset is granted on a request basis. Interested researchers and users are encouraged to contact us for permission to access the dataset. This process allows us to uphold the data sharing agreements with our partners while facilitating research and analysis within the scientific community. Authors Contributions:

    Data treatment: Victor Hugo Nenwala, Carmel Foulna Tcheobe, Jérémy Lavarenne. Documentation: Jérémy Lavarenne. Funding: This project was funded by the DESIRA INNOVACC project. Changelog:

    v1.0.2 : corrected interversion in column names in the coordinates dataset v1.0.1 : dataset specification file has been updated with complementary information regarding station locations v1.0.0 : initial submission

  3. Z

    A set of generated Instagram Data Download Packages (DDPs) to investigate...

    • data.niaid.nih.gov
    Updated Jan 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Boeschoten; Ruben van den Goorbergh; Daniel Oberski (2021). A set of generated Instagram Data Download Packages (DDPs) to investigate their structure and content [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4472605
    Explore at:
    Dataset updated
    Jan 28, 2021
    Dataset provided by
    Utrecht University
    Authors
    Laura Boeschoten; Ruben van den Goorbergh; Daniel Oberski
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Instagram data-download example dataset

    In this repository you can find a data-set consisting of 11 personal Instagram archives, or Data-Download Packages (DDPs).

    How the data was generated

    These Instagram accounts were all new and generated by a group of researchers who were interested to figure out in detail the structure and variety in structure of these Instagram DDPs. The participants user the Instagram account extensively for approximately a week. The participants also intensively communicated with each other so that the data can be used as an example of a network.

    The data was primarily generated to evaluate the performance of de-identification software. Therefore, the text in the DDPs particularly contain many randomly chosen (Dutch) first names, phone numbers, e-mail addresses and URLS. In addition, the images in the DDPs contain many faces and text as well. The DDPs contain faces and text (usernames) of third parties. However, only content of so-called `professional accounts' are shared, such as accounts of famous individuals or institutions who self-consciously and actively seek publicity, and these sources are easily publicly available. Furthermore, the DDPs do not contain sensitive personal data of these individuals.

    Obtaining your Instagram DDP

    After using the Instagram accounts intensively for approximately a week, the participants requested their personal Instagram DDPs by using the following steps. You can follow these steps yourself if you are interested in your personal Instagram DDP.

    1. Go to www.instagram.com and log in
    2. Click on your profile picture, go to Settings and Privacy and Security
    3. Scroll to Data download and click Request download
    4. Enter your email adress and click Next
    5. Enter your password and click Request download

    Instagram then delivered the data in a compressed zip folder with the format username_YYYYMMDD.zip (i.e., Instagram handle and date of download) to the participant, and the participants shared these DDPs with us.

    Data cleaning

    To comply with the Instagram user agreement, participants shared their full name, phone number and e-mail address. In addition, Instagram logged the i.p. addresses the participant used during their active period on Instagram. After colleting the DDPs, we manually replaced such information with random replacements such that the DDps shared here do not contain any personal data of the participants.

    How this data-set can be used

    This data-set was generated with the intention to evaluate the performance of the de-identification software. We invite other researchers to use this data-set for example to investigate what type of data can be found in Instagram DDPs or to investigate the structure of Instagram DDPs. The packages can also be used for example data-analyses, although no substantive research questions can be answered using this data as the data does not reflect how research subjects behave `in the wild'.

    Authors

    The data collection is executed by Laura Boeschoten, Ruben van den Goorbergh and Daniel Oberski of Utrecht University. For questions, please contact l.boeschoten@uu.nl.

    Acknowledgments

    The researchers would like to thank everyone who participated in this data-generation project.

  4. Number of interviews per participant.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner (2024). Number of interviews per participant. [Dataset]. http://doi.org/10.1371/journal.pone.0295726.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 29, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Initial data analysis (IDA) is the part of the data pipeline that takes place between the end of data retrieval and the beginning of data analysis that addresses the research question. Systematic IDA and clear reporting of the IDA findings is an important step towards reproducible research. A general framework of IDA for observational studies includes data cleaning, data screening, and possible updates of pre-planned statistical analyses. Longitudinal studies, where participants are observed repeatedly over time, pose additional challenges, as they have special features that should be taken into account in the IDA steps before addressing the research question. We propose a systematic approach in longitudinal studies to examine data properties prior to conducting planned statistical analyses. In this paper we focus on the data screening element of IDA, assuming that the research aims are accompanied by an analysis plan, meta-data are well documented, and data cleaning has already been performed. IDA data screening comprises five types of explorations, covering the analysis of participation profiles over time, evaluation of missing data, presentation of univariate and multivariate descriptions, and the depiction of longitudinal aspects. Executing the IDA plan will result in an IDA report to inform data analysts about data properties and possible implications for the analysis plan—another element of the IDA framework. Our framework is illustrated focusing on hand grip strength outcome data from a data collection across several waves in a complex survey. We provide reproducible R code on a public repository, presenting a detailed data screening plan for the investigation of the average rate of age-associated decline of grip strength. With our checklist and reproducible R code we provide data analysts a framework to work with longitudinal data in an informed way, enhancing the reproducibility and validity of their work.

  5. Titanic open Research dataset

    • kaggle.com
    zip
    Updated Jun 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kamlesh karki (2020). Titanic open Research dataset [Dataset]. https://www.kaggle.com/kkarki00/titanic-open-research-dataset
    Explore at:
    zip(29471 bytes)Available download formats
    Dataset updated
    Jun 23, 2020
    Authors
    Kamlesh karki
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Kamlesh karki

    Released under CC0: Public Domain

    Contents

  6. Household Survey on Information and Communications Technology– 2019 - West...

    • pcbs.gov.ps
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2020). Household Survey on Information and Communications Technology– 2019 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/489
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2019
    Area covered
    Gaza Strip, Gaza, West Bank
    Description

    Abstract

    The Palestinian society's access to information and communication technology tools is one of the main inputs to achieve social development and economic change to the status of Palestinian society; on the basis of its impact on the revolution of information and communications technology that has become a feature of this era. Therefore, and within the scope of the efforts exerted by the Palestinian Central Bureau of Statistics in providing official Palestinian statistics on various areas of life for the Palestinian community, PCBS implemented the household survey for information and communications technology for the year 2019. The main objective of this report is to present the trends of accessing and using information and communication technology by households and individuals in Palestine, and enriching the information and communications technology database with indicators that meet national needs and are in line with international recommendations.

    Geographic coverage

    Palestine, West Bank, Gaza strip

    Analysis unit

    Household, Individual

    Universe

    All Palestinian households and individuals (10 years and above) whose usual place of residence in 2019 was in the state of Palestine.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling Frame The sampling frame consists of master sample which were enumerated in the 2017 census. Each enumeration area consists of buildings and housing units with an average of about 150 households. These enumeration areas are used as primary sampling units (PSUs) in the first stage of the sampling selection.

    Sample size The estimated sample size is 8,040 households.

    Sample Design The sample is three stages stratified cluster (pps) sample. The design comprised three stages: Stage (1): Selection a stratified sample of 536 enumeration areas with (pps) method. Stage (2): Selection a stratified random sample of 15 households from each enumeration area selected in the first stage. Stage (3): Selection one person of the (10 years and above) age group in a random method by using KISH TABLES.

    Sample Strata The population was divided by: 1- Governorate (16 governorates, where Jerusalem was considered as two statistical areas) 2- Type of Locality (urban, rural, refugee camps).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaire The survey questionnaire consists of identification data, quality controls and three main sections: Section I: Data on household members that include identification fields, the characteristics of household members (demographic and social) such as the relationship of individuals to the head of household, sex, date of birth and age.

    Section II: Household data include information regarding computer processing, access to the Internet, and possession of various media and computer equipment. This section includes information on topics related to the use of computer and Internet, as well as supervision by households of their children (5-17 years old) while using the computer and Internet, and protective measures taken by the household in the home.

    Section III: Data on Individuals (10 years and over) about computer use, access to the Internet and possession of a mobile phone.

    Cleaning operations

    Programming Consistency Check The data collection program was designed in accordance with the questionnaire's design and its skips. The program was examined more than once before the conducting of the training course by the project management where the notes and modifications were reflected on the program by the Data Processing Department after ensuring that it was free of errors before going to the field.

    Using PC-tablet devices reduced data processing stages, and fieldworkers collected data and sent it directly to server, and project management withdraw the data at any time.

    In order to work in parallel with Jerusalem (J1), a data entry program was developed using the same technology and using the same database used for PC-tablet devices.

    Data Cleaning After the completion of data entry and audit phase, data is cleaned by conducting internal tests for the outlier answers and comprehensive audit rules through using SPSS program to extract and modify errors and discrepancies to prepare clean and accurate data ready for tabulation and publishing.

    Tabulation After finalizing checking and cleaning data from any errors. Tables extracted according to prepared list of tables.

    Response rate

    The response rate in the West Bank reached 77.6% while in the Gaza Strip it reached 92.7%.

    Sampling error estimates

    Sampling Errors Data of this survey affected by sampling errors due to use of the sample and not a complete enumeration. Therefore, certain differences are expected in comparison with the real values obtained through censuses. Variance were calculated for the most important indicators, There is no problem to disseminate results at the national level and at the level of the West Bank and Gaza Strip.

    Non-Sampling Errors Non-Sampling errors are possible at all stages of the project, during data collection or processing. These are referred to non-response errors, response errors, interviewing errors and data entry errors. To avoid errors and reduce their effects, strenuous efforts were made to train the field workers intensively. They were trained on how to carry out the interview, what to discuss and what to avoid, as well as practical and theoretical training during the training course.

    The implementation of the survey encountered non-response where the case (household was not present at home) during the fieldwork visit become the high percentage of the non response cases. The total non-response rate reached 17.5%. The refusal percentage reached 2.9% which is relatively low percentage compared to the household surveys conducted by PCBS, and the reason is the questionnaire survey is clear.

  7. i

    Household Income and Expenditure 2010 - Tuvalu

    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Division (2019). Household Income and Expenditure 2010 - Tuvalu [Dataset]. http://catalog.ihsn.org/catalog/3203
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistics Division
    Time period covered
    2010
    Area covered
    Tuvalu
    Description

    Abstract

    The main objectives of the survey were: - To obtain weights for the revision of the Consumer Price Index (CPI) for Funafuti; - To provide information on the nature and distribution of household income, expenditure and food consumption patterns; - To provide data on the household sector's contribution to the National Accounts - To provide information on economic activity of men and women to study gender issues - To undertake some poverty analysis

    Geographic coverage

    National, including Funafuti and Outer islands

    Analysis unit

    • Household
    • individual

    Universe

    All the private household are included in the sampling frame. In each household selected, the current resident are surveyed, and people who are usual resident but are currently away (work, health, holydays reasons, or border student for example. If the household had been residing in Tuvalu for less than one year: - but intend to reside more than 12 months => The household is included - do not intend to reside more than 12 months => out of scope

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    It was decided that 33% (one third) sample was sufficient to achieve suitable levels of accuracy for key estimates in the survey. So the sample selection was spread proportionally across all the island except Niulakita as it was considered too small. For selection purposes, each island was treated as a separate stratum and independent samples were selected from each. The strategy used was to list each dwelling on the island by their geographical position and run a systematic skip through the list to achieve the 33% sample. This approach assured that the sample would be spread out across each island as much as possible and thus more representative.

    For details please refer to Table 1.1 of the Report.

    Sampling deviation

    Only the island of Niulakita was not included in the sampling frame, considered too small.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    There were three main survey forms used to collect data for the survey. Each question are writen in English and translated in Tuvaluan on the same version of the questionnaire. The questionnaires were designed based on the 2004 survey questionnaire.

    HOUSEHOLD FORM - composition of the household and demographic profile of each members - dwelling information - dwelling expenditure - transport expenditure - education expenditure - health expenditure - land and property expenditure - household furnishing - home appliances - cultural and social payments - holydays/travel costs - Loans and saving - clothing - other major expenditure items

    INDIVIDUAL FORM - health and education - labor force (individu aged 15 and above) - employment activity and income (individu aged 15 and above): wages and salaries, working own business, agriculture and livestock, fishing, income from handicraft, income from gambling, small scale activies, jobs in the last 12 months, other income, childreen income, tobacco and alcohol use, other activities, and seafarer

    DIARY (one diary per week, on a 2 weeks period, 2 diaries per household were required) - All kind of expenses - Home production - food and drink (eaten by the household, given away, sold) - Goods taken from own business (consumed, given away) - Monetary gift (given away, received, winning from gambling) - Non monetary gift (given away, received, winning from gambling)

    Questionnaire Design Flaws Questionnaire design flaws address any problems with the way questions were worded which will result in an incorrect answer provided by the respondent. Despite every effort to minimize this problem during the design of the respective survey questionnaires and the diaries, problems were still identified during the analysis of the data. Some examples are provided below:

    Gifts, Remittances & Donations Collecting information on the following: - the receipt and provision of gifts - the receipt and provision of remittances - the provision of donations to the church, other communities and family occasions is a very difficult task in a HIES. The extent of these activities in Tuvalu is very high, so every effort should be made to address these activities as best as possible. A key problem lies in identifying the best form (questionnaire or diary) for covering such activities. A general rule of thumb for a HIES is that if the activity occurs on a regular basis, and involves the exchange of small monetary amounts or in-kind gifts, the diary is more appropriate. On the other hand, if the activity is less infrequent, and involves larger sums of money, the questionnaire with a recall approach is preferred. It is not always easy to distinguish between the two for the different activities, and as such, both the diary and questionnaire were used to collect this information. Unfortunately it probably wasn?t made clear enough as to what types of transactions were being collected from the different sources, and as such some transactions might have been missed, and others counted twice. The effects of these problems are hopefully minimal overall.

    Defining Remittances Because people have different interpretations of what constitutes remittances, the questionnaire needs to be very clear as to how this concept is defined in the survey. Unfortunately this wasn?t explained clearly enough so it was difficult to distinguish between a remittance, which should be of a more regular nature, and a one-off monetary gift which was transferred between two households.

    Business Expenses Still Recorded The aim of the survey is to measure "household" expenditure, and as such, any expenditure made by a household for an item or service which was primarily used for a business activity should be excluded. It was not always clear in the questionnaire that this was the case, and as such some business expenses were included. Efforts were made during data cleaning to remove any such business expenses which would impact significantly on survey results.

    Purchased goods given away as a gift When a household makes a gift donation of an item it has purchased, this is recorded in section 5 of the diary. Unfortunately it was difficult to know how to treat these items as it was not clear as to whether this item had been recorded already in section 1 of the diary which covers purchases. The decision was made to exclude all information of gifts given which were considered to be purchases, as these items were assumed to have already been recorded already in section 1. Ideally these items should be treated as a purchased gift given away, which in turn is not household consumption expenditure, but this was not possible.

    Some key items missed in the Questionnaire Although not a big issue, some key expenditure items were omitted from the questionnaire when it would have been best to collect them via this schedule. A key example being electric fans which many households in Tuvalu own.

    Cleaning operations

    Consistency of the data: - each questionnaire was checked by the supervisor during and after the collection - before data entry, all the questionnaire were coded - the CSPRo data entry system included inconsistency checks which allow the NSO staff to point some errors and to correct them with imputation estimation from their own knowledge (no time for double entry), 4 data entry operators. - after data entry, outliers were identified in order to check their consistency.

    All data entry, including editing, edit checks and queries, was done using CSPro (Census Survey Processing System) with additional data editing and cleaning taking place in Excel.

    The staff from the CSD was responsible for undertaking the coding and data entry, with assistance from an additional four temporary staff to help produce results in a more timely manner.

    Although enumeration didn't get completed until mid June, the coding and data entry commenced as soon as forms where available from Funafuti, which was towards the end of March. The coding and data entry was then completed around the middle of July.

    A visit from an SPC consultant then took place to undertake initial cleaning of the data, primarily addressing missing data items and missing schedules. Once the initial data cleaning was undertaken in CSPro, data was transferred to Excel where it was closely scrutinized to check that all responses were sensible. In the cases where unusual values were identified, original forms were consulted for these households and modifications made to the data if required.

    Despite the best efforts being made to clean the data file in preparation for the analysis, no doubt errors will still exist in the data, due to its size and complexity. Having said this, they are not expected to have significant impacts on the survey results.

    Under-Reporting and Incorrect Reporting as a result of Poor Field Work Procedures The most crucial stage of any survey activity, whether it be a population census or a survey such as a HIES is the fieldwork. It is crucial for intense checking to take place in the field before survey forms are returned to the office for data processing. Unfortunately, it became evident during the cleaning of the data that fieldwork wasn?t checked as thoroughly as required, and as such some unexpected values appeared in the questionnaires, as well as unusual results appearing in the diaries. Efforts were made to indentify the main issues which would have the greatest impact on final results, and this information was modified using local knowledge, to a more reasonable answer, when required.

    Data Entry Errors Data entry errors are always expected, but can be kept to a minimum with

  8. d

    Job Postings Dataset for Labour Market Research and Insights

    • datarade.ai
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2023). Job Postings Dataset for Labour Market Research and Insights [Dataset]. https://datarade.ai/data-products/job-postings-dataset-for-labour-market-research-and-insights-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Oxylabs
    Area covered
    Switzerland, British Indian Ocean Territory, Tajikistan, Kyrgyzstan, Luxembourg, Togo, Jamaica, Anguilla, Zambia, Sierra Leone
    Description

    Introducing Job Posting Datasets: Uncover labor market insights!

    Elevate your recruitment strategies, forecast future labor industry trends, and unearth investment opportunities with Job Posting Datasets.

    Job Posting Datasets Source:

    1. Indeed: Access datasets from Indeed, a leading employment website known for its comprehensive job listings.

    2. Glassdoor: Receive ready-to-use employee reviews, salary ranges, and job openings from Glassdoor.

    3. StackShare: Access StackShare datasets to make data-driven technology decisions.

    Job Posting Datasets provide meticulously acquired and parsed data, freeing you to focus on analysis. You'll receive clean, structured, ready-to-use job posting data, including job titles, company names, seniority levels, industries, locations, salaries, and employment types.

    Choose your preferred dataset delivery options for convenience:

    Receive datasets in various formats, including CSV, JSON, and more. Opt for storage solutions such as AWS S3, Google Cloud Storage, and more. Customize data delivery frequencies, whether one-time or per your agreed schedule.

    Why Choose Oxylabs Job Posting Datasets:

    1. Fresh and accurate data: Access clean and structured job posting datasets collected by our seasoned web scraping professionals, enabling you to dive into analysis.

    2. Time and resource savings: Focus on data analysis and your core business objectives while we efficiently handle the data extraction process cost-effectively.

    3. Customized solutions: Tailor our approach to your business needs, ensuring your goals are met.

    4. Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is a founding member of the Ethical Web Data Collection Initiative, aligning with GDPR and CCPA best practices.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Effortlessly access fresh job posting data with Oxylabs Job Posting Datasets.

  9. D

    Data from: A qualitative-computational cataloguing of the EU-level public...

    • maastrichtu-ids.github.io
    • dataverse.nl
    bin, csv, xls
    Updated Apr 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataverseNL (2022). A qualitative-computational cataloguing of the EU-level public research and innovation portfolio of clean energy technologies (2014–2020) [Dataset]. http://doi.org/10.34894/Q80QUE
    Explore at:
    bin(7370452), xls(13824), csv(4074803)Available download formats
    Dataset updated
    Apr 23, 2022
    Dataset provided by
    DataverseNL
    Time period covered
    Jan 1, 2014 - Dec 12, 2020
    Area covered
    European Union
    Description

    Article Abstract To better allocate funds in the new EU research framework programme Horizon Europe, an assessment of current and past efforts is crucial. In this paper we develop and apply a multi-method qualitative and computational approach to provide a catalogue of climate crisis mitigation technologies on the EU level between 2014 and 2020. Using the approach, we observed no public EU-level funding for multiple technologies prioritised by the EU, such as low-carbon production and use of cement and chemicals, electric battery, and a number of industrial decarbonisation processes. We observed a rising trend in the funding of solar power and onshore wind, the adjacent to them power-to-X technology, as well as recycling. At the same time, the shares of funding into fuel cell, biofuel, demand-side energy management, microgrids, and waste management show a decline trend. With note of the exploratory character of the present paper, we propose that the EU Horizon 2020 funding of clean technologies only partially reflected the expectations of key institutionalised EU actors due to the existence of many non-funded prioritised technologies.

  10. Labor Force Survey, LFS 2006 - Egypt

    • erfdataportal.com
    Updated Feb 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Agency For Public Mobilization And Statistics (2023). Labor Force Survey, LFS 2006 - Egypt [Dataset]. https://www.erfdataportal.com/index.php/catalog/146
    Explore at:
    Dataset updated
    Feb 5, 2023
    Dataset provided by
    Central Agency for Public Mobilization and Statisticshttps://www.capmas.gov.eg/
    Economic Research Forum
    Time period covered
    2006
    Area covered
    Egypt
    Description

    Abstract

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)

    In any society, the human element represents the basis of the work force which exercises all the service and production activities. Therefore, it is a mandate to produce labor force statistics and studies, that is related to the growth and distribution of manpower and labor force distribution by different types and characteristics.

    In this context, the Central Agency for Public Mobilization and Statistics conducts "Quarterly Labor Force Survey" which includes data on the size of manpower and labor force (employed and unemployed) and their geographical distribution by their characteristics.

    By the end of each year, CAPMAS issues the annual aggregated labor force bulletin publication that includes the results of the quarterly survey rounds that represent the manpower and labor force characteristics during the year.

    ----> Historical Review of the Labor Force Survey:

    1- The First Labor Force survey was undertaken in 1957. The first round was conducted in November of that year, the survey continued to be conducted in successive rounds (quarterly, bi-annually, or annually) till now.

    2- Starting the October 2006 round, the fieldwork of the labor force survey was developed to focus on the following two points: a. The importance of using the panel sample that is part of the survey sample, to monitor the dynamic changes of the labor market. b. Improving the used questionnaire to include more questions, that help in better defining of relationship to labor force of each household member (employed, unemployed, out of labor force ...etc.). In addition to re-order of some of the already existing questions in much logical way.

    3- Starting the January 2008 round, the used methodology was developed to collect more representative sample during the survey year. this is done through distributing the sample of each governorate into five groups, the questionnaires are collected from each of them separately every 15 days for 3 months (in the middle and the end of the month)

    ----> The survey aims at covering the following topics:

    1- Measuring the size of the Egyptian labor force among civilians (for all governorates of the republic) by their different characteristics. 2- Measuring the employment rate at national level and different geographical areas. 3- Measuring the distribution of employed people by the following characteristics: gender, age, educational status, occupation, economic activity, and sector. 4- Measuring unemployment rate at different geographic areas. 5- Measuring the distribution of unemployed people by the following characteristics: gender, age, educational status, unemployment type "ever employed/never employed", occupation, economic activity, and sector for people who have ever worked.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.

    Geographic coverage

    Covering a sample of urban and rural areas in all the governorates.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    THE CLEANED AND HARMONIZED VERSION OF THE SURVEY DATA PRODUCED AND PUBLISHED BY THE ECONOMIC RESEARCH FORUM REPRESENTS 100% OF THE ORIGINAL SURVEY DATA COLLECTED BY THE CENTRAL AGENCY FOR PUBLIC MOBILIZATION AND STATISTICS (CAPMAS)

    ----> Sample Design and Selection

    The sample of the LFS 2006 survey is a simple systematic random sample.

    ----> Sample Size

    The sample size varied in each quarter (it is Q1=19429, Q2=19419, Q3=19119 and Q4=18835) households with a total number of 76802 households annually. These households are distributed on the governorate level (urban/rural).

    A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among external resources in Arabic.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire design follows the latest International Labor Organization (ILO) concepts and definitions of labor force, employment, and unemployment.

    The questionnaire comprises 3 tables in addition to the identification and geographic data of household on the cover page.

    ----> Table 1- Demographic and employment characteristics and basic data for all household individuals

    Including: gender, age, educational status, marital status, residence mobility and current work status

    ----> Table 2- Employment characteristics table

    This table is filled by employed individuals at the time of the survey or those who were engaged to work during the reference week, and provided information on: - Relationship to employer: employer, self-employed, waged worker, and unpaid family worker - Economic activity - Sector - Occupation - Effective working hours - Work place - Average monthly wage

    ----> Table 3- Unemployment characteristics table

    This table is filled by all unemployed individuals who satisfied the unemployment criteria, and provided information on: - Type of unemployment (unemployed, unemployed ever worked) - Economic activity and occupation in the last held job before being unemployed - Last unemployment duration in months - Main reason for unemployment

    Cleaning operations

    ----> Raw Data

    Office editing is one of the main stages of the survey. It started once the questionnaires were received from the field and accomplished by the selected work groups. It includes: a-Editing of coverage and completeness b-Editing of consistency

    ----> Harmonized Data

    • The STATA is used to clean and SPSS is used harmonize the datasets.
    • The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency.
    • All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.
  11. Quantitative Service Delivery Survey in Health 2000 - Uganda

    • microdata.ubos.org
    • datacatalog.ihsn.org
    • +2more
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health, Uganda (2018). Quantitative Service Delivery Survey in Health 2000 - Uganda [Dataset]. https://microdata.ubos.org:7070/index.php/catalog/46
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Ministry of Health of Ugandahttp://www.health.go.ug/
    Ministry of Finance, Planning and Economic Development, Uganda
    Makerere Institute for Social Research, Uganda
    Time period covered
    2000
    Area covered
    Uganda
    Description

    Abstract

    This study examines various dimensions of primary health care delivery in Uganda, using a baseline survey of public and private dispensaries, the most common lower level health facilities in the country.

    The survey was designed and implemented by the World Bank in collaboration with the Makerere Institute for Social Research and the Ugandan Ministries of Health and of Finance, Planning and Economic Development. It was carried out in October - December 2000 and covered 155 local health facilities and seven district administrations in ten districts. In addition, 1617 patients exiting health facilities were interviewed. Three types of dispensaries (both with and without maternity units) were included: those run by the government, by private for-profit providers, and by private nonprofit providers, mainly religious.

    This research is a Quantitative Service Delivery Survey (QSDS). It collected microlevel data on service provision and analyzed health service delivery from a public expenditure perspective with a view to informing expenditure and budget decision-making, as well as sector policy.

    Objectives of the study included: 1) Measuring and explaining the variation in cost-efficiency across health units in Uganda, with a focus on the flow and use of resources at the facility level; 2) Diagnosing problems with facility performance, including the extent of drug leakage, as well as staff performance and availability;
    3) Providing information on pricing and user fee policies and assessing the types of service actually provided; 4) Shedding light on the quality of service across the three categories of service provider - government, for-profit, and nonprofit; 5) Examining the patterns of remuneration, pay structure, and oversight and monitoring and their effects on health unit performance; 6) Assessing the private-public partnership, particularly the program of financial aid to nonprofits.

    Geographic coverage

    The study districts were Mpigi, Mukono, and Masaka in the central region; Mbale, Iganga, and Soroti in the east; Arua and Apac in the north; and Mbarara and Bushenyi in the west.

    Analysis unit

    • local dispensary with or without maternity unit

    Universe

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    The sample design was governed by three principles. First, to ensure a degree of homogeneity across sampled facilities, attention was restricted to dispensaries, with and without maternity units (that is, to the health center III level). Second, subject to security constraints, the sample was intended to capture regional differences. Finally, the sample had to include facilities in the main ownership categories: government, private for-profit, and private nonprofit (religious organizations and NGOs). The sample of government and nonprofit facilities was based on the Ministry of Health facility register for 1999. Since no nationwide census of for-profit facilities was available, these facilities were chosen by asking sampled government facilities to identify the closest private dispensary.

    Of the 155 health facilities surveyed, 81 were government facilities, 30 were private for-profit facilities, and 44 were nonprofit facilities. An exit poll of clients covered 1,617 individuals.

    The final sample consisted of 155 primary health care facilities drawn from ten districts in the central, eastern, northern, and western regions of the country. It included government, private for-profit, and private nonprofit facilities. The nonprofit sector includes facilities owned and operated by religious organizations and NGOs. Approximately one third of the surveyed facilities were dispensaries without maternity units; the rest provided maternity care. The facilities varied considerably in size, from units run by a single individual to facilities with as many as 19 staff members.

    Ministry of Health facility register for 1999 was used to design the sampling frame. Ten districts were randomly selected. From the selected districts, a sample of government and private nonprofit facilities and a reserve list of replacement facilities were randomly drawn. Because of the unreliability of the register for private for-profit facilities, it was decided that for-profit facilities would be identified on the basis of information from the government facilities sampled. The administrative records for facilities in the original sample were first reviewed at the district headquarters, where some facilities that did not meet selection criteria and data collection requirements were dropped from the sample. These were replaced by facilities from the reserve list. Overall, 30 facilities were replaced.

    The sample was designed in such a way that the proportion of facilities drawn from different regions and ownership categories broadly mirrors that of the universe of facilities. Because no nationwide census of for-profit health facilities is available, it is difficult to assess the extent to which the sample is representative of this category. A census of health care facilities in selected districts, carried out in the context of the Delivery of Improved Services for Health (DISH) project supported by the U.S. Agency for International Development (USAID), suggests that about 63 percent of all facilities operate on a for-profit basis, while government and nonprofit providers run 26 and 11 percent of facilities, respectively. This would suggest an undersampling of private providers in the survey. It is not clear, however, whether the DISH districts are representative of other districts in Uganda in terms of the market for health care.

    For the exit poll, 10 interviews per facility were carried out in approximately 85 percent of the facilities. In the remaining facilities the target of 10 interviews was not met, as a result of low activity levels.

    Sampling deviation

    In the first stage in the sampling process, eight districts (out of 45) had to be dropped from the sample frame due to security concerns. These districts were Bundibugyo, Gulu, Kabarole, Kasese, Kibaale, Kitgum, Kotido, and Moroto.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments are available:

    • District Health Team Questionnaire;
    • District Facility Data Sheets;
    • Uganda Health Facility Survey Questionnaire;
    • Facility Data Sheets;
    • Facility Patient Exit Poll Questionnaire.

    The survey collected data at three levels: district administration, health facility, and client. In this way it was possible to capture central elements of the relationships between the provider organization, the frontline facility, and the user. In addition, comparison of data from different levels (triangulation) permitted cross-validation of information.

    At the district level, a District Health Team Questionnaire was administered to the district director of health services (DDHS), who was interviewed on the role of the DDHS office in health service delivery. Specifically, the questionnaire collected data on health infrastructure, staff training, support and supervision arrangements, and sources of financing.

    The District Facility Data Sheet was used at the district level to collect more detailed information on the sampled health units for fiscal 1999-2000, including data on staffing and the related salary structures, vaccine supplies and immunization activity, and basic and supplementary supplies of drugs to the facilities. In addition, patient data, including monthly returns from facilities on total numbers of outpatients, inpatients, immunizations, and deliveries, were reviewed for the period April-June 2000.

    At the facility level, the Uganda Health Facility Survey Questionnaire collected a broad range of information related to the facility and its activities. The questionnaire, which was administered to the in-charge, covered characteristics of the facility (location, type, level, ownership, catchment area, organization, and services); inputs (staff, drugs, vaccines, medical and nonmedical consumables, and capital inputs); outputs (facility utilization and referrals); financing (user charges, cost of services by category, expenditures, and financial and in-kind support); and institutional support (supervision, reporting, performance assessment, and procurement). Each health facility questionnaire was supplemented by a Facility Data Sheet (FDS). The FDS was designed to obtain data from the health unit records on staffing and the related salary structure; daily patient records for fiscal 1999-2000; the type of patients using the facility; vaccinations offered; and drug supply and use at the facility.

    Finally, at the facility level, an exit poll was used to interview about 10 patients per facility on the cost of treatment, drugs received, perceived quality of services, and reasons for using that unit instead of alternative sources of health care.

    Cleaning operations

    Detailed information about data editing procedures is available in "Data Cleaning Guide for PETS/QSDS Surveys" in external resources.

    STATA cleaning do-files and the data quality reports on the datasets can also be found in external resources.

  12. i

    Household Expenditure and Income Survey 2010, Economic Research Forum (ERF)...

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Hashemite Kingdom of Jordan Department of Statistics (DOS) (2019). Household Expenditure and Income Survey 2010, Economic Research Forum (ERF) Harmonization Data - Jordan [Dataset]. https://catalog.ihsn.org/index.php/catalog/7662
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    The Hashemite Kingdom of Jordan Department of Statistics (DOS)
    Time period covered
    2010 - 2011
    Area covered
    Jordan
    Description

    Abstract

    The main objective of the HEIS survey is to obtain detailed data on household expenditure and income, linked to various demographic and socio-economic variables, to enable computation of poverty indices and determine the characteristics of the poor and prepare poverty maps. Therefore, to achieve these goals, the sample had to be representative on the sub-district level. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality.

    Data collected through the survey helped in achieving the following objectives: 1. Provide data weights that reflect the relative importance of consumer expenditure items used in the preparation of the consumer price index 2. Study the consumer expenditure pattern prevailing in the society and the impact of demographic and socio-economic variables on those patterns 3. Calculate the average annual income of the household and the individual, and assess the relationship between income and different economic and social factors, such as profession and educational level of the head of the household and other indicators 4. Study the distribution of individuals and households by income and expenditure categories and analyze the factors associated with it 5. Provide the necessary data for the national accounts related to overall consumption and income of the household sector 6. Provide the necessary income data to serve in calculating poverty indices and identifying the poor characteristics as well as drawing poverty maps 7. Provide the data necessary for the formulation, follow-up and evaluation of economic and social development programs, including those addressed to eradicate poverty

    Geographic coverage

    National

    Analysis unit

    • Households
    • Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Household Expenditure and Income survey sample for 2010, was designed to serve the basic objectives of the survey through providing a relatively large sample in each sub-district to enable drawing a poverty map in Jordan. The General Census of Population and Housing in 2004 provided a detailed framework for housing and households for different administrative levels in the country. Jordan is administratively divided into 12 governorates, each governorate is composed of a number of districts, each district (Liwa) includes one or more sub-district (Qada). In each sub-district, there are a number of communities (cities and villages). Each community was divided into a number of blocks. Where in each block, the number of houses ranged between 60 and 100 houses. Nomads, persons living in collective dwellings such as hotels, hospitals and prison were excluded from the survey framework.

    A two stage stratified cluster sampling technique was used. In the first stage, a cluster sample proportional to the size was uniformly selected, where the number of households in each cluster was considered the weight of the cluster. At the second stage, a sample of 8 households was selected from each cluster, in addition to another 4 households selected as a backup for the basic sample, using a systematic sampling technique. Those 4 households were sampled to be used during the first visit to the block in case the visit to the original household selected is not possible for any reason. For the purposes of this survey, each sub-district was considered a separate stratum to ensure the possibility of producing results on the sub-district level. In this respect, the survey framework adopted that provided by the General Census of Population and Housing Census in dividing the sample strata. To estimate the sample size, the coefficient of variation and the design effect of the expenditure variable provided in the Household Expenditure and Income Survey for the year 2008 was calculated for each sub-district. These results were used to estimate the sample size on the sub-district level so that the coefficient of variation for the expenditure variable in each sub-district is less than 10%, at a minimum, of the number of clusters in the same sub-district (6 clusters). This is to ensure adequate presentation of clusters in different administrative areas to enable drawing an indicative poverty map.

    It should be noted that in addition to the standard non response rate assumed, higher rates were expected in areas where poor households are concentrated in major cities. Therefore, those were taken into consideration during the sampling design phase, and a higher number of households were selected from those areas, aiming at well covering all regions where poverty spreads.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    • General form
    • Expenditure on food commodities form
    • Expenditure on non-food commodities form

    Cleaning operations

    Raw Data: - Organizing forms/questionnaires: A compatible archive system was used to classify the forms according to different rounds throughout the year. A registry was prepared to indicate different stages of the process of data checking, coding and entry till forms were back to the archive system. - Data office checking: This phase was achieved concurrently with the data collection phase in the field where questionnaires completed in the field were immediately sent to data office checking phase. - Data coding: A team was trained to work on the data coding phase, which in this survey is only limited to education specialization, profession and economic activity. In this respect, international classifications were used, while for the rest of the questions, coding was predefined during the design phase. - Data entry/validation: A team consisting of system analysts, programmers and data entry personnel were working on the data at this stage. System analysts and programmers started by identifying the survey framework and questionnaire fields to help build computerized data entry forms. A set of validation rules were added to the entry form to ensure accuracy of data entered. A team was then trained to complete the data entry process. Forms prepared for data entry were provided by the archive department to ensure forms are correctly extracted and put back in the archive system. A data validation process was run on the data to ensure the data entered is free of errors. - Results tabulation and dissemination: After the completion of all data processing operations, ORACLE was used to tabulate the survey final results. Those results were further checked using similar outputs from SPSS to ensure that tabulations produced were correct. A check was also run on each table to guarantee consistency of figures presented, together with required editing for tables' titles and report formatting.

    Harmonized Data: - The Statistical Package for Social Science (SPSS) was used to clean and harmonize the datasets. - The harmonization process started with cleaning all raw data files received from the Statistical Office. - Cleaned data files were then merged to produce one data file on the individual level containing all variables subject to harmonization. - A country-specific program was generated for each dataset to generate/compute/recode/rename/format/label harmonized variables. - A post-harmonization cleaning process was run on the data. - Harmonized data was saved on the household as well as the individual level, in SPSS and converted to STATA format.

  13. Percentage (%) and number (n) of missing values in the outcome (maximum grip...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner (2024). Percentage (%) and number (n) of missing values in the outcome (maximum grip strength) among participants that were interviewed, by age group and sex using all available data. [Dataset]. http://doi.org/10.1371/journal.pone.0295726.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 29, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Percentage (%) and number (n) of missing values in the outcome (maximum grip strength) among participants that were interviewed, by age group and sex using all available data.

  14. f

    Table2_Short-term wind power prediction based on anomalous data cleaning and...

    • frontiersin.figshare.com
    docx
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wu Xu; Zhifang Shen; Xinhao Fan; Yang Liu (2023). Table2_Short-term wind power prediction based on anomalous data cleaning and optimized LSTM network.DOCX [Dataset]. http://doi.org/10.3389/fenrg.2023.1268494.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Wu Xu; Zhifang Shen; Xinhao Fan; Yang Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Wind power prediction values are often unstable. The purpose of this study is to provide theoretical support for large-scale grid integration of power systems by analyzing units from three different regions in China and using neural networks to improve power prediction accuracy. The variables that have the greatest impact on power are screened out using the Pearson correlation coefficient. Optimize LSTM with Lion Swarm Algorithm (LSO) and add GCT attention module for optimization. Short-term predictions of actual power are made for Gansu (Northwest China), Hebei (Central Plains), and Zhejiang (Coastal China). The results show that the mean absolute percentage error (MAPE) of the nine units ranges from 9.156% to 16.38% and the root mean square error (RMSE) ranges from 1.028 to 1.546 MW for power prediction for the next 12 h. The MAPE of the units ranges from 11.36% to 18.58% and the RMSE ranges from 2.065 to 2.538 MW for the next 24 h. Furthermore, the LSTM is optimized by adding the GCT attention module to optimize the LSTM. 2.538 MW. In addition, compared with the model before data cleaning, the 12 h prediction error MAPE and RMSE are improved by an average of 34.82% and 38.10%, respectively; and the 24 h prediction error values are improved by an average of 26.32% and 20.69%, which proves the necessity of data cleaning and the generalizability of the model. The subsequent research content was also identified.

  15. Crystal Clean: Brain Tumors MRI Dataset

    • kaggle.com
    zip
    Updated Jul 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MH (2023). Crystal Clean: Brain Tumors MRI Dataset [Dataset]. https://www.kaggle.com/datasets/mohammadhossein77/brain-tumors-dataset
    Explore at:
    zip(231999018 bytes)Available download formats
    Dataset updated
    Jul 16, 2023
    Authors
    MH
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Uncovering Knowledge: A Clean Brain Tumor Dataset for Advanced Medical Research

    Introduction:

    • This dataset, available in RAR archive format, consists of four classes, including three tumor classes (Pituitary, Glioma and Meningioma) and one class representing normal brain MRI scans.
    • The strength of this dataset in comparison with other releases across the Kaggle is the cleanness of data. In this regard, we subjected the initial dataset to a meticulous data cleaning pipeline. This pipeline involved several steps aimed at enhancing the dataset's integrity and usability.
    • The initial data source for this dataset is the brain tumor classification MRI dataset, which can be accessed at this link.

    Data Cleaning Process:

    • Removal of Duplicate Samples: We employed an image vector comparison method to identify and remove duplicate samples, ensuring that each data point is unique.
    • Correction of Mislabeled Images: Using our domain knowledge, we carefully inspected and corrected falsely labeled images, ensuring that they were appropriately categorized. This step greatly enhances the accuracy of the dataset.
    • Image Resizing: All images in the dataset were resized to a memory-efficient yet academically accepted size of (224, 224), facilitating easier processing and analysis. Statistics: *Before the cleaning pipeline, the dataset contained the following number of samples for each class from the initial data source:
    • Normal: 500
    • Glioma: 926
    • Meningioma: 937
    • Pituitary: 901

    After applying the data cleaning pipeline, the number of samples in each category decreased on average by approximately 3-9%. This reduction ensures the data integrity while maintaining a sufficient number of samples for comprehensive analysis.

    Data Augmentation:

    To enhance the diversity and robustness of the dataset, we employed various image augmentation techniques. These techniques were applied to the images without altering the labels. Here is a summary of the augmentation methods used: - Salt and Pepper Noise: Introducing random noise by setting pixels to white or black based on a specified intensity. - Histogram Equalization: Applying histogram equalization to enhance the contrast and details in the images. - Rotation: Rotating the images clockwise or counterclockwise by a specified angle. - Brightness Adjustment: Modifying the brightness of the images by adding or subtracting intensity values. - Horizontal and Vertical Flipping: Flipping the images horizontally or vertically to create mirror images.

    Use Cases and Potential Investigations:

    This dataset offers significant potential for various advanced medical research and analysis applications. Some interesting use cases and potential investigations using this dataset include: - Tumor Classification: Developing advanced machine learning models for accurate and automated brain tumor classification. - Treatment Planning: Analyzing the tumor characteristics to aid in treatment planning and decision-making processes. - Radiomics Analysis: Extracting quantitative features from the images for radiomics analysis to uncover valuable insights and patterns. - Comparative Studies: Conducting comparative studies among different tumor types to understand their unique characteristics and behaviors.

    Acknowledgement

    • We would like to express our sincere gratitude to the original dataset publisher, sartajbhuvaji, for their valuable contribution.
    • This dataset is released under the CC0 license, making it open and accessible for everyone to use. While not mandatory, citing the dataset would be greatly appreciated.
    Important Note

    Those researchers who want to use this dataset for real world use cases, must consult with medical field experts (radiologists, ...) on the ground truth of the labels and their usability for their angle of research.

  16. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    • nada-demo.ihsn.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  17. Higher Education Institutions in the USA

    • kaggle.com
    zip
    Updated Apr 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson Júnior (2023). Higher Education Institutions in the USA [Dataset]. https://www.kaggle.com/datasets/jacksonbarreto/higher-education-institutions-in-the-usa/data
    Explore at:
    zip(35907 bytes)Available download formats
    Dataset updated
    Apr 8, 2023
    Authors
    Jackson Júnior
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Higher Education Institutions in the United States of America Dataset

    This repository contains a dataset of higher education institutions in the United States of America. This dataset was compiled in response to a cybersecurity research of American higher education institutions' websites [1]. The data is being made publicly available to promote open science principles [2].

    Data

    The data includes the following fields for each institution:

    • Id: A unique identifier assigned to each institution.
    • Region: The federal state in which the institution is located.
    • Name: The full name of the institution.
    • Category: Indicates whether the institution is public or private.
    • Url: The website of the institution.

    Methodology

    The dataset was obtained from the Higher Education Integrated Data System (IPEDS) website [3], which is administered by the National Center for Education Statistics (NCES). NCES serves as the primary federal entity for collecting and analyzing education-related data in the United States. The data was collected on February 2, 2023.

    The initial list of institutions was derived from the IPEDS database using the following criteria: (1) US institutions only, (2) degree-granting institutions, primarily bachelor's or higher, and (3) industry classification, which includes: public 4 - year or above, private not-for-profit 4 years or more, private for-profit 4 years or more, public 2 years, private not-for-profit 2 years, private for-profit 2 years, public less than 2 years, private not-for-profit for-profit less than 2 years and private for-profit less than 2 years.

    The following variables have been added to the list of institutions: Control of the institution, state abbreviation, degree-granting status, Status of the institution, and Institution's internet website address. This resulted in a report with 1,979 institutions.

    The institution's status was labeled with the following values: A (Active), N (New), R (Restored), M (Closed in the current year), C (Combined with another institution), D (Deleted out of business), I (Inactive due to hurricane-related issues), O (Outside IPEDS scope), P (Potential new/add institution), Q (Potential institution reestablishment), W (Potential addition outside IPEDS scope), X ( Potential restoration outside the scope of IPEDS) and G (Perfect Children's Campus).

    A filter was applied to the report to retain only institutions with an A, N, or R status, resulting in 1,978 institutions. Finally, a data cleaning process was applied, which involved removing the whitespace at the beginning and end of cell content and duplicate whitespace. The final data were compiled into the dataset included in this repository.

    Usage

    This data is available under the Creative Commons Zero (CC0) license and can be used for any purpose, including academic research purposes. We encourage the sharing of knowledge and the advancement of research in this field by adhering to open science principles [2].

    If you use this data in your research, please cite the source and include a link to this repository. To properly attribute this data, please use the following DOI: 10.5281/zenodo.7614862

    DOI

    Contribution

    If you have any updates or corrections to the data, please feel free to open a pull request or contact us directly. Let's work together to keep this data accurate and up-to-date.

    Acknowledgment

    We would like to acknowledge the support of the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), within the project "Cybers SeC IP" (NORTE-01-0145-FEDER-000044). This study was also developed as part of the Master in Cybersecurity Program at the Instituto Politécnico de Viana do Castelo, Portugal.

    References

    1. Pending.
    2. S. Bezjak, A. Clyburne-Sherin, P. Conzett, P. Fernandes, E. Görögh, K. Helbig, B. Kramer, I. Labastida, K. Niemeyer, F. Psomopoulos, T. Ross-Hellauer, R. Schneider, J. Tennant, E. Verbakel, H. Brinken, and L. Heller, Open Science Training Handbook. Zenodo, Apr. 2018. [Online]. Available: [https://doi.org/10.5281/zenodo.1212496]
    3. Integrated Postsecondary Education Data System, "Compare Institutions", Fev 2023. [online]. Available: https://nces.ed.gov/ipeds/use-the-data
  18. Expenditure and Consumption Survey, 2004 - West Bank and Gaza

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2019). Expenditure and Consumption Survey, 2004 - West Bank and Gaza [Dataset]. https://catalog.ihsn.org/index.php/catalog/3085
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttps://pcbs.gov/
    Time period covered
    2004 - 2005
    Area covered
    Gaza Strip, Gaza, West Bank
    Description

    Abstract

    The basic goal of this survey is to provide the necessary database for formulating national policies at various levels. It represents the contribution of the household sector to the Gross National Product (GNP). Household Surveys help as well in determining the incidence of poverty, and providing weighted data which reflects the relative importance of the consumption items to be employed in determining the benchmark for rates and prices of items and services. Generally, the Household Expenditure and Consumption Survey is a fundamental cornerstone in the process of studying the nutritional status in the Palestinian territory.

    The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.

    Geographic coverage

    The survey data covers urban, rural and camp areas in West Bank and Gaza Strip.

    Analysis unit

    1- Household/families. 2- Individuals.

    Universe

    The survey covered all the Palestinian households who are a usual residence in the Palestinian Territory.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample and Frame:

    The sampling frame consists of all enumeration areas which were enumerated in 1997; the enumeration area consists of buildings and housing units and is composed of an average of 120 households. The enumeration areas were used as Primary Sampling Units (PSUs) in the first stage of the sampling selection. The enumeration areas of the master sample were updated in 2003.

    Sample Design:

    The sample is a stratified cluster systematic random sample with two stages: First stage: selection of a systematic random sample of 299 enumeration areas. Second stage: selection of a systematic random sample of 12-18 households from each enumeration area selected in the first stage. A person (18 years and more) was selected from each household in the second stage.

    Sample strata:

    The population was divided by: 1- Governorate 2- Type of Locality (urban, rural, refugee camps)

    Sample Size:

    The calculated sample size is 3,781 households.

    Target cluster size:

    The target cluster size or "sample-take" is the average number of households to be selected per PSU. In this survey, the sample take is around 12 households.

    Detailed information/formulas on the sampling design are available in the user manual.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The PECS questionnaire consists of two main sections:

    First section: Certain articles / provisions of the form filled at the beginning of the month,and the remainder filled out at the end of the month. The questionnaire includes the following provisions:

    Cover sheet: It contains detailed and particulars of the family, date of visit, particular of the field/office work team, number/sex of the family members.

    Statement of the family members: Contains social, economic and demographic particulars of the selected family.

    Statement of the long-lasting commodities and income generation activities: Includes a number of basic and indispensable items (i.e, Livestock, or agricultural lands).

    Housing Characteristics: Includes information and data pertaining to the housing conditions, including type of shelter, number of rooms, ownership, rent, water, electricity supply, connection to the sewer system, source of cooking and heating fuel, and remoteness/proximity of the house to education and health facilities.

    Monthly and Annual Income: Data pertaining to the income of the family is collected from different sources at the end of the registration / recording period.

    Second section: The second section of the questionnaire includes a list of 54 consumption and expenditure groups itemized and serially numbered according to its importance to the family. Each of these groups contains important commodities. The number of commodities items in each for all groups stood at 667 commodities and services items. Groups 1-21 include food, drink, and cigarettes. Group 22 includes homemade commodities. Groups 23-45 include all items except for food, drink and cigarettes. Groups 50-54 include all of the long-lasting commodities. Data on each of these groups was collected over different intervals of time so as to reflect expenditure over a period of one full year.

    Cleaning operations

    Raw Data

    Both data entry and tabulation were performed using the ACCESS and SPSS software programs. The data entry process was organized in 6 files, corresponding to the main parts of the questionnaire. A data entry template was designed to reflect an exact image of the questionnaire, and included various electronic checks: logical check, range checks, consistency checks and cross-validation. Complete manual inspection was made of results after data entry was performed, and questionnaires containing field-related errors were sent back to the field for corrections.

    Harmonized Data

    • The Statistical Package for Social Science (SPSS) is used to clean and harmonize the datasets.
    • The harmonization process starts with cleaning all raw data files received from the Statistical Office.
    • Cleaned data files are then all merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/compute/recode/rename/format/label harmonized variables.
    • A post-harmonization cleaning process is run on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and converted to STATA format.

    Response rate

    The survey sample consists of about 3,781 households interviewed over a twelve-month period between January 2004 and January 2005. There were 3,098 households that completed the interview, of which 2,060 were in the West Bank and 1,038 households were in GazaStrip. The response rate was 82% in the Palestinian Territory.

    Sampling error estimates

    The calculations of standard errors for the main survey estimations enable the user to identify the accuracy of estimations and the survey reliability. Total errors of the survey can be divided into two kinds: statistical errors, and non-statistical errors. Non-statistical errors are related to the procedures of statistical work at different stages, such as the failure to explain questions in the questionnaire, unwillingness or inability to provide correct responses, bad statistical coverage, etc. These errors depend on the nature of the work, training, supervision, and conducting all various related activities. The work team spared no effort at different stages to minimize non-statistical errors; however, it is difficult to estimate numerically such errors due to absence of technical computation methods based on theoretical principles to tackle them. On the other hand, statistical errors can be measured. Frequently they are measured by the standard error, which is the positive square root of the variance. The variance of this survey has been computed by using the “programming package” CENVAR.

  19. 3M+ Academic Papers: Titles & Abstracts

    • kaggle.com
    zip
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Arias (2025). 3M+ Academic Papers: Titles & Abstracts [Dataset]. https://www.kaggle.com/datasets/beta3logic/3m-academic-papers-titles-and-abstracts
    Explore at:
    zip(1478156333 bytes)Available download formats
    Dataset updated
    Sep 18, 2025
    Authors
    David Arias
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Comprehensive Academic Papers Dataset: 3M+ Research Paper Titles and Abstracts

    📋 Overview

    This dataset is a comprehensive collection of over 3 million research paper titles and abstracts, curated and consolidated from multiple high-quality academic sources. The dataset provides a unified, clean, and standardized format for researchers, data scientists, and machine learning practitioners working on natural language processing, academic research analysis, and knowledge discovery tasks.

    🎯 Key Features

    • 3.6+ million scientific papers with titles and abstracts
    • Multi-domain coverage: Physics, Mathematics, Computer Science, Biology, Medicine, and more
    • Standardized format: Consistent title and abstract columns
    • Quality assured: Validated using Pydantic models and cleaned of duplicates/null values
    • Ready-to-use: Pre-processed and formatted for immediate analysis
    • Format: CSV
    • Language: English

    📊 Dataset Statistics

    MetricValue
    Total Records~3,000,000+
    Columns2 (title, abstract)
    File Size4.15 GB
    FormatCSV
    DuplicatesRemoved
    Missing ValuesRemoved

    🗂️ Dataset Structure

    cleaned_papers.csv
    ├── title (string): Scientific paper title
    └── abstract (string): Scientific paper abstract
    

    🔄 Data Processing Pipeline

    The dataset underwent a rigorous cleaning and standardization process:

    1. Data Import: Automated import from multiple sources (Kaggle API, Hugging Face)
    2. Column Standardization: Mapping various column names to consistent title and abstract format
    3. Data Validation: Pydantic model validation ensuring data quality
    4. Duplicate Removal: Advanced deduplication based on title and abstract similarity
    5. Null Value Handling: Removal of records with missing titles or abstracts
    6. Quality Assurance: Final validation and statistics generation

    💡 Use Cases

    This dataset is ideal for:

    • Natural Language Processing: Text classification, sentiment analysis, topic modeling
    • Scientific Literature Analysis: Trend analysis, domain classification, citation prediction
    • Machine Learning Research: Training language models, text summarization, information extraction
    • Academic Research: Bibliometric analysis, research trend identification
    • Educational Applications: Building search engines, recommendation systems

    🔗 Data Sources and Attribution

    This dataset consolidates academic papers from the following sources:

    Kaggle Datasets:

    1. ArXiv Scientific Research Papers Dataset by @sumitm004
    2. Cornell University ArXiv Dataset by @Cornell-University

    Hugging Face Datasets:

    1. ML-ArXiv-Papers by @CShorten
    2. ArXiv Biology by @zeroshot
    3. ArXiv Data Extended by @wrapper228
    4. Stroke PubMed Abstracts by @Gaborandi
    5. PubMed ArXiv Abstracts Data by @brainchalov
    6. Abstracts Cleaned by @Eitanli

    🔄 Update Schedule

    This dataset represents a point-in-time consolidation. Future versions may include: - Additional academic sources - Extended fields (authors, publication dates, venues) - Domain-specific subsets - Enhanced metadata

    📄 License and Usage

    Please respect the individual licenses of the source datasets. This consolidated version is provided for research and educational purposes. When using this dataset:

    1. Citation: Please cite this dataset and acknowledge the original data sources
    2. Attribution: Credit the original dataset creators listed above
    3. Compliance: Ensure compliance with individual dataset licenses
    4. Academic Use: Primarily intended for non-commercial, academic, and research purposes

    🙏 Acknowledgments

    Special thanks to all the original dataset creators and the academic communities that make their research data publicly available. This work builds upon their valuable contributions to open science and knowledge sharing.

    Keywords: academic papers, research abstracts, NLP, machine learning, text mining, scientific literature, ArXiv, PubMed, natural language processing, research dataset

  20. COVID-19 High Frequency Phone Survey of Households 2021, Round 4 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2023). COVID-19 High Frequency Phone Survey of Households 2021, Round 4 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/4063
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2021
    Area covered
    Vietnam
    Description

    Geographic coverage

    National, regional

    Analysis unit

    Households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2020/21 Vietnam COVID-19 High Frequency Phone Survey of Households (VHFPS) uses a nationally representative household survey from 2018 as the sampling frame. The 2018 baseline survey includes 46,980 households from 3132 communes (about 25% of total communes in Vietnam). In each commune, one EA is randomly selected and then 15 households are randomly selected in each EA for interview. We use the large module of to select the households for official interview of the VHFPS survey and the small module households as reserve for replacement.

    After data processing, the final sample size for Round 4 is 3,945 households.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The questionnaire for this round consisted of the following sections

    Section 2. Behavior Section 5. Employment (main respondent) Section 6. Coping Section 7. Safety Nets Section 8. FIES Section 10. Opinion Section 11. Vaccine

    Note: Some categorical responses have been merged in the anonymized data set for confidentiality.

    Cleaning operations

    Data cleaning began during the data collection process. Inputs for the cleaning process include available interviewers’ note following each question item, interviewers’ note at the end of the tablet form as well as supervisors’ note during monitoring. The data cleaning process was conducted in following steps: • Append households interviewed in ethnic minority languages with the main dataset interviewed in Vietnamese. • Remove unnecessary variables which were automatically calculated by SurveyCTO • Remove household duplicates in the dataset where the same form is submitted more than once. • Remove observations of households which were not supposed to be interviewed following the identified replacement procedure. • Format variables as their object type (string, integer, decimal, etc.) • Read through interviewers’ note and make adjustment accordingly. During interviews, whenever interviewers find it difficult to choose a correct code, they are recommended to choose the most appropriate one and write down respondents’ answer in detail so that the survey management team will justify and make a decision which code is best suitable for such answer. • Correct data based on supervisors’ note where enumerators entered wrong code. • Recode answer option “Other, please specify”. This option is usually followed by a blank line allowing enumerators to type or write texts to specify the answer. The data cleaning team checked thoroughly this type of answers to decide whether each answer needed recoding into one of the available categories or just keep the answer originally recorded. In some cases, that answer could be assigned a completely new code if it appeared many times in the survey dataset.
    • Examine data accuracy of outlier values, defined as values that lie outside both 5th and 95th percentiles, by listening to interview recordings. • Final check on matching main dataset with different sections, where information is asked on individual level, are kept in separate data files and in long form. • Label variables using the full question text. • Label variable values where necessary.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner (2024). Initial data analysis checklist for data screening in longitudinal studies. [Dataset]. http://doi.org/10.1371/journal.pone.0295726.t001

Initial data analysis checklist for data screening in longitudinal studies.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
May 29, 2024
Dataset provided by
PLOS ONE
Authors
Lara Lusa; Cécile Proust-Lima; Carsten O. Schmidt; Katherine J. Lee; Saskia le Cessie; Mark Baillie; Frank Lawrence; Marianne Huebner
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Initial data analysis checklist for data screening in longitudinal studies.

Search
Clear search
Close search
Google apps
Main menu