100+ datasets found
  1. f

    Data from: Importing General-Purpose Graphics in R

    • figshare.com
    • auckland.figshare.com
    application/gzip
    Updated Sep 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paul Murrell (2018). Importing General-Purpose Graphics in R [Dataset]. http://doi.org/10.17608/k6.auckland.7108736.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Sep 19, 2018
    Dataset provided by
    The University of Auckland
    Authors
    Paul Murrell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This report discusses some problems that can arise when attempting to import PostScript images into R, when the PostScript image contains coordinate transformations that skew the image. There is a description of some new features in the ‘grImport’ package for R that allow these sorts of images to be imported into R successfully.

  2. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  3. Data from: Optimized SMRT-UMI protocol produces highly accurate sequence...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Westfall; Mullins James (2023). Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies [Dataset]. http://doi.org/10.5061/dryad.w3r2280w0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    HIV Prevention Trials Networkhttp://www.hptn.org/
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    HIV Vaccine Trials Networkhttp://www.hvtn.org/
    PEPFAR
    Authors
    Dylan Westfall; Mullins James
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies. Methods This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies" Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005 For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub. The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub. The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results. Sequence_Analysis.Rmd has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd and Figures.Rmd. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program. To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper. Using Identifying_Recombinant_Reads.Rmd, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd. Figures.Rmd used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.

  4. Data Mining Project - Boston

    • kaggle.com
    Updated Nov 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SophieLiu (2019). Data Mining Project - Boston [Dataset]. https://www.kaggle.com/sliu65/data-mining-project-boston/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 25, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    SophieLiu
    Area covered
    Boston
    Description

    Context

    To make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.

    Use of Data Files

    You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:

    This loads the file into R

    df<-read.csv('uber.csv')

    The next codes is to subset the data into specific car types. The example below only has Uber 'Black' car types.

    df_black<-subset(uber_df, uber_df$name == 'Black')

    This next portion of code will be to load it into R. First, we must write this dataframe into a csv file on our computer in order to load it into R.

    write.csv(df_black, "nameofthefileyouwanttosaveas.csv")

    The file will appear in you working directory. If you are not familiar with your working directory. Run this code:

    getwd()

    The output will be the file path to your working directory. You will find the file you just created in that folder.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  5. d

    Data from: Data and code from: Environmental influences on drying rate of...

    • catalog.data.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data and code from: Environmental influences on drying rate of spray applied disinfestants from horticultural production services [Dataset]. https://catalog.data.gov/dataset/data-and-code-from-environmental-influences-on-drying-rate-of-spray-applied-disinfestants-
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    This dataset includes all the data and R code needed to reproduce the analyses in a forthcoming manuscript:Copes, W. E., Q. D. Read, and B. J. Smith. Environmental influences on drying rate of spray applied disinfestants from horticultural production services. PhytoFrontiers, DOI pending.Study description: Instructions for disinfestants typically specify a dose and a contact time to kill plant pathogens on production surfaces. A problem occurs when disinfestants are applied to large production areas where the evaporation rate is affected by weather conditions. The common contact time recommendation of 10 min may not be achieved under hot, sunny conditions that promote fast drying. This study is an investigation into how the evaporation rates of six commercial disinfestants vary when applied to six types of substrate materials under cool to hot and cloudy to sunny weather conditions. Initially, disinfestants with low surface tension spread out to provide 100% coverage and disinfestants with high surface tension beaded up to provide about 60% coverage when applied to hard smooth surfaces. Disinfestants applied to porous materials were quickly absorbed into the body of the material, such as wood and concrete. Even though disinfestants evaporated faster under hot sunny conditions than under cool cloudy conditions, coverage was reduced considerably in the first 2.5 min under most weather conditions and reduced to less than or equal to 50% coverage by 5 min. Dataset contents: This dataset includes R code to import the data and fit Bayesian statistical models using the model fitting software CmdStan, interfaced with R using the packages brms and cmdstanr. The models (one for 2022 and one for 2023) compare how quickly different spray-applied disinfestants dry, depending on what chemical was sprayed, what surface material it was sprayed onto, and what the weather conditions were at the time. Next, the statistical models are used to generate predictions and compare mean drying rates between the disinfestants, surface materials, and weather conditions. Finally, tables and figures are created. These files are included:Drying2022.csv: drying rate data for the 2022 experimental runWeather2022.csv: weather data for the 2022 experimental runDrying2023.csv: drying rate data for the 2023 experimental runWeather2023.csv: weather data for the 2023 experimental rundisinfestant_drying_analysis.Rmd: RMarkdown notebook with all data processing, analysis, and table creation codedisinfestant_drying_analysis.html: rendered output of notebookMS_figures.R: additional R code to create figures formatted for journal requirementsfit2022_discretetime_weather_solar.rds: fitted brms model object for 2022. This will allow users to reproduce the model prediction results without having to refit the model, which was originally fit on a high-performance computing clusterfit2023_discretetime_weather_solar.rds: fitted brms model object for 2023data_dictionary.xlsx: descriptions of each column in the CSV data files

  6. d

    Data from: Sap flow data from San Lorenzo, Panama (PA-SLZ), 2019

    • search.dataone.org
    • dataone.org
    • +3more
    Updated Oct 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandria Pivovaroff; Nate McDowell; Stuart Davies; Matteo Detto; Brett Wolfe; Joseph Wright; Alfonso Zambrano (2024). Sap flow data from San Lorenzo, Panama (PA-SLZ), 2019 [Dataset]. http://doi.org/10.15486/NGT/1678734
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    ESS-DIVE
    Authors
    Alexandria Pivovaroff; Nate McDowell; Stuart Davies; Matteo Detto; Brett Wolfe; Joseph Wright; Alfonso Zambrano
    Time period covered
    Jan 22, 2019 - Dec 31, 2019
    Area covered
    Description

    This data package contains sap flow data from the NGEE Tropics site in San Lorenzo, Panama (PA-SLZ) from 22 January 2019 to 31 December 2019. Sap flow measurements quantify plant-level transpiration, which varies across spatial and temporal scales. It is a key trait in understanding plant hydraulic functioning. Here sap flow was measured using ‘Granier-type’ thermal dissipation probes. Raw data downloaded from each data logger are in the 'Raw data' folder as CSV files, along with the Campbell data logger programs which can be read when opened with a text editor. The data was processed using the AquaFlux package in R. R code for preparing the data for use in AquaFlux is in the 'R code for pre-processing data folder'; it is saved as a text file that can be copy and pasted into R. The processed data for each data logger is in the 'Processed data' folder as CSV files. Documentation for the Granier sensors and AquaFlux package is in the ‘Manuals’ folder as PDF files. This dataset was originally published on the NGEE Tropics Archive and is being mirrored on ESS-DIVE for long-term archival Acknowledgement: Funding for NGEE-Tropics data resources was provided by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research.

  7. q

    Working with Datasets in R swirl

    • qubeshub.org
    Updated Jul 4, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caitlin Pries (2019). Working with Datasets in R swirl [Dataset]. http://doi.org/10.25334/Q4KF2V
    Explore at:
    Dataset updated
    Jul 4, 2019
    Dataset provided by
    QUBES
    Authors
    Caitlin Pries
    Description

    The goal of this lesson is to learn how to import datasets into R, understand variable types, make adjustments to variables, perform basic calculations, and begin data visualization. The exercise uses an over 100 year time series of climate data.

  8. Data from: Ecosystem-Level Determinants of Sustained Activity in Open-Source...

    • zenodo.org
    application/gzip, bin +2
    Updated Aug 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb (2024). Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem [Dataset]. http://doi.org/10.5281/zenodo.1419788
    Explore at:
    bin, application/gzip, zip, text/x-pythonAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb
    License

    https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html

    Description
    Replication pack, FSE2018 submission #164:
    ------------------------------------------
    
    **Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: 
    A Case Study of the PyPI Ecosystem
    
    **Note:** link to data artifacts is already included in the paper. 
    Link to the code will be included in the Camera Ready version as well.
    
    
    Content description
    ===================
    
    - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files 
     described below
    - **settings.py** - settings template for the code archive.
    - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset.
     This dataset only includes stats aggregated by the ecosystem (PyPI)
    - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level
     statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages
     themselves, which take around 2TB.
    - **build_model.r, helpers.r** - R files to process the survival data 
      (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, 
      `common.cache/survival_data.pypi_2008_2017-12_6.csv` in 
      **dataset_full_Jan_2018.tgz**)
    - **Interview protocol.pdf** - approximate protocol used for semistructured interviews.
    - LICENSE - text of GPL v3, under which this dataset is published
    - INSTALL.md - replication guide (~2 pages)
    Replication guide
    =================
    
    Step 0 - prerequisites
    ----------------------
    
    - Unix-compatible OS (Linux or OS X)
    - Python interpreter (2.7 was used; Python 3 compatibility is highly likely)
    - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible)
    
    Depending on detalization level (see Step 2 for more details):
    - up to 2Tb of disk space (see Step 2 detalization levels)
    - at least 16Gb of RAM (64 preferable)
    - few hours to few month of processing time
    
    Step 1 - software
    ----------------
    
    - unpack **ghd-0.1.0.zip**, or clone from gitlab:
    
       git clone https://gitlab.com/user2589/ghd.git
       git checkout 0.1.0
     
     `cd` into the extracted folder. 
     All commands below assume it as a current directory.
      
    - copy `settings.py` into the extracted folder. Edit the file:
      * set `DATASET_PATH` to some newly created folder path
      * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` 
    - install docker. For Ubuntu Linux, the command is 
      `sudo apt-get install docker-compose`
    - install libarchive and headers: `sudo apt-get install libarchive-dev`
    - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools`
     Without this dependency, you might get an error on the next step, 
     but it's safe to ignore.
    - install Python libraries: `pip install --user -r requirements.txt` . 
    - disable all APIs except GitHub (Bitbucket and Gitlab support were
     not yet implemented when this study was in progress): edit
     `scraper/init.py`, comment out everything except GitHub support
     in `PROVIDERS`.
    
    Step 2 - obtaining the dataset
    -----------------------------
    
    The ultimate goal of this step is to get output of the Python function 
    `common.utils.survival_data()` and save it into a CSV file:
    
      # copy and paste into a Python console
      from common import utils
      survival_data = utils.survival_data('pypi', '2008', smoothing=6)
      survival_data.to_csv('survival_data.csv')
    
    Since full replication will take several months, here are some ways to speedup
    the process:
    
    ####Option 2.a, difficulty level: easiest
    
    Just use the precomputed data. Step 1 is not necessary under this scenario.
    
    - extract **dataset_minimal_Jan_2018.zip**
    - get `survival_data.csv`, go to the next step
    
    ####Option 2.b, difficulty level: easy
    
    Use precomputed longitudinal feature values to build the final table.
    The whole process will take 15..30 minutes.
    
    - create a folder `
  9. d

    Data from: Reference transcriptomics of porcine peripheral immune cells...

    • datasets.ai
    • agdatacommons.nal.usda.gov
    • +2more
    45, 47, 57, 8
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture (2024). Data from: Reference transcriptomics of porcine peripheral immune cells created through bulk and single-cell RNA sequencing [Dataset]. https://datasets.ai/datasets/data-from-reference-transcriptomics-of-porcine-peripheral-immune-cells-created-through-bul-e667c
    Explore at:
    8, 45, 57, 47Available download formats
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Department of Agriculture
    Description

    This dataset contains files reconstructing single-cell data presented in 'Reference transcriptomics of porcine peripheral immune cells created through bulk and single-cell RNA sequencing' by Herrera-Uribe & Wiarda et al. 2021. Samples of peripheral blood mononuclear cells (PBMCs) were collected from seven pigs and processed for single-cell RNA sequencing (scRNA-seq) in order to provide a reference annotation of porcine immune cell transcriptomics at enhanced, single-cell resolution. Analysis of single-cell data allowed identification of 36 cell clusters that were further classified into 13 cell types, including monocytes, dendritic cells, B cells, antibody-secreting cells, numerous populations of T cells, NK cells, and erythrocytes. Files may be used to reconstruct the data as presented in the manuscript, allowing for individual query by other users. Scripts for original data analysis are available at https://github.com/USDA-FSEPRU/PorcinePBMCs_bulkRNAseq_scRNAseq. Raw data are available at https://www.ebi.ac.uk/ena/browser/view/PRJEB43826.

    Funding for this dataset was also provided by NRSP8: National Animal Genome Research Program (https://www.nimss.org/projects/view/mrp/outline/18464).


    Resources in this dataset:

    • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells 10X Format.

      File Name: PBMC7_AllCells.zip

      Resource Description: Zipped folder containing PBMC counts matrix, gene names, and cell IDs. Files are as follows:

      • matrix of gene counts* (matrix.mtx.gx)
      • gene names (features.tsv.gz)
      • cell IDs (barcodes.tsv.gz)

      *The ‘raw’ count matrix is actually gene counts obtained following ambient RNA removal. During ambient RNA removal, we specified to calculate non-integer count estimations, so most gene counts are actually non-integer values in this matrix but should still be treated as raw/unnormalized data that requires further normalization/transformation.

      Data can be read into R using the function Read10X().


    • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells Metadata.

      File Name: PBMC7_AllCells_meta.csv

      Resource Description: .csv file containing metadata for cells included in the final dataset. Metadata columns include:

      • nCount_RNA = the number of transcripts detected in a cell
      • nFeature_RNA = the number of genes detected in a cell
      • Loupe = cell barcodes; correspond to the cell IDs found in the .h5Seurat and 10X formatted objects for all cells
      • prcntMito = percent mitochondrial reads in a cell
      • Scrublet = doublet probability score assigned to a cell
      • seurat_clusters = cluster ID assigned to a cell
      • PaperIDs = sample ID for a cell
      • celltypes = cell type ID assigned to a cell

      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells PCA Coordinates.

        File Name: PBMC7_AllCells_PCAcoord.csv

        Resource Description: .csv file containing first 100 PCA coordinates for cells.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells t-SNE Coordinates.

        File Name: PBMC7_AllCells_tSNEcoord.csv

        Resource Description: .csv file containing t-SNE coordinates for all cells.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells UMAP Coordinates.

        File Name: PBMC7_AllCells_UMAPcoord.csv

        Resource Description: .csv file containing UMAP coordinates for all cells.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells t-SNE Coordinates.

        File Name: PBMC7_CD4only_tSNEcoord.csv

        Resource Description: .csv file containing t-SNE coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells UMAP Coordinates.

        File Name: PBMC7_CD4only_UMAPcoord.csv

        Resource Description: .csv file containing UMAP coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells UMAP Coordinates.

        File Name: PBMC7_GDonly_UMAPcoord.csv

        Resource Description: .csv file containing UMAP coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells t-SNE Coordinates.

        File Name: PBMC7_GDonly_tSNEcoord.csv

        Resource Description: .csv file containing t-SNE coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gene Annotation Information.

        File Name: UnfilteredGeneInfo.txt

        Resource Description: .txt file containing gene nomenclature information used to assign gene names in the dataset. 'Name' column corresponds to the name assigned to a feature in the dataset.


      • Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells H5Seurat.

        File Name: PBMC7.tar

        Resource Description: .h5Seurat object of all cells in PBMC dataset. File needs to be untarred, then read into R using function LoadH5Seurat().

  10. H

    Health and Retirement Study (HRS)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  11. NYC STEW-MAP Staten Island organizations' website hyperlink webscrape

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). NYC STEW-MAP Staten Island organizations' website hyperlink webscrape [Dataset]. https://catalog.data.gov/dataset/nyc-stew-map-staten-island-organizations-website-hyperlink-webscrape
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    Staten Island, New York
    Description

    The data represent web-scraping of hyperlinks from a selection of environmental stewardship organizations that were identified in the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017). There are two data sets: 1) the original scrape containing all hyperlinks within the websites and associated attribute values (see "README" file); 2) a cleaned and reduced dataset formatted for network analysis. For dataset 1: Organizations were selected from from the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017), a publicly available, spatial data set about environmental stewardship organizations working in New York City, USA (N = 719). To create a smaller and more manageable sample to analyze, all organizations that intersected (i.e., worked entirely within or overlapped) the NYC borough of Staten Island were selected for a geographically bounded sample. Only organizations with working websites and that the web scraper could access were retained for the study (n = 78). The websites were scraped between 09 and 17 June 2020 to a maximum search depth of ten using the snaWeb package (version 1.0.1, Stockton 2020) in the R computational language environment (R Core Team 2020). For dataset 2: The complete scrape results were cleaned, reduced, and formatted as a standard edge-array (node1, node2, edge attribute) for network analysis. See "READ ME" file for further details. References: R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Version 4.0.3. Stockton, T. (2020). snaWeb Package: An R package for finding and building social networks for a website, version 1.0.1. USDA Forest Service. (2017). Stewardship Mapping and Assessment Project (STEW-MAP). New York City Data Set. Available online at https://www.nrs.fs.fed.us/STEW-MAP/data/. This dataset is associated with the following publication: Sayles, J., R. Furey, and M. Ten Brink. How deep to dig: effects of web-scraping search depth on hyperlink network analysis of environmental stewardship organizations. Applied Network Science. Springer Nature, New York, NY, 7: 36, (2022).

  12. g

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • datasearch.gesis.org
    • openicpsr.org
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaplan, Jacob (2020). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Property Stolen and Recovered (Supplement to Return A) 1960-2017 [Dataset]. http://doi.org/10.3886/E105403V3
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    Kaplan, Jacob
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 3 release notes:Adds data in the following formats: Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 2 release notes:Adds data for 2017.Adds a "number_of_months_reported" variable which says how many months of the year the agency reported data.Property Stolen and Recovered is a Uniform Crime Reporting (UCR) Program data set with information on the number of offenses (crimes included are murder, rape, robbery, burglary, theft/larceny, and motor vehicle theft), the value of the offense, and subcategories of the offense (e.g. for robbery it is broken down into subcategories including highway robbery, bank robbery, gas station robbery). The majority of the data relates to theft. Theft is divided into subcategories of theft such as shoplifting, theft of bicycle, theft from building, and purse snatching. For a number of items stolen (e.g. money, jewelry and previous metals, guns), the value of property stolen and and the value for property recovered is provided. This data set is also referred to as the Supplement to Return A (Offenses Known and Reported). All the data was received directly from the FBI as text or .DTA files. I created a setup file based on the documentation provided by the FBI and read the data into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here: https://github.com/jacobkap/crime_data. The Word document file available for download is the guidebook the FBI provided with the raw data which I used to create the setup file to read in data.There may be inaccuracies in the data, particularly in the group of columns starting with "auto." To reduce (but certainly not eliminate) data errors, I replaced the following values with NA for the group of columns beginning with "offenses" or "auto" as they are common data entry error values (e.g. are larger than the agency's population, are much larger than other crimes or months in same agency): 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99942. This cleaning was NOT done on the columns starting with "value."For every numeric column I replaced negative indicator values (e.g. "j" for -1) with the negative number they are supposed to be. These negative number indicators are not included in the FBI's codebook for this data but are present in the data. I used the values in the FBI's codebook for the Offenses Known and Clearances by Arrest data.To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. If an agency has used a different FIPS code in the past, check to make sure the FIPS code is the same as in this data.

  13. H

    Consumer Expenditure Survey (CE)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Consumer Expenditure Survey (CE) [Dataset]. http://doi.org/10.7910/DVN/UTNJAH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the consumer expenditure survey (ce) with r the consumer expenditure survey (ce) is the primo data source to understand how americans spend money. participating households keep a running diary about every little purchase over the year. those diaries are then summed up into precise expenditure categories. how else are you gonna know that the average american household spent $34 (±2) on bacon, $826 (±17) on cellular phones, and $13 (±2) on digital e-readers in 2011? an integral component of the market basket calculation in the consumer price index, this survey recently became available as public-use microdata and they're slowly releasing historical files back to 1996. hooray! for a t aste of what's possible with ce data, look at the quick tables listed on their main page - these tables contain approximately a bazillion different expenditure categories broken down by demographic groups. guess what? i just learned that americans living in households with $5,000 to $9,999 of annual income spent an average of $283 (±90) on pets, toys, hobbies, and playground equipment (pdf page 3). you can often get close to your statistic of interest from these web tables. but say you wanted to look at domestic pet expenditure among only households with children between 12 and 17 years old. another one of the thirteen web tables - the consumer unit composition table - shows a few different breakouts of households with kids, but none matching that exact population of interest. the bureau of labor statistics (bls) (the survey's designers) and the census bureau (the survey's administrators) have provided plenty of the major statistics and breakouts for you, but they're not psychic. if you want to comb through this data for specific expenditure categories broken out by a you-defined segment of the united states' population, then let a little r into your life. fun starts now. fair warning: only analyze t he consumer expenditure survey if you are nerd to the core. the microdata ship with two different survey types (interview and diary), each containing five or six quarterly table formats that need to be stacked, merged, and manipulated prior to a methodologically-correct analysis. the scripts in this repository contain examples to prepare 'em all, just be advised that magnificent data like this will never be no-assembly-required. the folks at bls have posted an excellent summary of what's av ailable - read it before anything else. after that, read the getting started guide. don't skim. a few of the descriptions below refer to sas programs provided by the bureau of labor statistics. you'll find these in the C:\My Directory\CES\2011\docs directory after you run the download program. this new github repository contains three scripts: 2010-2011 - download all microdata.R lo op through every year and download every file hosted on the bls's ce ftp site import each of the comma-separated value files into r with read.csv depending on user-settings, save each table as an r data file (.rda) or stat a-readable file (.dta) 2011 fmly intrvw - analysis examples.R load the r data files (.rda) necessary to create the 'fmly' table shown in the ce macros program documentation.doc file construct that 'fmly' table, using five quarters of interviews (q1 2011 thru q1 2012) initiate a replicate-weighted survey design object perform some lovely li'l analysis examples replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using unimputed variables replicate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t -tests using unimputed variables create an rsqlite database (to minimize ram usage) containing the five imputed variable files, after identifying which variables were imputed based on pdf page 3 of the user's guide to income imputation initiate a replicate-weighted, database-backed, multiply-imputed survey design object perform a few additional analyses that highlight the modified syntax required for multiply-imputed survey designs replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using imputed variables repl icate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t-tests using imputed variables replicate the %proc_reg() and %proc_logistic() macros found in "ce macros.sas" and provide some examples of regressions and logistic regressions using both unimputed and imputed variables replicate integrated mean and se.R match each step in the bls-provided sas program "integr ated mean and se.sas" but with r instead of sas create an rsqlite database when the expenditure table gets too large for older computers to handle in ram export a table "2011 integrated mean and se.csv" that exactly matches the contents of the sas-produced "2011 integrated mean and se.lst" text file click here to view these three scripts for...

  14. Z

    RailEnV-PASMVS: a dataset for multi-view stereopsis training and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Petrus Johannes Gräbe (2024). RailEnV-PASMVS: a dataset for multi-view stereopsis training and reconstruction applications [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5202742
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    Petrus Johannes Gräbe
    André Broekman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A Perfectly Accurate, Synthetic dataset featuring a virtual railway EnVironment for Multi-View Stereopsis (RailEnV-PASMVS) is presented, consisting of 40 scenes and 79,800 renderings together with ground truth depth maps, extrinsic and intrinsic camera parameters and binary segmentation masks of all the track components and surrounding environment. Every scene is rendered from a set of 3 cameras, each positioned relative to the track for optimal 3D reconstruction of the rail profile. The set of cameras is translated across the 100-meter length of tangent (straight) track to yield a total of 1,995 camera views. Photorealistic lighting of each of the 40 scenes is achieved with the implementation of high-definition, high dynamic range (HDR) environmental textures. Additional variation is introduced in the form of camera focal lengths, random noise for the camera location and rotation parameters and shader modifications of the rail profile. Representative track geometry data is used to generate random and unique vertical alignment data for the rail profile for every scene. This primary, synthetic dataset is augmented by a smaller image collection consisting of 320 manually annotated photographs for improved segmentation performance. The specular rail profile represents the most challenging component for MVS reconstruction algorithms, pipelines and neural network architectures, increasing the ambiguity and complexity of the data distribution. RailEnV-PASMVS represents an application specific dataset for railway engineering, against the backdrop of existing datasets available in the field of computer vision, providing the precision required for novel research applications in the field of transportation engineering.

    File descriptions

    RailEnV-PASMVS.blend (227 Mb) - Blender file (developed using Blender version 2.8.1) used to generate the dataset. The Blender file packs only one of the HDR environmental textures to use as an example, along with all the other asset textures.

    RailEnV-PASMVS_sample.png (28 Mb) - A visual collage of 30 scenes, illustrating the variability introduced by using different models, illumination, material properties and camera focal lengths.

    geometry.zip (2 Mb) - Geometry CSV files used for scenes 01 to 20. The Bezier curve defines the geometry of the rail profile (10 mm intervals).

    PhysicalDataset.7z (2.0 Gb) - A smaller, secondary dataset of 320 manually annotated photographs of railway environments; only the railway profiles are annotated.

    01.7z-20.7z (2.0 Gb each) - Archive of each scene (01 through 20).

    all_list.txt, training_list.txt, validation_list.txt - Text files containing the all the scene names, together with those used for validation (validation_list.txt) and training (training_list.txt), used by MVSNet

    index.csv - CSV file provides a convenient reference for all the sample files, linking the corresponding file and relative data path.

    NOTE: Only 20 of the original 40 scenes are made available owing to size limitations of the data repository. This is still adequate for the purposes of training MVS neural networks. The Blender file is made available specifically to render out the scenes for different applications or adapt the camera framework altogether for different applications. Please refer to the corresponding manuscript for additional details.

    Steps to reproduce

    The open source Blender software suite (https://www.blender.org/) was used to generate the dataset, with the entire pipeline developed using the exposed Python API interface. The camera trajectory is kept fixed for all 40 scenes, except for small perturbations introduced in the form of random noise to increase the camera variation. The camera intrinsic information was initially exported as a single CSV file (scene.csv) for every scene, from which the camera information files were generated; this includes the focal length (focalLengthmm), image sensor dimensions (pixelDimensionX, pixelDimensionY), position, coordinate vector (vectC) and rotation vector (vectR). The STL model files, as provided in this data repository, were exported directly from Blender, such that the geometry/scenes can be reproduced. The data processing below is written for a Python implementation, transforming the information from Blender's coordinate system into universal rotation (R_world2cv) and translation (T_world2cv) matrices.

    import numpy as np from scipy.spatial.transform import Rotation as R

    The intrinsic matrix K is constructed using the following formulation:

    focalLengthPixel = focalLengthmm x pixelDimensionX / sensorWidthmm K = [[focalLengthPixel, 0, dimX/2], [0, focalPixel, dimY/2], [0, 0, 1]]

    The rotation vector as provided by Blender was first transformed to a rotation matrix:

    r = R.from_euler('xyz', vectR, degrees=True) matR = r.as_matrix()

    Transpose the rotation matrix, to find matrix from the WORLD to BLENDER coordinate system:

    R_world2bcam = np.transpose(matR)

    The matrix describing the transformation from BLENDER to CV/STANDARD coordinates is:

    R_bcam2cv = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])

    Thus the representation from WORLD to CV/STANDARD coordinates is:

    R_world2cv = R_bcam2cv.dot(R_world2bcam)

    The camera coordinate vector requires a similar transformation moving from BLENDER to WORLD coordinates:

    T_world2bcam = -1 * R_world2bcam.dot(vectC) T_world2cv = R_bcam2cv.dot(T_world2bcam)

    The resulting R_world2cv and T_world2cv matrices are written to the camera information file using exactly the same format as that of BlendedMVS developed by Dr. Yao. The original rotation and translation information can be found by following the process in reverse. Note that additional steps were required to convert from Blender's unique coordinate system to that of OpenCV; this ensures universal compatibility in the way that the camera intrinsic and extrinsic information is provided.

    Equivalent GPS information is provided (gps.csv), whereby the local coordinate frame is transformed into equivalent GPS information, centered around the Engineering 4.0 campus, University of Pretoria, South Africa. This information is embedded within the JPG files as EXIF data.

  15. g

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • datasearch.gesis.org
    • openicpsr.org
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaplan, Jacob (2020). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Property Stolen and Recovered (Supplement to Return A) 1960-2018 [Dataset]. http://doi.org/10.3886/E105403
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    Kaplan, Jacob
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 4 release notes:Adds data for 2018Version 3 release notes:Adds data in the following formats: Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 2 release notes:Adds data for 2017.Adds a "number_of_months_reported" variable which says how many months of the year the agency reported data.Property Stolen and Recovered is a Uniform Crime Reporting (UCR) Program data set with information on the number of offenses (crimes included are murder, rape, robbery, burglary, theft/larceny, and motor vehicle theft), the value of the offense, and subcategories of the offense (e.g. for robbery it is broken down into subcategories including highway robbery, bank robbery, gas station robbery). The majority of the data relates to theft. Theft is divided into subcategories of theft such as shoplifting, theft of bicycle, theft from building, and purse snatching. For a number of items stolen (e.g. money, jewelry and previous metals, guns), the value of property stolen and and the value for property recovered is provided. This data set is also referred to as the Supplement to Return A (Offenses Known and Reported). All the data was received directly from the FBI as text or .DTA files. I created a setup file based on the documentation provided by the FBI and read the data into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here: https://github.com/jacobkap/crime_data. The Word document file available for download is the guidebook the FBI provided with the raw data which I used to create the setup file to read in data.There may be inaccuracies in the data, particularly in the group of columns starting with "auto." To reduce (but certainly not eliminate) data errors, I replaced the following values with NA for the group of columns beginning with "offenses" or "auto" as they are common data entry error values (e.g. are larger than the agency's population, are much larger than other crimes or months in same agency): 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99942. This cleaning was NOT done on the columns starting with "value."For every numeric column I replaced negative indicator values (e.g. "j" for -1) with the negative number they are supposed to be. These negative number indicators are not included in the FBI's codebook for this data but are present in the data. I used the values in the FBI's codebook for the Offenses Known and Clearances by Arrest data.To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. If an agency has used a different FIPS code in the past, check to make sure the FIPS code is the same as in this data.

  16. p

    data_neo.Rdata

    • psycharchives.org
    Updated Dec 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). data_neo.Rdata [Dataset]. https://psycharchives.org/handle/20.500.12034/4717
    Explore at:
    Dataset updated
    Dec 20, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R is a very powerful language for statistical computing in many disciplines of research and has a steep learning curve. The software is open source, freely available and has a thriving community. This crash course provides an overview of Base-R concepts for beginners and covers the topics 1) introduction into R, 2) reading, saving, and viewing data, 3) selecting and changing objects in R, and 4) descriptive statistics.This course was held by Lisa Spitzer on September 3, 2021, as a precursor to the R tidyverse Workshop by Aurélien Ginolhac and Roland Krause (September 8 - 10, 2021). This entry features the slides, exercises/results, and chat messages of the crash course. Related to this entry are the recordings of the course, and the r tidyverse workshop materials. Click on "related PsychArchives objects" to view or download the recordings of the workshop.:

  17. o

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • openicpsr.org
    Updated May 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan (2018). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Hate Crime Data 1991-2020 [Dataset]. http://doi.org/10.3886/E103500V8
    Explore at:
    Dataset updated
    May 18, 2018
    Dataset provided by
    University of Pennsylvania
    Authors
    Jacob Kaplan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1991 - 2020
    Area covered
    United States
    Description

    !!!WARNING~~~This dataset has a large number of flaws and is unable to properly answer many questions that people generally use it to answer, such as whether national hate crimes are changing (or at least they use the data so improperly that they get the wrong answer). A large number of people using this data (academics, advocates, reporting, US Congress) do so inappropriately and get the wrong answer to their questions as a result. Indeed, many published papers using this data should be retracted. Before using this data I highly recommend that you thoroughly read my book on UCR data, particularly the chapter on hate crimes (https://ucrbook.com/hate-crimes.html) as well as the FBI's own manual on this data. The questions you could potentially answer well are relatively narrow and generally exclude any causal relationships. ~~~WARNING!!!For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 8 release notes:Adds 2019 and 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will be the last UCR hate crime data they release. Changes .rda file to .rds.Version 7 release notes:Changes release notes description, does not change data.Version 6 release notes:Adds 2018 dataVersion 5 release notes:Adds data in the following formats: SPSS, SAS, and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Adds data for 1991.Fixes bug where bias motivation "anti-lesbian, gay, bisexual, or transgender, mixed group (lgbt)" was labeled "anti-homosexual (gay and lesbian)" prior to 2013 causing there to be two columns and zero values for years with the wrong label.All data is now directly from the FBI, not NACJD. The data initially comes as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. Version 4 release notes: Adds data for 2017.Adds rows that submitted a zero-report (i.e. that agency reported no hate crimes in the year). This is for all years 1992-2017. Made changes to categorical variables (e.g. bias motivation columns) to make categories consistent over time. Different years had slightly different names (e.g. 'anti-am indian' and 'anti-american indian') which I made consistent. Made the 'population' column which is the total population in that agency. Version 3 release notes: Adds data for 2016.Order rows by year (descending) and ORI.Version 2 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The Hate Crime data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains information about hate crimes reported in the United States. Please note that the files are quite large and may take some time to open.Each row indicates a hate crime incident for an agency in a given year. I have made a unique ID column ("unique_id") by combining the year, agency ORI9 (the 9 character Originating Identifier code), and incident number columns together. Each column is a variable related to that incident or to the reporting agency. Some of the important columns are the incident date, what crime occurred (up to 10 crimes), the number of victims for each of these crimes, the bias motivation for each of these crimes, and the location of each crime. It also includes the total number of victims, total number of offenders, and race of offenders (as a group). Finally, it has a number of columns indicating if the victim for each offense was a certain type of victim or not (e.g. individual victim, business victim religious victim, etc.). The only changes I made to the data are the following. Minor changes to column names to make all column names 32 characters or fewer (so it can be saved in a Stata format), made all character values lower case, reordered columns. I also generated incident month, weekday, and month-day variables from the incident date variable included in the original data.

  18. WoSIS snapshot - December 2023

    • search.dataone.org
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ISRIC – World Soil Information (2025). WoSIS snapshot - December 2023 [Dataset]. https://search.dataone.org/view/sha256%3Aae94fefb74f928a3d482eee20abf33cf04d988555ef2beef2977eba7d5504bd7
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    International Soil Reference and Information Centre
    Time period covered
    Jan 1, 1918 - Dec 1, 2022
    Area covered
    Description

    ABSTRACT: The World Soil Information Service (WoSIS) provides quality-assessed and standardized soil profile data to support digital soil mapping and environmental applications at broad scale levels. Since the release of the ‘WoSIS snapshot 2019’ many new soil data were shared with us, registered in the ISRIC data repository, and subsequently standardized in accordance with the licenses specified by the data providers. The source data were contributed by a wide range of data providers, therefore special attention was paid to the standardization of soil property definitions, soil analytical procedures and soil property values (and units of measurement). We presently consider the following soil chemical properties (organic carbon, total carbon, total carbonate equivalent, total Nitrogen, Phosphorus (extractable-P, total-P, and P-retention), soil pH, cation exchange capacity, and electrical conductivity) and physical properties (soil texture (sand, silt, and clay), bulk density, coarse fragments, and water retention), grouped according to analytical procedures (aggregates) that are operationally comparable. For each profile we provide the original soil classification (FAO, WRB, USDA, and version) and horizon designations as far as these have been specified in the source databases. Three measures for 'fitness-for-intended-use' are provided: positional uncertainty (for site locations), time of sampling/description, and a first approximation for the uncertainty associated with the operationally defined analytical methods. These measures should be considered during digital soil mapping and subsequent earth system modelling that use the present set of soil data. DATA SET DESCRIPTION: The 'WoSIS 2023 snapshot' comprises data for 228k profiles from 217k geo-referenced sites that originate from 174 countries. The profiles represent over 900k soil layers (or horizons) and over 6 million records. The actual number of measurements for each property varies (greatly) between profiles and with depth, this generally depending on the objectives of the initial soil sampling programmes. The data are provided in TSV (tab separated values) format and as GeoPackage. The zip-file (446 Mb) contains the following files: - Readme_WoSIS_202312_v2.pdf: Provides a short description of the dataset, file structure, column names, units and category values (this file is also available directly under 'online resources'). The pdf includes links to tutorials for downloading the TSV files into R respectively Excel. See also 'HOW TO READ TSV FILES INTO R AND PYTHON' in the next section. - wosis_202312_observations.tsv: This file lists the four to six letter codes for each observation, whether the observation is for a site/profile or layer (horizon), the unit of measurement and the number of profiles respectively layers represented in the snapshot. It also provides an estimate for the inferred accuracy for the laboratory measurements. - wosis_202312_sites.tsv: This file characterizes the site location where profiles were sampled. - wosis_2023112_profiles: Presents the unique profile ID (i.e. primary key), site_id, source of the data, country ISO code and name, positional uncertainty, latitude and longitude (WGS 1984), maximum depth of soil described and sampled, as well as information on the soil classification system and edition. Depending on the soil classification system used, the number of fields will vary . - wosis_202312_layers: This file characterises the layers (or horizons) per profile, and lists their upper and lower depths (cm). - wosis_202312_xxxx.tsv : This type of file presents results for each observation (e.g. “xxxx” = “BDFIOD” ), as defined under “code” in file wosis_202312_observation.tsv. (e.g. wosis_202311_bdfiod.tsv). - wosis_202312.gpkg: Contains the above datafiles in GeoPackage format (which stores the files within an SQLite database). HOW TO READ TSV FILES INTO R AND PYTHON: A) To read the data in R, please uncompress the ZIP file and specify the uncompressed folder. setwd("/YourFolder/WoSIS_2023_December/") ## For example: setwd('D:/WoSIS_2023_December/') Then use read_tsv to read the TSV files, specifying the data types for each column (c = character, i = integer, n = number, d = double, l = logical, f = factor, D = date, T = date time, t = time). observations = readr::read_tsv('wosis_202312_observations.tsv', col_types='cccciid') observations ## show columns and first 10 rows sites = readr::read_tsv('wosis_202312_sites.tsv', col_types='iddcccc') sites profiles = readr::read_tsv('wosis_202312_profiles.tsv', col_types='icciccddcccccciccccicccci') profiles layers = readr::read_tsv('wosis_202312_layers.tsv', col_types='iiciciiilcc') layers ## Do this for each observation 'XXXX', e.g. file 'Wosis_202312_orgc.tsv': orgc = readr::read_tsv('wosis_202312_orgc.tsv', col_types='... Visit https://dataone.org/datasets/sha256%3Aae94fefb74f928a3d482eee20abf33cf04d988555ef2beef2977eba7d5504bd7 for complete metadata about this dataset.

  19. State IO Two-Region Economic Input-Output Models for 50 U.S. States...

    • catalog.data.gov
    Updated Aug 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2023). State IO Two-Region Economic Input-Output Models for 50 U.S. States 2012-2017 [Dataset]. https://catalog.data.gov/dataset/state-io-two-region-economic-input-output-models-for-50-u-s-states-2012-2017
    Explore at:
    Dataset updated
    Aug 31, 2023
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    United States
    Description

    These are economic models in Make and Use formats with variations of one and two-region versions where the one region is just a U.S. state of interest (SoI) and the two-region version include both the SoI and Rest of the U.S. (RoUS). Inudstry and Commodity output vectors are also provided. Models are available representing annual totals for each year for each state from 2012 to 2017. Variations for "Domestic" forms of models are available. See the associated publication, also available without fees in PubMed, for details. These models were created with stateior v0.1.0 (https://github.com/USEPA/stateior/releases/tag/0.1.0). and can be used in that R software. See https://github.com/USEPA/stateior/tree/0.1.0 for usage details. The provided data link reveals many R Data Format (.RDS) files that can be read into R, along with metadata files in JSON format that provide information on provenance of the data. File names corresponded with the definitions in the associated data dictionary (for two-region files) and the associated supporting link (for one-region files). Other files are precursors to the one and two-region models with data that are used in the model building process and can be read into R. All model files corresponding to the associated publication have the the text "0.1.0" in the filename, for example "Census_StateExport_2013_0.1.0.rds". Each file contains all states for the year in the file name with a year is included. This dataset is associated with the following publication: Li, M., J. Ferreira, C.D. Court, D. Meyer, M. Li, and W.W. Ingwersen. StateIO - Open Source Economic Input-Output Models for the 50 States of the United States of America. International Regional Science Review. SAGE Publications, THOUSAND OAKS, CA, USA, 46(4): 428-481, (2023).

  20. n

    Data from: Generalizable EHR-R-REDCap pipeline for a national...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated Jan 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller (2022). Generalizable EHR-R-REDCap pipeline for a national multi-institutional rare tumor patient registry [Dataset]. http://doi.org/10.5061/dryad.rjdfn2zcm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2022
    Dataset provided by
    Massachusetts General Hospital
    Harvard Medical School
    Authors
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Objective: To develop a clinical informatics pipeline designed to capture large-scale structured EHR data for a national patient registry.

    Materials and Methods: The EHR-R-REDCap pipeline is implemented using R-statistical software to remap and import structured EHR data into the REDCap-based multi-institutional Merkel Cell Carcinoma (MCC) Patient Registry using an adaptable data dictionary.

    Results: Clinical laboratory data were extracted from EPIC Clarity across several participating institutions. Labs were transformed, remapped and imported into the MCC registry using the EHR labs abstraction (eLAB) pipeline. Forty-nine clinical tests encompassing 482,450 results were imported into the registry for 1,109 enrolled MCC patients. Data-quality assessment revealed highly accurate, valid labs. Univariate modeling was performed for labs at baseline on overall survival (N=176) using this clinical informatics pipeline.

    Conclusion: We demonstrate feasibility of the facile eLAB workflow. EHR data is successfully transformed, and bulk-loaded/imported into a REDCap-based national registry to execute real-world data analysis and interoperability.

    Methods eLAB Development and Source Code (R statistical software):

    eLAB is written in R (version 4.0.3), and utilizes the following packages for processing: DescTools, REDCapR, reshape2, splitstackshape, readxl, survival, survminer, and tidyverse. Source code for eLAB can be downloaded directly (https://github.com/TheMillerLab/eLAB).

    eLAB reformats EHR data abstracted for an identified population of patients (e.g. medical record numbers (MRN)/name list) under an Institutional Review Board (IRB)-approved protocol. The MCCPR does not host MRNs/names and eLAB converts these to MCCPR assigned record identification numbers (record_id) before import for de-identification.

    Functions were written to remap EHR bulk lab data pulls/queries from several sources including Clarity/Crystal reports or institutional EDW including Research Patient Data Registry (RPDR) at MGB. The input, a csv/delimited file of labs for user-defined patients, may vary. Thus, users may need to adapt the initial data wrangling script based on the data input format. However, the downstream transformation, code-lab lookup tables, outcomes analysis, and LOINC remapping are standard for use with the provided REDCap Data Dictionary, DataDictionary_eLAB.csv. The available R-markdown ((https://github.com/TheMillerLab/eLAB) provides suggestions and instructions on where or when upfront script modifications may be necessary to accommodate input variability.

    The eLAB pipeline takes several inputs. For example, the input for use with the ‘ehr_format(dt)’ single-line command is non-tabular data assigned as R object ‘dt’ with 4 columns: 1) Patient Name (MRN), 2) Collection Date, 3) Collection Time, and 4) Lab Results wherein several lab panels are in one data frame cell. A mock dataset in this ‘untidy-format’ is provided for demonstration purposes (https://github.com/TheMillerLab/eLAB).

    Bulk lab data pulls often result in subtypes of the same lab. For example, potassium labs are reported as “Potassium,” “Potassium-External,” “Potassium(POC),” “Potassium,whole-bld,” “Potassium-Level-External,” “Potassium,venous,” and “Potassium-whole-bld/plasma.” eLAB utilizes a key-value lookup table with ~300 lab subtypes for remapping labs to the Data Dictionary (DD) code. eLAB reformats/accepts only those lab units pre-defined by the registry DD. The lab lookup table is provided for direct use or may be re-configured/updated to meet end-user specifications. eLAB is designed to remap, transform, and filter/adjust value units of semi-structured/structured bulk laboratory values data pulls from the EHR to align with the pre-defined code of the DD.

    Data Dictionary (DD)

    EHR clinical laboratory data is captured in REDCap using the ‘Labs’ repeating instrument (Supplemental Figures 1-2). The DD is provided for use by researchers at REDCap-participating institutions and is optimized to accommodate the same lab-type captured more than once on the same day for the same patient. The instrument captures 35 clinical lab types. The DD serves several major purposes in the eLAB pipeline. First, it defines every lab type of interest and associated lab unit of interest with a set field/variable name. It also restricts/defines the type of data allowed for entry for each data field, such as a string or numerics. The DD is uploaded into REDCap by every participating site/collaborator and ensures each site collects and codes the data the same way. Automation pipelines, such as eLAB, are designed to remap/clean and reformat data/units utilizing key-value look-up tables that filter and select only the labs/units of interest. eLAB ensures the data pulled from the EHR contains the correct unit and format pre-configured by the DD. The use of the same DD at every participating site ensures that the data field code, format, and relationships in the database are uniform across each site to allow for the simple aggregation of the multi-site data. For example, since every site in the MCCPR uses the same DD, aggregation is efficient and different site csv files are simply combined.

    Study Cohort

    This study was approved by the MGB IRB. Search of the EHR was performed to identify patients diagnosed with MCC between 1975-2021 (N=1,109) for inclusion in the MCCPR. Subjects diagnosed with primary cutaneous MCC between 2016-2019 (N= 176) were included in the test cohort for exploratory studies of lab result associations with overall survival (OS) using eLAB.

    Statistical Analysis

    OS is defined as the time from date of MCC diagnosis to date of death. Data was censored at the date of the last follow-up visit if no death event occurred. Univariable Cox proportional hazard modeling was performed among all lab predictors. Due to the hypothesis-generating nature of the work, p-values were exploratory and Bonferroni corrections were not applied.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Paul Murrell (2018). Importing General-Purpose Graphics in R [Dataset]. http://doi.org/10.17608/k6.auckland.7108736.v1

Data from: Importing General-Purpose Graphics in R

Related Article
Explore at:
application/gzipAvailable download formats
Dataset updated
Sep 19, 2018
Dataset provided by
The University of Auckland
Authors
Paul Murrell
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This report discusses some problems that can arise when attempting to import PostScript images into R, when the PostScript image contains coordinate transformations that skew the image. There is a description of some new features in the ‘grImport’ package for R that allow these sorts of images to be imported into R successfully.

Search
Clear search
Close search
Google apps
Main menu