Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about stocks. It has 2 rows and is filtered where the company is Range Resources. It features 8 columns including stock name, company, exchange, and exchange symbol.
Facebook
TwitterThis repo contains the npz files of the database that is required by the RANGE model. This dataset is associated with the paper RANGE: Retrieval Augmented Neural Fields for Multi-Resolution Geo-Embeddings (CVPR 2025). Code: https://github.com/mvrl/RANGE
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset has been generated using NYUSIM 3.0 mm-Wave channel simulator software, which takes into account atmospheric data such as rain rate, humidity, barometric pressure, and temperature. The input data was collected over the course of a year in South Asia. As a result, the dataset provides an accurate representation of the seasonal variations in mm-wave channel characteristics in these areas. The dataset includes a total of 2835 records, each of which contains T-R Separation Distance (m), Time Delay (ns), Received Power (dBm), Phase (rad), Azimuth AoD (degree), Elevation AoD (degree), Azimuth AoA (degree), Elevation, AoA (degree), RMS Delay Spread (ns), Season, Frequency and Path Loss (dB). Four main seasons have been considered in this dataset: Spring, Summer, Fall, and Winter. Each season is subdivided into three parts (i.e., low, medium, and high), to accurately include the atmospheric variations in a season. To simulate the path loss, realistic Tx and Rx height, NLoS environment, and mean human blockage attenuation effects have been taken into consideration. The data has been preprocessed and normalized to ensure consistency and ease of use. Researchers in the field of mm-wave communications and networking can use this dataset to study the impact of atmospheric conditions on mm-wave channel characteristics and develop more accurate models for predicting channel behavior. The dataset can also be used to evaluate the performance of different communication protocols and signal processing techniques under varying weather conditions. Note that while the data was collected specifically in South Asia region, the high correlation between the weather patterns in this region and other areas means that the dataset may also be applicable to other regions with similar atmospheric conditions.
Acknowledgements The paper in which the dataset was proposed is available on: https://ieeexplore.ieee.org/abstract/document/10307972
If you use this dataset, please cite the following paper:
Rashed Hasan Ratul, S. M. Mehedi Zaman, Hasib Arman Chowdhury, Md. Zayed Hassan Sagor, Mohammad Tawhid Kawser, and Mirza Muntasir Nishat, “Atmospheric Influence on the Path Loss at High Frequencies for Deployment of 5G Cellular Communication Networks,” 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2023, pp. 1–6. https://doi.org/10.1109/ICCCNT56998.2023.10307972
BibTeX ```bibtex @inproceedings{Ratul2023Atmospheric, author = {Ratul, Rashed Hasan and Zaman, S. M. Mehedi and Chowdhury, Hasib Arman and Sagor, Md. Zayed Hassan and Kawser, Mohammad Tawhid and Nishat, Mirza Muntasir}, title = {Atmospheric Influence on the Path Loss at High Frequencies for Deployment of {5G} Cellular Communication Networks}, booktitle = {2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)}, year = {2023}, pages = {1--6}, doi = {10.1109/ICCCNT56998.2023.10307972}, keywords = {Wireless communication; Fluctuations; Rain; 5G mobile communication; Atmospheric modeling; Simulation; Predictive models; 5G-NR; mm-wave propagation; path loss; atmospheric influence; NYUSIM; ML} }
Facebook
TwitterThis point feature class contains the locations of all 87 experimental forests, ranges and watersheds, including cooperating experimental areas. Metadata.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The generated dataset simulates marketing interaction data for 500 users, including a range of engagement metrics and user behavior features. Below is a detailed description of the columns in the dataset:
Columns: User_ID: A unique identifier for each user (e.g., '001', '002', etc.).
Likes: The number of likes the user has given to posts, normalized to a range of 0 to 1.
Shares: The number of times the user has shared posts, normalized to a range of 0 to 1.
Comments: The number of comments the user has made on posts, normalized to a range of 0 to 1.
Clicks: The number of times the user has clicked on posts, ads, or links, normalized to a range of 0 to 1.
Engagement_with_Ads: The level of interaction the user has had with advertisements, normalized to a range of 0 to 1.
Time_Spent_on_Platform: The amount of time the user spends on the platform (in minutes), normalized to a range of 0 to 1.
Purchase_History: A binary value indicating whether the user has made a purchase (1 for purchased, 0 for not purchased).
Text_Features: Text data that simulates user interactions with marketing-related content (e.g., posts, advertisements). The text has been transformed using TF-IDF (Term Frequency-Inverse Document Frequency) to extract important keywords.
Engagement_Level: A categorical value indicating the level of user engagement with the platform, including "High", "Medium", and "Low".
Purchase_Likelihood: A binary target variable that indicates the likelihood of a user making a purchase. It is encoded as:
1 (Likely) if the user is predicted to make a purchase. 0 (Unlikely) if the user is predicted to not make a purchase.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Within range. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.
Facebook
TwitterThis dataset contains polygons depicting ranges in elevation that were created using the dem60 tong_lat lattice and the Tongass wide VCU dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Grass Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Grass Range across both sexes and to determine which sex constitutes the majority.
Key observations
There is a considerable majority of female population, with 71.13% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grass Range Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterThe Range Vegetation Improvement feature class depicts the area planned and accomplished areas treated as a part of the Range Vegetation Improvement program of work, funded through the budget allocation process and reported through the Forest Service Activity Tracking System (FACTS) database within the Natural Resource Manager (NRM) suite of applications. Activities are self-reported by Forest Service Units. Metadata
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home range and body size data compiled from the literature for marine and terrestrial vertebrates.
These data were published in McCauley et al. (2015) Table S2.
Facebook
TwitterThe Geographic Names Information System (GNIS) actively seeks data from and partnerships with Government agencies at all levels and other interested organizations. The GNIS is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.
The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.
If you share or use this dataset, please cite [4] and [5] in any relevant documentation.
In addition, an image dataset for crack classification has also been published at [6].
References:
[1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873
[2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605
[3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434
[4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678
5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044
[6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78
Facebook
TwitterPasture is a feature class in the Rangeland Management data set. It represents the area boundaries of livestock grazing pastures. The area corresponds to tabular data in the RIMS (Rangeland Information Management System).
Facebook
TwitterThe goal of introducing the Rescaled CIFAR-10 dataset is to provide a dataset that contains scale variations (up to a factor of 4), to evaluate the ability of networks to generalise to scales not present in the training data.
The Rescaled CIFAR-10 dataset was introduced in the paper:
[1] A. Perzanowski and T. Lindeberg (2025) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, Journal of Mathematical Imaging and Vision, 67(29), https://doi.org/10.1007/s10851-025-01245-x.
with a pre-print available at arXiv:
[2] Perzanowski and Lindeberg (2024) "Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations”, arXiv preprint arXiv:2409.11140.
Importantly, the Rescaled CIFAR-10 dataset contains substantially more natural textures and patterns than the MNIST Large Scale dataset, introduced in:
[3] Y. Jansson and T. Lindeberg (2022) "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales", Journal of Mathematical Imaging and Vision, 64(5): 506-536, https://doi.org/10.1007/s10851-022-01082-2
and is therefore significantly more challenging.
The Rescaled CIFAR-10 dataset is provided on the condition that you provide proper citation for the original CIFAR-10 dataset:
[4] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Tech. rep., University of Toronto.
and also for this new rescaled version, using the reference [1] above.
The data set is made available on request. If you would be interested in trying out this data set, please make a request in the system below, and we will grant you access as soon as possible.
The Rescaled CIFAR-10 dataset is generated by rescaling 32×32 RGB images of animals and vehicles from the original CIFAR-10 dataset [4]. The scale variations are up to a factor of 4. In order to have all test images have the same resolution, mirror extension is used to extend the images to size 64x64. The imresize() function in Matlab was used for the rescaling, with default anti-aliasing turned on, and bicubic interpolation overshoot removed by clipping to the [0, 255] range. The details of how the dataset was created can be found in [1].
There are 10 distinct classes in the dataset: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, “ship” and “truck”. In the dataset, these are represented by integer labels in the range [0, 9].
The dataset is split into 40 000 training samples, 10 000 validation samples and 10 000 testing samples. The training dataset is generated using the initial 40 000 samples from the original CIFAR-10 training set. The validation dataset, on the other hand, is formed from the final 10 000 image batch of that same training set. For testing, all test datasets are built from the 10 000 images contained in the original CIFAR-10 test set.
The training dataset file (~5.9 GB) for scale 1, which also contains the corresponding validation and test data for the same scale, is:
cifar10_with_scale_variations_tr40000_vl10000_te10000_outsize64-64_scte1p000_scte1p000.h5
Additionally, for the Rescaled CIFAR-10 dataset, there are 9 datasets (~1 GB each) for testing scale generalisation at scales not present in the training set. Each of these datasets is rescaled using a different image scaling factor, 2k/4, with k being integers in the range [-4, 4]:
cifar10_with_scale_variations_te10000_outsize64-64_scte0p500.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p595.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p707.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte0p841.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p000.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p189.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p414.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte1p682.h5
cifar10_with_scale_variations_te10000_outsize64-64_scte2p000.h5
These dataset files were used for the experiments presented in Figures 9, 10, 15, 16, 20 and 24 in [1].
The datasets are saved in HDF5 format, with the partitions in the respective h5 files named as
('/x_train', '/x_val', '/x_test', '/y_train', '/y_test', '/y_val'); which ones exist depends on which data split is used.
The training dataset can be loaded in Python as:
with h5py.File(`
x_train = np.array( f["/x_train"], dtype=np.float32)
x_val = np.array( f["/x_val"], dtype=np.float32)
x_test = np.array( f["/x_test"], dtype=np.float32)
y_train = np.array( f["/y_train"], dtype=np.int32)
y_val = np.array( f["/y_val"], dtype=np.int32)
y_test = np.array( f["/y_test"], dtype=np.int32)
We also need to permute the data, since Pytorch uses the format [num_samples, channels, width, height], while the data is saved as [num_samples, width, height, channels]:
x_train = np.transpose(x_train, (0, 3, 1, 2))
x_val = np.transpose(x_val, (0, 3, 1, 2))
x_test = np.transpose(x_test, (0, 3, 1, 2))
The test datasets can be loaded in Python as:
with h5py.File(`
x_test = np.array( f["/x_test"], dtype=np.float32)
y_test = np.array( f["/y_test"], dtype=np.int32)
The test datasets can be loaded in Matlab as:
x_test = h5read(`
The images are stored as [num_samples, x_dim, y_dim, channels] in HDF5 files. The pixel intensity values are not normalised, and are in a [0, 255] range.
Facebook
Twitterhttps://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html
A key characteristic of free-range chicken farming is to enable chickens to spend time outdoors. However, each chicken may use the available areas for roaming in variable ways. To check if, and how, broilers use their outdoor range at an individual level, we need to reliably characterise range use behaviour. Traditional methods relying on visual scans require significant time investment and only provide discontinuous information. Passive RFID (Radio Frequency Identification) systems enable tracking individually tagged chickens’ when they go through pop-holes; hence they only provide partial information on the movements of individual chickens. Here, we describe a new method to measure chickens’ range use and test its reliability on three ranges each containing a different breed. We used an active RFID system to localise chickens in their barn, or in one of nine zones of their range, every 30 seconds and assessed range-use behaviour in 600 chickens belonging to three breeds of slow- or medium-growing broilers used for outdoor production (all < 40g daily weight gain). From those real-time locations, we determined five measures to describe daily range use: time spent in the barn, number of outdoor accesses, number of zones visited in a day, gregariousness (an index that increases when birds spend time in zones where other birds are), and numbers of zone changes. Principal Component Analyses (PCAs) were performed on those measures, in each production system, to create two synthetic indicators of chickens’ range use behaviour. Our dataset includes the files needed to calibrate the system (supplementary materials), the data files used in the publication and the associated codes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 3 rows and is filtered where the book is Blizzard Range. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Range population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for South Range. The dataset can be utilized to understand the population distribution of South Range by age. For example, using this dataset, we can identify the largest age group in South Range.
Key observations
The largest age group in South Range, MI was for the group of age 55 to 59 years years with a population of 54 (10.61%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in South Range, MI was the Under 5 years years with a population of 9 (1.77%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Range Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Grass Range population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by age. For example, using this dataset, we can identify the largest age group in Grass Range.
Key observations
The largest age group in Grass Range, MT was for the group of age 70 to 74 years years with a population of 33 (29.73%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Grass Range, MT was the 20 to 24 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grass Range Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about stocks. It has 2 rows and is filtered where the company is Range Resources. It features 8 columns including stock name, company, exchange, and exchange symbol.