Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
https://www.icpsr.umich.edu/web/ICPSR/studies/38649/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38649/terms
This dataset contains county-level totals for the years 2002-2014 for eight types of crime: murder, rape, robbery, aggravated assault, burglary, larceny, motor vehicle theft, and arson. These crimes are classed as Part I criminal offenses by the United States Federal Bureau of Investigations (FBI) in their Uniform Crime Reporting (UCR) program. Each record in the dataset represents the total of each type of criminal offense reported in (or, in the case of missing data, attributed to) the county in a given year.
https://brightdata.com/licensehttps://brightdata.com/license
Gain critical insights into crime trends, risk assessment, and public safety with our comprehensive Crime Dataset. Designed for law enforcement agencies, researchers, and analysts, this dataset provides structured and reliable crime data to support investigations, policy-making, and crime prevention strategies.
Dataset Features
Crime Reports: Access detailed records of reported crimes, including incident type, date, time, and location. Law Enforcement Data: Extract information on arrests, case statuses, and law enforcement responses. Geospatial Crime Mapping: Analyze crime distribution across different regions, cities, and neighborhoods. Trends & Patterns: Identify crime trends over time, including seasonal fluctuations and high-risk areas. Demographic Insights: Understand crime demographics, including offender and victim profiles.
Customizable Subsets for Specific Needs Our Crime Dataset is fully customizable, allowing you to filter data based on crime type, location, time period, or law enforcement jurisdiction. Whether you need broad coverage for national crime analysis or focused data for local risk assessment, we tailor the dataset to your needs.
Popular Use Cases
Crime Risk Assessment & Prevention: Identify high-crime areas, assess risk factors, and develop crime prevention strategies. Law Enforcement & Investigations: Support law enforcement agencies with structured crime data for case analysis and intelligence gathering. Urban Planning & Public Safety: Use crime data to inform city planning, improve public safety measures, and allocate resources effectively. AI & Predictive Analytics: Train AI models for crime forecasting, anomaly detection, and predictive policing. Policy & Legal Research: Analyze crime trends to support policy-making, legal studies, and criminal justice reforms.
Whether you're analyzing crime trends, supporting law enforcement, or developing predictive models, our Crime Dataset provides the structured data you need. Get started today and customize your dataset to fit your research and security objectives.
Crime isn't a topic most people want to use mental energy to think about. We want to avoid harm, protect our loved ones, and hold on to what we claim is ours. So how do we remain vigilant without digging too deep into the filth that is crime? Data, of course. The focus of our study is to explore possible trends between crime and communities in the city of Calgary. Our purpose is visualize Calgary criminal behaviour in order to help increase awareness for both citizens and law enforcement. Through the use of our visuals, individuals can make more informed decisions to improve the overall safety of their lives. Some of the main concerns of the study include: how crime rates increase with population, which areas in Calgary have the most crime, and if crime adheres to time-sensative patterns.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Suburb-based crime statistics for crimes against the person and crimes against property. The Crime statistics datasets contain all offences against the person and property that were reported to police in that respective financial year. The Family and Domestic Abuse-related offences datasets are a subset of this, in that a separate file is presented for these offences that were flagged as being of a family and domestic abuse nature for that financial year. Consequently the two files for the same financial year must not be added together.
https://www.icpsr.umich.edu/web/ICPSR/studies/38483/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38483/terms
The primary purpose of the second wave of the National Neighborhood Crime Study (NNCS2) was to develop a panel dataset of serious reported crimes in urban neighborhoods circa two time points - 2000 and 2010. These data offer the opportunity to assess the sources and consequences of neighborhood crime change for "communities" of different ethno-racial and economic compositions across the United States. The study also sought to examine the role of a neighborhood's broader ecology on crime levels and crime change by integrating indicators of city and/or metropolitan conditions. The NNCS2 includes two datasets. The first dataset, the NNCS2-Panel file (NNCS2-P), contains information on the Federal Bureau of Investigation's (FBI) Part 1 Index crimes (except arson), socioeconomic and demographic characteristics, and a variety of other neighborhood and city level controls for circa 2000 and 2010 for tracts in 81 of the 91 cities in the NNCS, wave 1. The second dataset, the NNCS2-Cross-Sectional file (NNCS2-CS), allows for examination of the local and contextual sources of neighborhood crime inequality circa 2010. The NNCS2-CS incorporates parallel data for census tracts and cities as in the Panel file, but includes a few additional cities for which panel data could not be compiled, as well information on the metropolitan areas within which cities are located.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Introduction: The dataset used for this experiment is real and authentic. The dataset is acquired from UCI machine learning repository website [13]. The title of the dataset is ‘Crime and Communities’. It is prepared using real data from socio-economic data from 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crimedata from the 1995 FBI UCR [13]. This dataset contains a total number of 147 attributes and 2216 instances.
The per capita crimes variables were calculated using population values included in the 1995 FBI data (which differ from the 1990 Census values).
The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units. The crime attributes (N=18) that could be predicted are the 8 crimes considered 'Index Crimes' by the FBI)(Murders, Rape, Robbery, .... ), per capita (actually per 100,000 population) versions of each, and Per Capita Violent Crimes and Per Capita Nonviolent Crimes)
predictive variables : 125 non-predictive variables : 4 potential goal/response variables : 18
http://archive.ics.uci.edu/ml/datasets/Communities%20and%20Crime%20Unnormalized
U. S. Department of Commerce, Bureau of the Census, Census Of Population And Housing 1990 United States: Summary Tape File 1a & 3a (Computer Files),
U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)
U.S. Department of Justice, Bureau of Justice Statistics, Law Enforcement Management And Administrative Statistics (Computer File) U.S. Department Of Commerce, Bureau Of The Census Producer, Washington, DC and Inter-university Consortium for Political and Social Research Ann Arbor, Michigan. (1992)
U.S. Department of Justice, Federal Bureau of Investigation, Crime in the United States (Computer File) (1995)
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Data available in the dataset may not act as a complete source of information for identifying factors that contribute to more violent and non-violent crimes as many relevant factors may still be missing.
However, I would like to try and answer the following questions answered.
Analyze if number of vacant and occupied houses and the period of time the houses were vacant had contributed to any significant change in violent and non-violent crime rates in communities
How has unemployment changed crime rate(violent and non-violent) in the communities?
Were people from a particular age group more vulnerable to crime?
Does ethnicity play a role in crime rate?
Has education played a role in bringing down the crime rate?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Visit the interactive Crime Mapping Tool and prepare your own tailored crime report showing the latest maps, graphs and data on crimes, victims and offenders in NSW LGAs, suburbs or postcodes.
*Note: prior to June 2021 there were three additional crime tools available providing data for Local Government Areas on crime trends, crimes by premises and LGA crime rankings. These tools are no longer supported; this information is available in the Crime Mapping Tool.
This dataset reflects reported incidents of crime that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.
The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. Any use of the information for commercial purposes is strictly prohibited. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily.
Incident-based crime statistics (actual incidents, rate per 100,000 population, percentage change in rate, unfounded incidents, percent unfounded, total cleared, cleared by charge, cleared otherwise, persons charged, adults charged, youth charged / not charged), by detailed violations (violent, property, traffic, drugs, other Federal Statutes), police services in Ontario, 1998 to 2024.
Crime report data is provided for Louisville Metro Police Divisions only; crime data does not include smaller class cities.The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on Crimemapping.comData Dictionary:INCIDENT_NUMBER - the number associated with either the incident or used as reference to store the items in our evidence roomsDATE_REPORTED - the date the incident was reported to LMPDDATE_OCCURED - the date the incident actually occurredUOR_DESC - Uniform Offense Reporting code for the criminal act committedCRIME_TYPE - the crime type categoryNIBRS_CODE - the code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewUCR_HIERARCHY - hierarchy that follows the guidelines of the FBI Uniform Crime Reporting. For more details visit https://ucr.fbi.gov/ATT_COMP - Status indicating whether the incident was an attempted crime or a completed crime.LMPD_DIVISION - the LMPD division in which the incident actually occurredLMPD_BEAT - the LMPD beat in which the incident actually occurredPREMISE_TYPE - the type of location in which the incident occurred (e.g. Restaurant)BLOCK_ADDRESS - the location the incident occurredCITY - the city associated to the incident block locationZIP_CODE - the zip code associated to the incident block locationID - Unique identifier for internal databaseContact:Crime Information CenterCrimeInfoCenterDL@louisvilleky.gov
Ranking of each LGA in NSW based on the rate for selected offences. Rankings are available for the most recent 5 years of data. Ranking of each LGA in NSW based on the rate for selected offences. Rankings are available for the most recent 5 years of data.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
In 2023, the violent crime rate in the United States was 363.8 cases per 100,000 of the population. Even though the violent crime rate has been decreasing since 1990, the United States tops the ranking of countries with the most prisoners. In addition, due to the FBI's transition to a new crime reporting system in which law enforcement agencies voluntarily submit crime reports, data may not accurately reflect the total number of crimes committed in recent years. Reported violent crime rate in the United States The United States Federal Bureau of Investigation tracks the rate of reported violent crimes per 100,000 U.S. inhabitants. In the timeline above, rates are shown starting in 1990. The rate of reported violent crime has fallen since a high of 758.20 reported crimes in 1991 to a low of 363.6 reported violent crimes in 2014. In 2023, there were around 1.22 million violent crimes reported to the FBI in the United States. This number can be compared to the total number of property crimes, roughly 6.41 million that year. Of violent crimes in 2023, aggravated assaults were the most common offenses in the United States, while homicide offenses were the least common. Law enforcement officers and crime clearance Though the violent crime rate was down in 2013, the number of law enforcement officers also fell. Between 2005 and 2009, the number of law enforcement officers in the United States rose from around 673,100 to 708,800. However, since 2009, the number of officers fell to a low of 626,900 officers in 2013. The number of law enforcement officers has since grown, reaching 720,652 in 2023. In 2023, the crime clearance rate in the U.S. was highest for murder and non-negligent manslaughter charges, with around 57.8 percent of murders being solved by investigators and a suspect being charged with the crime. Additionally, roughly 46.1 percent of aggravated assaults were cleared in that year. A statistics report on violent crime in the U.S. can be found here.
https://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license
The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on communitycrimemap.comData Dictionary:Field NameField DescriptionIncident Numberthe number associated with either the incident or used as reference to store the items in our evidence roomsDate Reportedthe date the incident was reported to LMPDDate Occurredthe date the incident actually occurredBadge IDBadge ID of responding OfficerOffense ClassificationNIBRS Reporting category for the criminal act committedOffense Code NameNIBRS Reporting code for the criminal act committedNIBRS_CODEthe code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewNIBRS Grouphierarchy that follows the guidelines of the FBI National Incident Based Reporting SystemWas Offense CompletedStatus indicating whether the incident was an attempted crime or a completed crime.LMPD Divisionthe LMPD division in which the incident actually occurredLMPD Beatthe LMPD beat in which the incident actually occurredLocation Categorythe type of location in which the incident occurred (e.g. Restaurant)Block Addressthe location the incident occurredCitythe city associated to the incident block locationZip Codethe zip code associated to the incident block locationContact:LMPD Open Records lmpdopenrecords@louisvilleky.gov
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://bit.ly/rk5Tpc.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quarterly recorded crime reports and datasets
The quarterly recorded crime reports are available from 2004 and annually from 1997. They contains statistics and graphs relating to the 62 offences BOCSAR reports on, with trends rates and ratios for LGAs and Statistical Areas.
The datasets are produced quarterly for all of NSW and broken down by LGA, postcode and suburb for the 62 offences. The data includes incident counts by month from 1995
These data are part of NACJD's Fast Track Release and are distributed as they there received from the data depositor. The files have been zipped by NACJD for release, but not checked or processed except of the removal of direct identifiers. Users should refer to the accompany readme file for a brief description of the files available with this collections and consult the investigator(s) if further information is needed. This study was a systematic assessment of the impacts of foreclosures and crime levels on each other, using sophisticated spatial analysis methods, informed by qualitative research on the topic. Using data on foreclosures and crime in District of Columbia and Miami-Dade County, Florida from 2003 to 2011, this study considered the effects of the two phenomena on each other through a dynamic systems approach.
By City of Chicago [source]
This dataset is a compilation of reported crimes that have taken place in the City of Chicago over the past year, and provides an invaluable insight into the criminal activity occurring within our city. Featuring more than 65,000 records of data, it contains information on the date of each incident, its location (down to the block level), type of crime committed (determined by FBI Crime Classification Codes) and whether or not an arrest has been made in connection with each crime. As this dataset reveals detailed information on crime incidents which may lead to personal identification, addresses are masked beyond block level and specific locations are not disclosed.
For additional questions regarding this dataset, please do not hesitate to reach out to The Research & Development Division at 312.745.6071 or RandDchicagopolice.com who will be more than happy to help answer any inquiries you may have about our data findings! All visualized maps should be considered approximate however—it is prohibited for any attempts to derive specific addresses from them as accuracy cannot be guaranteed with regards to mechanical or human error when collecting this data over time. So come join us as we explore a year's worth of criminal activities throughout Chicago!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This guide will provide an overview on how to use this dataset to analyze patterns or draw conclusions about crime incidents in and around Chicago.
Secondly, become familiar with columns names which appear at top most row of your opened file which helps you understand what kind of data is stored at each column such as - CASE# - Unique identifier for the crime incident., DATE OF OCCURRENCE - Date when crime incident occurred , BLOCK - Block where event took place , LOCATION DESCRIPTION- Description of location where incident happened . Through these columns name you can easily recognize what kind of data exists within that record/row. That’s why it’s important to get familiar with them first before diving into raw datasets because they’ll help make exploring and understanding large sets easier later on when we go further into illustrating charts & graphs using programs such as Tableau & Power BI or even spreadsheets (Excel). After understanding column names its time to explore further by digging deeper into each record/row and apply filters if required e.g below $100 value will show only those rows having value less than 100 thus it will filter entire dataset according to your requirement. Lastly analyse collected datasets either Visually through plotting graphs with help tableau software OR By using Mathematical mathematical equations based on research questions such as finding out average values after applying sum/avg functions from respective cells etc
- Creating a visualization mapping tool to help visualize the types of crimes and their locations over time within Chicago.
- An analysis tool for city officials or police departments so they can understand correlations between crime type, geography, and other factors like weather changes or economic downturns in order to develop long-term plans for crime prevention.
- Developing an AI model that would be able to predict what areas may be more vulnerable for certain types of crimes or even predict crimes ahead of time based on the data from this dataset
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: crimes-one-year-prior-to-present-1.csv | Column name | Description | |:-------------------------|:------------------------------------------------------------------------------| | CASE# | Unique identifier for each crime incident (String) | | BLOCK | Block where the crime incident occurred (String) | | LOCATION DESCRIPTION | Description of where an incident took place (String) | | ARREST | Indicates if an arrest was made in connection with a crime incident (Boolean) | | DOMESTIC | Indicates if a reported incident is domestic related (Boolean) | | BEAT ...
Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.