4 datasets found
  1. R code

    • figshare.com
    txt
    Updated Jun 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christine Dodge (2017). R code [Dataset]. http://doi.org/10.6084/m9.figshare.5021297.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Christine Dodge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R code used for each data set to perform negative binomial regression, calculate overdispersion statistic, generate summary statistics, remove outliers

  2. f

    Data from: Error and anomaly detection for intra-participant time-series...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David R. Mullineaux; Gareth Irwin (2023). Error and anomaly detection for intra-participant time-series data [Dataset]. http://doi.org/10.6084/m9.figshare.5189002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    David R. Mullineaux; Gareth Irwin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.

  3. Z

    Identification of Performance Changes at Code Level (Measurement...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Aug 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous for Reviewing (2022). Identification of Performance Changes at Code Level (Measurement Configuration Dataset) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6300863
    Explore at:
    Dataset updated
    Aug 8, 2022
    Dataset authored and provided by
    Anonymous for Reviewing
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Measurement Configuration Dataset

    This is the anonymous reviewing version; the source code repository will be added after the review.

    This dataset provides reproduction data for performance measurement configuration at source code level in Java. The measurement data can be obtained using the precision-experiments repository https://anonymous.4open.science/r/precision-experiments-C613/ (Examining Different Repetition Counts) yourself. These data conatained here are the data we obtained from execution on i7-4770 CPU @ 3.40GHz.

    The analysis was tested on Ubuntu 20.04 and gnuplot 5.2.8. It will not work with older gnuplot versions.

    To execute the analysis, extract the data by

    tar -xvf basic-parameter-comparison.tar tar -xvf parallel-sequential-comparison.tar

    and afterwards build the precision-experiments repo and execute the analysis by

    cd precision-experiments/precision-analysis/ ../gradlew fatJar cd scripts/configuration-analysis/ ./executeCompleteAnalysis.sh ../../../../basic-parameter-comparison ../../../../parallel-sequential-comparison

    Afterwards, the following files will be present:

    precision-experiments/precision-analysis/scripts/configuration-analysis/repetitionHeatmaps/heatmap_all_en.pdf (Heatmaps for different repetition counts)

    precision-experiments/precision-analysis/scripts/configuration-analysis/repetitionHeatmaps/heatmap_outlierRemoval_en.pdf (Heatmap with and without outlier removal for 1000 repetitions)

    precision-experiments/precision-analysis/scripts/configuration-analysis/histogram_outliers_en.pdf (Histogram of the outliers)

    precision-experiments/precision-analysis/scripts/configuration-analysis/heatmap_parallel_en.pdf (Heatmap with sequential and parallel execution)

  4. f

    DataSheet1_Use ggbreak to Effectively Utilize Plotting Space to Deal With...

    • frontiersin.figshare.com
    pdf
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuangbin Xu; Meijun Chen; Tingze Feng; Li Zhan; Lang Zhou; Guangchuang Yu (2023). DataSheet1_Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers.PDF [Dataset]. http://doi.org/10.3389/fgene.2021.774846.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Shuangbin Xu; Meijun Chen; Tingze Feng; Li Zhan; Lang Zhou; Guangchuang Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    With the rapid increase of large-scale datasets, biomedical data visualization is facing challenges. The data may be large, have different orders of magnitude, contain extreme values, and the data distribution is not clear. Here we present an R package ggbreak that allows users to create broken axes using ggplot2 syntax. It can effectively use the plotting area to deal with large datasets (especially for long sequential data), data with different magnitudes, and contain outliers. The ggbreak package increases the available visual space for a better presentation of the data and detailed annotation, thus improves our ability to interpret the data. The ggbreak package is fully compatible with ggplot2 and it is easy to superpose additional layers and applies scale and theme to adjust the plot using the ggplot2 syntax. The ggbreak package is open-source software released under the Artistic-2.0 license, and it is freely available on CRAN (https://CRAN.R-project.org/package=ggbreak) and Github (https://github.com/YuLab-SMU/ggbreak).

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Christine Dodge (2017). R code [Dataset]. http://doi.org/10.6084/m9.figshare.5021297.v1
Organization logo

R code

Explore at:
txtAvailable download formats
Dataset updated
Jun 5, 2017
Dataset provided by
Figsharehttp://figshare.com/
Authors
Christine Dodge
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

R code used for each data set to perform negative binomial regression, calculate overdispersion statistic, generate summary statistics, remove outliers

Search
Clear search
Close search
Google apps
Main menu