100+ datasets found
  1. g

    R code used to estimate public supply consumptive water use

    • gimi9.com
    • data.usgs.gov
    • +1more
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). R code used to estimate public supply consumptive water use [Dataset]. https://gimi9.com/dataset/data-gov_r-code-used-to-estimate-public-supply-consumptive-water-use
    Explore at:
    Dataset updated
    Aug 29, 2024
    Description

    This child item describes R code used to determine public supply consumptive use estimates. Consumptive use was estimated by scaling an assumed fraction of deliveries used for outdoor irrigation by spatially explicit estimates of evaporative demand using estimated domestic and commercial, industrial, and institutional deliveries from the public supply delivery machine learning model child item. This method scales public supply water service area outdoor water use by the relationship between service area gross reference evapotranspiration provided by GridMET and annual continental U.S. (CONUS) growing season maximum evapotranspiration. This relationship to climate at the CONUS scale could result in over- or under-estimation of consumptive use at public supply service areas where local variations differ from national variations in climate. This method also assumes that 50% of deliveries for total domestic and commercial, industrial, and institutional deliveries is used for outdoor purposes. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. This page includes the following file: PS_ConsumptiveUse.zip - a zip file containing input datasets, scripts, and output datasets

  2. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  3. d

    Replication Data for: Revisiting 'The Rise and Decline' in a Population of...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill (2023). Replication Data for: Revisiting 'The Rise and Decline' in a Population of Peer Production Projects [Dataset]. http://doi.org/10.7910/DVN/SG3LP1
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill
    Description

    This archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.

  4. Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A...

    • zenodo.org
    application/gzip, bin +2
    Updated Aug 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb (2024). Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem - the dataset [Dataset]. http://doi.org/10.5281/zenodo.1297925
    Explore at:
    text/x-python, zip, bin, application/gzipAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb
    License

    https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html

    Description
    Replication pack, FSE2018 submission #164:
    ------------------------------------------
    
    **Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: 
    A Case Study of the PyPI Ecosystem
    
    **Note:** link to data artifacts is already included in the paper. 
    Link to the code will be included in the Camera Ready version as well.
    
    
    Content description
    ===================
    
    - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files 
     described below
    - **settings.py** - settings template for the code archive.
    - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset.
     This dataset only includes stats aggregated by the ecosystem (PyPI)
    - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level
     statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages
     themselves, which take around 2TB.
    - **build_model.r, helpers.r** - R files to process the survival data 
      (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, 
      `common.cache/survival_data.pypi_2008_2017-12_6.csv` in 
      **dataset_full_Jan_2018.tgz**)
    - **Interview protocol.pdf** - approximate protocol used for semistructured interviews.
    - LICENSE - text of GPL v3, under which this dataset is published
    - INSTALL.md - replication guide (~2 pages)
    Replication guide
    =================
    
    Step 0 - prerequisites
    ----------------------
    
    - Unix-compatible OS (Linux or OS X)
    - Python interpreter (2.7 was used; Python 3 compatibility is highly likely)
    - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible)
    
    Depending on detalization level (see Step 2 for more details):
    - up to 2Tb of disk space (see Step 2 detalization levels)
    - at least 16Gb of RAM (64 preferable)
    - few hours to few month of processing time
    
    Step 1 - software
    ----------------
    
    - unpack **ghd-0.1.0.zip**, or clone from gitlab:
    
       git clone https://gitlab.com/user2589/ghd.git
       git checkout 0.1.0
     
     `cd` into the extracted folder. 
     All commands below assume it as a current directory.
      
    - copy `settings.py` into the extracted folder. Edit the file:
      * set `DATASET_PATH` to some newly created folder path
      * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` 
    - install docker. For Ubuntu Linux, the command is 
      `sudo apt-get install docker-compose`
    - install libarchive and headers: `sudo apt-get install libarchive-dev`
    - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools`
     Without this dependency, you might get an error on the next step, 
     but it's safe to ignore.
    - install Python libraries: `pip install --user -r requirements.txt` . 
    - disable all APIs except GitHub (Bitbucket and Gitlab support were
     not yet implemented when this study was in progress): edit
     `scraper/init.py`, comment out everything except GitHub support
     in `PROVIDERS`.
    
    Step 2 - obtaining the dataset
    -----------------------------
    
    The ultimate goal of this step is to get output of the Python function 
    `common.utils.survival_data()` and save it into a CSV file:
    
      # copy and paste into a Python console
      from common import utils
      survival_data = utils.survival_data('pypi', '2008', smoothing=6)
      survival_data.to_csv('survival_data.csv')
    
    Since full replication will take several months, here are some ways to speedup
    the process:
    
    ####Option 2.a, difficulty level: easiest
    
    Just use the precomputed data. Step 1 is not necessary under this scenario.
    
    - extract **dataset_minimal_Jan_2018.zip**
    - get `survival_data.csv`, go to the next step
    
    ####Option 2.b, difficulty level: easy
    
    Use precomputed longitudinal feature values to build the final table.
    The whole process will take 15..30 minutes.
    
    - create a folder `
  5. R script

    • catalog.data.gov
    Updated Nov 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). R script [Dataset]. https://catalog.data.gov/dataset/r-script
    Explore at:
    Dataset updated
    Nov 14, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This file includes an annotated R script used for data analysis for this project. Data files called in this script are also uploaded. Annotations within the script equate to metadata. This dataset is associated with the following publication: Wick, M., T. Angradi, M. Pawlowski, D. Bolgrien, R. Debbout, J. Launspach, and M. Nord. Deep Lake Explorer: A web application for crowdsourcing the classification of benthic underwater video from the Laurentian Great Lakes. JOURNAL OF GREAT LAKES RESEARCH. International Association for Great Lakes Research, Ann Arbor, MI, USA, 46(5): 1469-1478, (2020).

  6. r

    R codes and dataset for Visualisation of Diachronic Constructional Change...

    • researchdata.edu.au
    • bridges.monash.edu
    Updated Apr 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg (2019). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768
    Explore at:
    Dataset updated
    Apr 1, 2019
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Publication


    Primahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387

    Description of R codes and data files in the repository

    This repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).

    The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).

    These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt.

    Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.

    Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).

    The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

  7. H

    Political Analysis Using R: Example Code and Data, Plus Data for Practice...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jamie Monogan (2020). Political Analysis Using R: Example Code and Data, Plus Data for Practice Problems [Dataset]. http://doi.org/10.7910/DVN/ARKOTI
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Jamie Monogan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Each R script replicates all of the example code from one chapter from the book. All required data for each script are also uploaded, as are all data used in the practice problems at the end of each chapter. The data are drawn from a wide array of sources, so please cite the original work if you ever use any of these data sets for research purposes.

  8. f

    OECD R Package: A Use Case

    • figshare.com
    bin
    Updated Sep 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thierry Warin (2020). OECD R Package: A Use Case [Dataset]. http://doi.org/10.6084/m9.figshare.12928763.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 8, 2020
    Dataset provided by
    figshare
    Authors
    Thierry Warin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Access OECD countries and selected non-member economies data through the OECD API.

  9. Film Circulation dataset

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, png
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Skadi Loist; Skadi Loist; Evgenia (Zhenya) Samoilova; Evgenia (Zhenya) Samoilova (2024). Film Circulation dataset [Dataset]. http://doi.org/10.5281/zenodo.7887672
    Explore at:
    csv, png, binAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Skadi Loist; Skadi Loist; Evgenia (Zhenya) Samoilova; Evgenia (Zhenya) Samoilova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”

    A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org

    Please cite this when using the dataset.


    Detailed description of the dataset:

    1 Film Dataset: Festival Programs

    The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.

    The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.

    The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.


    2 Survey Dataset

    The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.

    The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.

    The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.


    3 IMDb & Scripts

    The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.

    The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.

    The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.

    The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.

    The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.

    The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.

    The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.

    The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.

    The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.

    The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.

    The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.

    The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.

    The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.

    The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.

    The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.

    The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.

    The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.

    The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.

    The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.


    4 Festival Library Dataset

    The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.

    The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories,

  10. r

    PhD Thesis Chapter 2: Example dataset for use with R script

    • researchdata.edu.au
    • adelaide.figshare.com
    Updated Nov 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle Stringer (2020). PhD Thesis Chapter 2: Example dataset for use with R script [Dataset]. http://doi.org/10.25909/5D3BA3B7B1B2D
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset provided by
    The University of Adelaide
    Authors
    Danielle Stringer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Danielle Stringer PhD thesis Chapter 2: Development and evaluation of a custom bait design based on 469 single-copy protein-coding genes for exon capture of isopods (Philosciidae: Haloniscus).


    Example dataset for use with R script (Supplementary File S4).

  11. R

    Dior R Dataset

    • universe.roboflow.com
    zip
    Updated Dec 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    new-workspace-zecmk (2024). Dior R Dataset [Dataset]. https://universe.roboflow.com/new-workspace-zecmk/dior-r-jbpln/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 25, 2024
    Dataset authored and provided by
    new-workspace-zecmk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    DIOR R Bounding Boxes
    Description

    DIOR R

    ## Overview
    
    DIOR R is a dataset for object detection tasks - it contains DIOR R annotations for 23,419 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  12. Data from: Optimized SMRT-UMI protocol produces highly accurate sequence...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Westfall; Mullins James (2023). Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies [Dataset]. http://doi.org/10.5061/dryad.w3r2280w0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    HIV Prevention Trials Networkhttp://www.hptn.org/
    HIV Vaccine Trials Networkhttp://www.hvtn.org/
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    PEPFAR
    Authors
    Dylan Westfall; Mullins James
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies. Methods This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies" Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005 For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub. The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub. The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results. Sequence_Analysis.Rmd has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd and Figures.Rmd. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program. To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper. Using Identifying_Recombinant_Reads.Rmd, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd. Figures.Rmd used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.

  13. d

    Replication Data for: \"A Topic-based Segmentation Model for Identifying...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kim, Sunghoon; Lee, Sanghak; McCulloch, Robert (2024). Replication Data for: \"A Topic-based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews\" [Dataset]. http://doi.org/10.7910/DVN/EE3DE2
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Kim, Sunghoon; Lee, Sanghak; McCulloch, Robert
    Description

    We provide instructions, codes and datasets for replicating the article by Kim, Lee and McCulloch (2024), "A Topic-based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews." This repository provides a user-friendly R package for any researchers or practitioners to apply A Topic-based Segmentation Model with Unstructured Texts (latent class regression with group variable selection) to their datasets. First, we provide a R code to replicate the illustrative simulation study: see file 1. Second, we provide the user-friendly R package with a very simple example code to help apply the model to real-world datasets: see file 2, Package_MixtureRegression_GroupVariableSelection.R and Dendrogram.R. Third, we provide a set of codes and instructions to replicate the empirical studies of customer-level segmentation and restaurant-level segmentation with Yelp reviews data: see files 3-a, 3-b, 4-a, 4-b. Note, due to the dataset terms of use by Yelp and the restriction of data size, we provide the link to download the same Yelp datasets (https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset/versions/6). Fourth, we provided a set of codes and datasets to replicate the empirical study with professor ratings reviews data: see file 5. Please see more details in the description text and comments of each file. [A guide on how to use the code to reproduce each study in the paper] 1. Full codes for replicating Illustrative simulation study.txt -- [see Table 2 and Figure 2 in main text]: This is R source code to replicate the illustrative simulation study. Please run from the beginning to the end in R. In addition to estimated coefficients (posterior means of coefficients), indicators of variable selections, and segment memberships, you will get dendrograms of selected groups of variables in Figure 2. Computing time is approximately 20 to 30 minutes 3-a. Preprocessing raw Yelp Reviews for Customer-level Segmentation.txt: Code for preprocessing the downloaded unstructured Yelp review data and preparing DV and IVs matrix for customer-level segmentation study. 3-b. Instruction for replicating Customer-level Segmentation analysis.txt -- [see Table 10 in main text; Tables F-1, F-2, and F-3 and Figure F-1 in Web Appendix]: Code for replicating customer-level segmentation study with Yelp data. You will get estimated coefficients (posterior means of coefficients), indicators of variable selections, and segment memberships. Computing time is approximately 3 to 4 hours. 4-a. Preprocessing raw Yelp reviews_Restaruant Segmentation (1).txt: R code for preprocessing the downloaded unstructured Yelp data and preparing DV and IVs matrix for restaurant-level segmentation study. 4-b. Instructions for replicating restaurant-level segmentation analysis.txt -- [see Tables 5, 6 and 7 in main text; Tables E-4 and E-5 and Figure H-1 in Web Appendix]: Code for replicating restaurant-level segmentation study with Yelp. you will get estimated coefficients (posterior means of coefficients), indicators of variable selections, and segment memberships. Computing time is approximately 10 to 12 hours. [Guidelines for running Benchmark models in Table 6] Unsupervised Topic model: 'topicmodels' package in R -- after determining the number of topics(e.g., with 'ldatuning' R package), run 'LDA' function in the 'topicmodels'package. Then, compute topic probabilities per restaurant (with 'posterior' function in the package) which can be used as predictors. Then, conduct prediction with regression Hierarchical topic model (HDP): 'gensimr' R package -- 'model_hdp' function for identifying topics in the package (see https://radimrehurek.com/gensim/models/hdpmodel.html or https://gensimr.news-r.org/). Supervised topic model: 'lda' R package -- 'slda.em' function for training and 'slda.predict' for prediction. Aggregate regression: 'lm' default function in R. Latent class regression without variable selection: 'flexmix' function in 'flexmix' R package. Run flexmix with a certain number of segments (e.g., 3 segments in this study). Then, with estimated coefficients and memberships, conduct prediction of dependent variable per each segment. Latent class regression with variable selection: 'Unconstraind_Bayes_Mixture' function in Kim, Fong and DeSarbo(2012)'s package. Run the Kim et al's model (2012) with a certain number of segments (e.g., 3 segments in this study). Then, with estimated coefficients and memberships, we can do prediction of dependent variables per each segment. The same R package ('KimFongDeSarbo2012.zip') can be downloaded at: https://sites.google.com/scarletmail.rutgers.edu/r-code-packages/home 5. Instructions for replicating Professor ratings review study.txt -- [see Tables G-1, G-2, G-4 and G-5, and Figures G-1 and H-2 in Web Appendix]: Code to replicate the Professor ratings reviews study. Computing time is approximately 10 hours. [A list of the versions of R, packages, and computer...

  14. R

    R Dataset

    • universe.roboflow.com
    zip
    Updated Jul 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    d (2025). R Dataset [Dataset]. https://universe.roboflow.com/d-yjfba/r-iloic/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    d
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    R Bounding Boxes
    Description

    R

    ## Overview
    
    R is a dataset for object detection tasks - it contains R annotations for 1,200 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  15. d

    2010 County and City-Level Water-Use Data and Associated Explanatory...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). 2010 County and City-Level Water-Use Data and Associated Explanatory Variables [Dataset]. https://catalog.data.gov/dataset/2010-county-and-city-level-water-use-data-and-associated-explanatory-variables
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the input-data files and R scripts associated with the analysis presented in [citation of manuscript]. The spatial extent of the data is the contiguous U.S. The input-data files include one comma separated value (csv) file of county-level data, and one csv file of city-level data. The county-level csv (“county_data.csv”) contains data for 3,109 counties. This data includes two measures of water use, descriptive information about each county, three grouping variables (climate region, urban class, and economic dependency), and contains 18 explanatory variables: proportion of population growth from 2000-2010, fraction of withdrawals from surface water, average daily water yield, mean annual maximum temperature from 1970-2010, 2005-2010 maximum temperature departure from the 40-year maximum, mean annual precipitation from 1970-2010, 2005-2010 mean precipitation departure from the 40-year mean, Gini income disparity index, percent of county population with at least some college education, Cook Partisan Voting Index, housing density, median household income, average number of people per household, median age of structures, percent of renters, percent of single family homes, percent apartments, and a numeric version of urban class. The city-level csv (city_data.csv) contains data for 83 cities. This data includes descriptive information for each city, water-use measures, one grouping variable (climate region), and 6 explanatory variables: type of water bill (increasing block rate, decreasing block rate, or uniform), average price of water bill, number of requirement-oriented water conservation policies, number of rebate-oriented water conservation policies, aridity index, and regional price parity. The R scripts construct fixed-effects and Bayesian Hierarchical regression models. The primary difference between these models relates to how they handle possible clustering in the observations that define unique water-use settings. Fixed-effects models address possible clustering in one of two ways. In a "fully pooled" fixed-effects model, any clustering by group is ignored, and a single, fixed estimate of the coefficient for each covariate is developed using all of the observations. Conversely, in an unpooled fixed-effects model, separate coefficient estimates are developed only using the observations in each group. A hierarchical model provides a compromise between these two extremes. Hierarchical models extend single-level regression to data with a nested structure, whereby the model parameters vary at different levels in the model, including a lower level that describes the actual data and an upper level that influences the values taken by parameters in the lower level. The county-level models were compared using the Watanabe-Akaike information criterion (WAIC) which is derived from the log pointwise predictive density of the models and can be shown to approximate out-of-sample predictive performance. All script files are intended to be used with R statistical software (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org) and Stan probabilistic modeling software (Stan Development Team. 2017. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org).

  16. G

    Data from: LivWell: a sub-national Dataset on the Living Conditions of Women...

    • genderopendata.org
    csv, gpkg, pdf, zip
    Updated Feb 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LivWell (2023). LivWell: a sub-national Dataset on the Living Conditions of Women and their Well-being for 52 Countries [Dataset]. https://genderopendata.org/dataset/livwell-a-sub-national-dataset-on-the-living-conditions-of-women
    Explore at:
    csv(4784006), pdf(13734292), csv(34526), csv(21744095), gpkg(31023104), zip(163961870)Available download formats
    Dataset updated
    Feb 8, 2023
    Dataset authored and provided by
    LivWell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    LivWell is a global longitudinal database which provides a range of key indicators related to women’s socioeconomic status, health and well-being, access to basic services, and demographic outcomes. Data are available at the sub-national level for 52 countries and 447 regions. A total of 134 indicators are based on 199 Demographic and Health Surveys for the period 1990-2019, supplemented by extensive information on socioeconomic and climatic conditions in the respective regions for a total of 190 indicators. The resulting data offer various opportunities for policy-relevant research on gender inequality, inclusive development, and demographic trends at the sub-national level.

    For a full description, please refer to the article describing the database here: https://www.nature.com/articles/s41597-022-01824-2

    The companion repository livwelldata allows to easily use the database in R. The R package can be downloaded following the instructions on the following git repository: https://gitlab.pik-potsdam.de/belmin/livwelldata. The version of the database in the package is the same as in this repository.

  17. R

    Xdlcv R Dataset

    • universe.roboflow.com
    zip
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Noleak Defence (2025). Xdlcv R Dataset [Dataset]. https://universe.roboflow.com/noleak-defence/xdlcv-r/dataset/7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Noleak Defence
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Talisca Polygons
    Description

    Xdlcv R

    ## Overview
    
    Xdlcv R is a dataset for instance segmentation tasks - it contains Talisca annotations for 514 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  18. f

    Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene...

    • frontiersin.figshare.com
    docx
    Updated Mar 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder (2024). Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene expression during evolution.docx [Dataset]. http://doi.org/10.3389/feduc.2024.1379910.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 22, 2024
    Dataset provided by
    Frontiers
    Authors
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As high-throughput methods become more common, training undergraduates to analyze data must include having them generate informative summaries of large datasets. This flexible case study provides an opportunity for undergraduate students to become familiar with the capabilities of R programming in the context of high-throughput evolutionary data collected using macroarrays. The story line introduces a recent graduate hired at a biotech firm and tasked with analysis and visualization of changes in gene expression from 20,000 generations of the Lenski Lab’s Long-Term Evolution Experiment (LTEE). Our main character is not familiar with R and is guided by a coworker to learn about this platform. Initially this involves a step-by-step analysis of the small Iris dataset built into R which includes sepal and petal length of three species of irises. Practice calculating summary statistics and correlations, and making histograms and scatter plots, prepares the protagonist to perform similar analyses with the LTEE dataset. In the LTEE module, students analyze gene expression data from the long-term evolutionary experiments, developing their skills in manipulating and interpreting large scientific datasets through visualizations and statistical analysis. Prerequisite knowledge is basic statistics, the Central Dogma, and basic evolutionary principles. The Iris module provides hands-on experience using R programming to explore and visualize a simple dataset; it can be used independently as an introduction to R for biological data or skipped if students already have some experience with R. Both modules emphasize understanding the utility of R, rather than creation of original code. Pilot testing showed the case study was well-received by students and faculty, who described it as a clear introduction to R and appreciated the value of R for visualizing and analyzing large datasets.

  19. H

    Replication data for: Effects of algorithmic flagging on fairness:...

    • dataverse.harvard.edu
    Updated Apr 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathan TeBlunthuis; Benjamin Mako Hill; Aaron Halfaker (2021). Replication data for: Effects of algorithmic flagging on fairness: Quasi-experimental evidence from Wikipedia [Dataset]. http://doi.org/10.7910/DVN/E0RYJ4
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 26, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Nathan TeBlunthuis; Benjamin Mako Hill; Aaron Halfaker
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/4.1/customlicense?persistentId=doi:10.7910/DVN/E0RYJ4https://dataverse.harvard.edu/api/datasets/:persistentId/versions/4.1/customlicense?persistentId=doi:10.7910/DVN/E0RYJ4

    Description

    Code overview The code is all in code.tar.gz. Identifying thresholds and cutoffs over time Pretty much all in identify_cutoffs.py. Iterates git repository, parses wmf-config/InitializeSettings.php. Interprets historical json versions. Builds a pandas table of events with threshold configuration settings and some other configuration settings like when different UI elements were enabled. There are some traces of the first attempt at a project, an attempted time series analysis that failed due to high noise. In cases where thresholds are not configured, default thresholds are configured in the ORES service repository mediawiki-extentions-ORES/extension.json (a copy of the git repository is in mediawiki-extensions-ORES.tar.gz. get_default_threshold_strings.py scripts this git repository to get the history of the default thresholds. They don’t change much. Reading server admin log Right now, the code to get the history of deployments is in a chunk at the identify_cutoffs.py. I think I will refactor this to its own file. The precise timing of changes to the models does not come from the source code repository but rather the live deployments. The SAL (server admin log) publishes a history of live deployments. Converting ORES configuration strings to prediction score cutoffs This is done by ores_archaeologist.py. This is by far the most complex complex script and it wraps functionality from the revscoring package (a copy of this repository is in revscoring.tar.gz) to load different versions of models and analyze them. It checks out git commits corresponding to changes in InitializeSettings.php or SAL, installs the correct python dependencies in a helper repository to make sure the models run in as close as possible to the correct environment to ensure the thresholds are correct. helper.py has functions used by ores_archaeologist.py. Sometimes there are errors and we start analyzing data starting after the last error to give a continuous period. get_model_threshold.py is a simple script that is run by ores_archeologist.py and actually loads the revscoring code. The ores_archeologist.py script can also attempt to find historical revision scores. This was not actually used in the paper because these historical scores may not be reliable. revscoring_score_shim.py is analogous to get_model_threshold.py, but for scoring edits. Sampling from Wikimedia history and event table sample_edits_near_thresholds.py is a spark script that runs on the Wikimedia Foundation datalake nad builds the revision dataset. Much of the logic is inspark_functions.py. Fitting models. The master file is fit_10_rdds.R and fit_vlb_rdds.R. During the review cycle we found a bug in the ‘very likely bad’ data and I refit only those models to save time. fit_10_rdds.R just fits the models asynchronously. The main logic is in fit_base_rdds.R and modeling_init.R. The dataset is put together in modeling_init.R. ob_util.R and helper.R have a few miscellanious functions. rdd_defaults.R has the formulas and sets stan modeling parameters. Fit models are available in models.tar.gz. Interpreting models. analyze_threshold_models.R builds smaller dataframes and variables that will be used by the Knitr Latex system to build the paper. analyze_vlb_models.R does the same, but just for the ‘very likely bad’ data. Code shared by both scripts are in analyze_main_models.R. Dataset summary statistics Some additional statistics reported in the paper are calculated in summary_stats.R. Evaluating encoded bias The bias_analysis.tar.gz archive has code and data used for evaluating the bias of the ORES models including a copy of the editquality git repository. A copy of the repository is in editquality.tar.gz. Building the paper and appendix This is in the paper.tar.gz and appendix.tar.gz archives. Data files overview The following data files are published at the top level of the dataverse. Copy them into a data subdirectory to use them with the code. cutoff_revisions_2periods.csv.gz.part1 and cutoff_revisions_2periods.csv.gz.part2 have the full dataset of edits within the neighborhood.You should do cat cutoff_revisions_2periods.csv.gz.part1 cutoff_revisions_2periods.csv.gz.part2 > cutoff_revisions_2periods.csv.gz and then decompress the output to get the full csv. cutoff_revisions_sample.csv and cutoff_revisions_sample_vlbfix.csv have the sampled datasets on which the models are fit. threshold_strata_counts.csv and threshold_strata_counts_vlbfix.csv have the counts from statified sampling which are used to calculate modeling weights. What does vlb_fix mean? The original submission of the paper contained a bug that affected the sample at the verylikelybad RCFilters threshold. The bug was on line 241 of sample_edits_near_threshold.py and lead to NA values in the sample which would have affected the sample weights. During the revise-and-resubmit process we found and fixed the bug and fit new models at the verylikelybad threshold. LICENSE The data in this repository is...

  20. Z

    SWECO25: Land Use and Cover (lulc)

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antoine Adde (2024). SWECO25: Land Use and Cover (lulc) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7981109
    Explore at:
    Dataset updated
    Feb 12, 2024
    Dataset provided by
    Antoine Adde
    Nathan Külling
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The land use and cover category contains the "geostat25" and "wslhabmap" datasets.

    The geostat25 dataset describes the land use and cover of Switzerland. After resampling the “Downscaled Land Use/Land Cover of Switzerland” source data (Giuliani et al., 2022) to the SWECO25 grid, we generated individual layers for the 65 land use and cover classes and the 3 time periods (1992-1997, 2004-2009, and 2013-2018) that were available. For each class and period, we provided the binary maps (0 or 1) and computed 13 focal statistics layers by applying a cell-level function calculating the average percentage cover value for a given class in a circular moving window of 13 radii ranging from 25m to 5km. This dataset includes a total of 2,730 layers. Final values were rounded and multiplied by 100.

    The wslhabmap dataset (land use and cover category) describes the natural habitats of Switzerland. After rasterizing and resampling the “Habitat Map of Switzerland v1” source data (Price et al., 2021) to the SWECO25 grid, we generated individual layers for 41 categories (32 classes and 9 groups). The groups correspond to the first level of the TypoCH classification and the classes to the second level. For details on the TypoCH classification see Delarze, R., Gonseth, Y., Eggenberg, S., & Vust, M. (2015). Guide des milieux naturels de Suisse : Écologie, menaces, espèces caractéristiques. Rossolis. For each of the 41 categories, we provided the binary maps (0 or 1) and computed 13 focal statistics layers by applying a cell-level function calculating the average percentage cover value for a given category in a circular moving window of 13 radii ranging from 25m to 5km. This dataset includes a total of 574 layers. Final values were rounded and multiplied by 100.

    The detailed list of layers available is provided in SWECO25_datalayers_details_lulc.csv and includes information on the category, dataset, variable name (long), variable name (short), period, sub-period, start year, end year, attribute, radii, unit, and path.

    References:

    G. Giuliani, D. Rodila, N. Külling, R. Maggini, A. Lehmann, Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System. Land 11, 615 (2022).

    B. Price, Huber, N., Ginzler, C., Pazúr, R., Rüetschi, M., "The Habitat Map of Switzerland v1," (Birmensdorf, Switzerland, 2021)

    Külling, N., Adde, A., Fopp, F., Schweiger, A. K., Broennimann, O., Rey, P.-L., Giuliani, G., Goicolea, T., Petitpierre, B., Zimmermann, N. E., Pellissier, L., Altermatt, F., Lehmann, A., & Guisan, A. (2024). SWECO25: A cross-thematic raster database for ecological research in Switzerland. Scientific Data, 11(1), Article 1. https://doi.org/10.1038/s41597-023-02899-1

    V2: metadata update

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). R code used to estimate public supply consumptive water use [Dataset]. https://gimi9.com/dataset/data-gov_r-code-used-to-estimate-public-supply-consumptive-water-use

R code used to estimate public supply consumptive water use

Explore at:
Dataset updated
Aug 29, 2024
Description

This child item describes R code used to determine public supply consumptive use estimates. Consumptive use was estimated by scaling an assumed fraction of deliveries used for outdoor irrigation by spatially explicit estimates of evaporative demand using estimated domestic and commercial, industrial, and institutional deliveries from the public supply delivery machine learning model child item. This method scales public supply water service area outdoor water use by the relationship between service area gross reference evapotranspiration provided by GridMET and annual continental U.S. (CONUS) growing season maximum evapotranspiration. This relationship to climate at the CONUS scale could result in over- or under-estimation of consumptive use at public supply service areas where local variations differ from national variations in climate. This method also assumes that 50% of deliveries for total domestic and commercial, industrial, and institutional deliveries is used for outdoor purposes. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. This page includes the following file: PS_ConsumptiveUse.zip - a zip file containing input datasets, scripts, and output datasets

Search
Clear search
Close search
Google apps
Main menu