Interagency Wildland Fire PerimetersOverviewThis national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2023 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimetersFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServer
Interagency Wildland Fire PerimetersOverviewThis national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2023 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimetersFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServer
Reason for SelectionHardbottom provides an anchor for important seafloor habitats such as deep-sea corals, plants, and sponges. Hardbottom is also sometimes associated with chemosynthetic communities that form around cold seeps or hydrothermal vents. In these unique ecosystems, micro-organisms that convert chemicals into energy form the base of complex food webs (Love et al. 2013). Hardbottom and associated species provide important habitat structure for many fish and invertebrates (NOAA 2018). Hardbottom areas serve as fish nursery, spawning, and foraging grounds, supporting commercially valuable fisheries like snapper and grouper (NCDEQ 2016).According to Dunn and Halpin (2009), “hardbottom habitats support high levels of biodiversity and are frequently used as a surrogate for it in marine spatial planning.” Artificial reefs arealso known to provide additional habitat that is quickly colonized to provide a suite of ecosystem services commonly associated with naturally occurring hardbottom (Wu et al. 2019). We did not include active oil and gas structures as human-created hardbottom. Although they provide habitat, because of their temporary nature, risk of contamination, and contributions to climate change, they do not have the same level of conservation value as other artificial structures.Input DataSoutheast Blueprint 2024 extentSoutheast Blueprint 2024 subregionsCoral & hardbottomusSEABED Gulf of America sediments, accessed 12-14-2023; download the data; view and read more about the data on the National Oceanic and Atmospheric Administration (NOAA) Gulf of Mexico Atlas (select Physical --> Marine geology --> 1. Dominant bottom types and habitats)Bureau of Ocean Energy Management (BOEM) Gulf of America, seismic water bottom anomalies, accessed 12-20-2023The Nature Conservancy’s (TNC)South Atlantic Bight Marine Assessment(SABMA); chapter 3 ofthe final reportprovides more detail on the seafloor habitats analysisNOAA deep-sea coral and sponge locations, accessed 12-20-2023 on theNOAA Deep-Sea Coral & Sponge Map PortalFlorida coral and hardbottom habitats, accessed 12-19-2023Shipwrecks & artificial reefsNOAA wrecks and obstructions layer, accessed 12-12-2023 on theMarine CadastreLouisiana Department of Wildlife and Fisheries (LDWF) Artificial Reefs: Inshore Artificial Reefs, Nearshore Artificial Reefs, Offshore and Deepwater Artificial Reefs (Google Earth/KML files), accessed 12-19-2023Texas Parks and Wildlife Department (TPWD) Artificial Reefs, accessed 12-19-2023; download the data fromThe Artificial Reefs Interactive Mapping Application(direct download from interactive mapping application)Mississippi Department of Marine Resources (MDMR) Artificial Reef Bureau: Inshore Reefs, Offshore Reefs, Rigs to Reef (lat/long coordinates), accessed 12-19-2023Alabama Department of Conservation and Natural Resources (ADCNR) Artificial Reefs: Master Alabama Public Reefs v2023 (.xls), accessed 12-19-2023Florida Fish and Wildlife Conservation Commission (FWC):Artificial Reefs in Florida(.xlsx), accessed 12-19-2023Defining inland extent & split with AtlanticMarine Ecoregions Level III from the Commission for Environmental Cooperation North American Environmental Atlas, accessed 12-8-20212023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024National Oceanic and Atmospheric Administration (NOAA)Characterizing Spatial Distributions of Deep-sea Corals and Hardbottom Habitats in the U.S. Southeast Atlantic;read the final report; data shared prior to official release on 2-4-2022 by Matt Poti with the NOAA National Centers for Coastal Ocean Science (NCCOS) (matthew.poti@noaa.gov)Predictive Modeling and Mapping of Hardbottom Seafloor Habitats off the Southeast U.S: unpublished NOAA data anddraft final report entitled Assessment of Benthic Habitats for Fisheries Managementprovided on 1-28-2021 by Matt Poti with NOAA NCCOS (matthew.poti@noaa.gov)Mapping StepsNote: Most of the mapping steps were accomplished using the graphical modeler in QGIS 3.34. Individual models were created to combine data sources and assign ranked values. These models were combined in a single model to assemble all the data sources and create a summary raster.Create a seamless vector layer to constrain the extent of the Atlantic coral and hardbottom indicator to marine and estuarine areas <1 m in elevation. This defines how far inland it extends.Merge together all coastal relief model rasters (.nc format) using the create virtual raster tool in QGIS.Save the merged raster to .tif format and import it into ArcPro.Reclassify the NOAA coastal relief model data to assign a value of 1 to areas from deep marine to 1 m elevation. Assign all other areas (land) a value of 0.Convert the raster produced above to vector using the raster to polygon tool.Clip to the 2024 Blueprint subregions using the pairwise clip tool.Hand-edit to remove terrestrial polygons (one large terrestrial polygon and the Delmarva peninsula).Dissolve the resulting data layer to produce a seamless polygon defining marine and estuarine areas <1 m in elevation.Hand-edit to select all but the main marine polygon and delete.Define the extent of the Gulf version of this indicator to separate it from the Atlantic. This split reflects the extent of the different datasets available to represent coral and hardbottom habitat in the Atlantic and Gulf, rather than a meaningful ecological transition.Use the select tool to select the Florida Keys class from the Level III marine ecoregions (“NAME_L3 = "Florida Keys"“).Buffer the “Florida Keys” Level III marine ecoregion by 2 km to extend it far enough inland to intersect the inland edge of the <1 m elevation layer.Reclassify the two NOAA Atlantic hardbottom suitability datasets to give all non-NoData pixels a value of 0. Combine the reclassified hardbottom suitability datasets to define the total extent of these data. Convert the raster extent to vector and dissolve to create a polygon representing the extent of both NOAA hardbottom datasets.Union the buffered ecoregion with the combined NOAA extent polygon created above. Add a field and use it to dissolve the unioned polygons into one polygon. This leaves some holes inside the polygon, so use the eliminate polygon part tool to fill in those holes, then convert the polygon to a line.Hand-edit to extract the resulting line between the Gulf and Atlantic.Hand-edit to use this line to split the <1 m elevation layer created earlier in the mapping steps to create the separation between the Gulf and Atlantic extent.From the BOEM seismic water bottom anomaly data, extract the following shapefiles: anomaly_confirmed_relic_patchreefs.shp, anomaly_Cretaceous.shp, anomaly_relic_patchreefs.shp, seep_anomaly_confirmed_buried_carbonate.shp, seep_anomaly_confirmed_carbonate.shp, seep_anomaly_confirmed_organisms.shp, seep_anomaly_positives.shp, seep_anomaly_positives_confirmed_gas.shp, seep_anomaly_positives_confirmed_oil.shp, seep_anomaly_positives_possible_oil.shp, seep_anomaly_confirmed_corals.shp, seep_anomaly_confirmed_hydrate.shp.To create a class of confirmed BOEM features, merge anomaly_confirmed_relic_patchreefs.shp, seep_anomaly_confirmed_organisms.shp, seep_anomaly_confirmed_corals.shp, and seep_anomaly_confirmed_hydrate.shp and assign a value of 6.To create a class of predicted BOEM features, merge the remaining extracted shapefiles and assign a value of 3.From usSEABED sediments data, use the field “gom_domnc” to extract polygons: rock (dominant and subdominant) receives a value of 2 and gravel (dominant and subdominant) receives a value of 1.From the wrecks database, extract locations having “high” and “medium” confidence (positionQuality = “high” and positionQuality = “medium”). Buffer these locations by 150 m and assign a value of 4. The buffer distance used here, and later for coral locations, follows guidance from the Army Corps of Engineers for setbacks around artificial reefs and fish havens (Riley et al. 2021).Merge artificial reef point locations from FL, AL, MS and TX. Buffer these locations by 150 m. Merge this file with the three LA artificial reef polygons and assign a value of 5.From the NOAA deep-sea coral and sponge point locations, select all points. Buffer the point locations by 150 m and assign a value of 7.From the FWC coral and hardbottom dataset polygon locations, fix geometries, reproject to EPSG=5070, then assign coral reefs a value of 7, hardbottom a value of 6, hardbottom with seagrass a value of 6, and probable hardbottom a value of 3. Hand-edit to remove an erroneous hardbottom polygon off of Matagorda Island, TX, resulting from a mistake by Sheridan and Caldwell (2002) when they digitized a DOI sediment map. This error is documented on page 6 of the Gulf of Mexico Fishery Management Council’s5-Year Review of the Final Generic Amendment Number 3.From the TNC SABMA data, fix geometries and reproject to EPSG=5070, then select all polygons with TEXT_DESC = "01. mapped hard bottom area" and assign a value of 6.Union all of the above vector datasets together—except the vector for class 6 that combines the SABMA and FL data—and assign final indicator values. Class 6 had to be handled separately due to some unexpected GIS processing issues. For overlapping polygons, this value will represent the maximum value at a given location.Clip the unioned polygon dataset to the buffered marine subregions.Convert both the unioned polygon dataset and the separate vector layer for class 6 using GDAL “rasterize”.Fill NoData cells in both rasters with zeroes and, using Extract by Mask, mask the resulting raster with the Gulf indicator extent. Adding zero values helps users better understand the extent of this indicator and to make this indicator layer perform better in online tools.Use the raster calculator to evaluate the maximum value among
The Administrative boundaries at level 2 dataset are part of the Global Administrative Areas (GADM) 3.6 vector dataset series which includes distinct datasets representing administrative boundaries for all countries in the world. The Administrative level 2 distinguishes Countries, Districts and equivalent. GADM makes use of high spatial resolution images and an extensive set of attributes to map administrative areas at all levels of political sub-division. Information on administrative units associated attributes includes official names in Latin and non-Latin scripts, variant names, administrative type in local and English. Please read the GADM 3.6 - Global Administrative Areas dataset series metadata for more information.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Interagency Wildland Fire PerimetersOverviewThis national fire history perimeter data layer of conglomerated agency perimeters was developed in support of the WFDSS application and wildfire decision support. The layer encompasses the fire perimeter datasets of the USDA Forest Service, US Department of Interior Bureau of Land Management, Bureau of Indian Affairs, Fish and Wildlife Service, and National Park Service, the Alaska Interagency Fire Center, CalFire, and WFIGS History. Perimeters are included thru the 2023 fire season. Requirements for fire perimeter inclusion, such as minimum acreage requirements, are set by the contributing agencies. WFIGS, NPS and CALFIRE data now include Prescribed Burns. Data InputSeveral data sources were used in the development of this layer, links are provided where possible below. In addition, many agencies are now using WFIGS as their authoritative source, beginning in mid-2020.Alaska fire history USDA FS Regional Fire History Data BLM Fire Planning and Fuels National Park Service - Includes Prescribed Burns Fish and Wildlife ServiceBureau of Indian AffairsCalFire FRAS - Includes Prescribed BurnsWFIGS - BLM & BIA and other S&LData LimitationsFire perimeter data are often collected at the local level, and fire management agencies have differing guidelines for submitting fire perimeter data. Often data are collected by agencies only once annually. If you do not see your fire perimeters in this layer, they were not present in the sources used to create the layer at the time the data were submitted. A companion service for perimeters entered into the WFDSS application is also available, if a perimeter is found in the WFDSS service that is missing in this Agency Authoritative service or a perimeter is missing in both services, please contact the appropriate agency Fire GIS Contact listed in the table below.AttributesThis dataset implements the NWCG Wildland Fire Perimeters (polygon) data standard.https://www.nwcg.gov/sites/default/files/stds/WildlandFirePerimeters_definition.pdfIRWINID - Primary key for linking to the IRWIN Incident dataset. The origin of this GUID is the wildland fire locations point data layer. (This unique identifier may NOT replace the GeometryID core attribute)INCIDENT - The name assigned to an incident; assigned by responsible land management unit. (IRWIN required). Officially recorded name.FIRE_YEAR (Alias) - Calendar year in which the fire started. Example: 2013. Value is of type integer (FIRE_YEAR_INT).AGENCY - Agency assigned for this fire - should be based on jurisdiction at origin.SOURCE - System/agency source of record from which the perimeter came.DATE_CUR - The last edit, update, or other valid date of this GIS Record. Example: mm/dd/yyyy.MAP_METHOD - Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality.GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; Digitized-Topo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; OtherGIS_ACRES - GIS calculated acres within the fire perimeter. Not adjusted for unburned areas within the fire perimeter. Total should include 1 decimal place. (ArcGIS: Precision=10; Scale=1). Example: 23.9UNQE_FIRE_ - Unique fire identifier is the Year-Unit Identifier-Local Incident Identifier (yyyy-SSXXX-xxxxxx). SS = State Code or International Code, XXX or XXXX = A code assigned to an organizational unit, xxxxx = Alphanumeric with hyphens or periods. The unit identifier portion corresponds to the POINT OF ORIGIN RESPONSIBLE AGENCY UNIT IDENTIFIER (POOResonsibleUnit) from the responsible unit’s corresponding fire report. Example: 2013-CORMP-000001LOCAL_NUM - Local incident identifier (dispatch number). A number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year. Field is string to allow for leading zeros when the local incident identifier is less than 6 characters. (IRWIN required). Example: 123456.UNIT_ID - NWCG Unit Identifier of landowner/jurisdictional agency unit at the point of origin of a fire. (NFIRS ID should be used only when no NWCG Unit Identifier exists). Example: CORMPCOMMENTS - Additional information describing the feature. Free Text.FEATURE_CA - Type of wildland fire polygon: Wildfire (represents final fire perimeter or last daily fire perimeter available) or Prescribed Fire or UnknownGEO_ID - Primary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature. Globally Unique Identifier (GUID).Cross-Walk from sources (GeoID) and other processing notesAK: GEOID = OBJECT ID of provided file geodatabase (4580 Records thru 2021), other federal sources for AK data removed. CA: GEOID = OBJECT ID of downloaded file geodatabase (12776 Records, federal fires removed, includes RX)FWS: GEOID = OBJECTID of service download combined history 2005-2021 (2052 Records). Handful of WFIGS (11) fires added that were not in FWS record.BIA: GEOID = "FireID" 2017/2018 data (416 records) provided or WFDSS PID (415 records). An additional 917 fires from WFIGS were added, GEOID=GLOBALID in source.NPS: GEOID = EVENT ID (IRWINID or FRM_ID from FOD), 29,943 records includes RX.BLM: GEOID = GUID from BLM FPER and GLOBALID from WFIGS. Date Current = best available modify_date, create_date, fire_cntrl_dt or fire_dscvr_dt to reduce the number of 9999 entries in FireYear. Source FPER (25,389 features), WFIGS (5357 features)USFS: GEOID=GLOBALID in source, 46,574 features. Also fixed Date Current to best available date from perimeterdatetime, revdate, discoverydatetime, dbsourcedate to reduce number of 1899 entries in FireYear.Relevant Websites and ReferencesAlaska Fire Service: https://afs.ak.blm.gov/CALFIRE: https://frap.fire.ca.gov/mapping/gis-dataBIA - data prior to 2017 from WFDSS, 2017-2018 Agency Provided, 2019 and after WFIGSBLM: https://gis.blm.gov/arcgis/rest/services/fire/BLM_Natl_FirePerimeter/MapServerNPS: New data set provided from NPS Fire & Aviation GIS. cross checked against WFIGS for any missing perimetersFWS -https://services.arcgis.com/QVENGdaPbd4LUkLV/arcgis/rest/services/USFWS_Wildfire_History_gdb/FeatureServerUSFS - https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_FireOccurrenceAndPerimeter_01/MapServer