4 datasets found
  1. Grandpa Golf

    • kaggle.com
    zip
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FletcherKennamer (2023). Grandpa Golf [Dataset]. https://www.kaggle.com/datasets/fletcherkennamer/grandpa-golf
    Explore at:
    zip(5860 bytes)Available download formats
    Dataset updated
    Sep 12, 2023
    Authors
    FletcherKennamer
    Description

    My Grandpa asked if the programs I was using could calculate his Golf League’s handicaps, so I decided to play around with SQL and Google Sheets to see if I could functionally recreate what they were doing.

    The goal is to calculate a player’s handicap, which is the average of the last six months of their scores minus 29. The average is calculated based on how many games they have actually played in the last six months, and the number of scores averaged correlates to total games. For example, Clem played over 20 games so his handicap will be calculated with the maximum possible scores accounted for, that being 8. Schomo only played six games, so the lowest 4 will be used for their average. Handicap is always calculated with the lowest available scores.

    This league uses Excel, so upon receiving the data I converted it into a CSV and uploaded it into bigQuery.

    First thing I did was change column names to best represent what they were and simplify things in the code. It is much easier to remember ‘someone_scores’ than ‘int64_field_number’. It also seemed to confuse SQL less, as int64 can mean something independently. (ALTER TABLE grandpa-golf.grandpas_golf_35.should only need the one RENAME COLUMN int64_field_4 TO schomo_scores;)

    To Find the average of Clem’s scores: SELECT AVG(clem_scores) FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 8; RESULT: 43.1

    Remembering that handicap is the average minus 29, the final computation looks like: SELECT AVG(clem_scores) - 29 FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 8; RESULT: 14.1

    Find the average of Schomo’s scores: SELECT AVG(schomo_scores) - 29 FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 6; RESULT: 10.5

    This data was already automated to calculate a handicap in the league’s excel spreadsheet, so I asked for more data to see if i could recreate those functions.

    Grandpa provided the past three years of league data. The names were all replaced with generic “Golfer 001, Golfer 002, etc”. I had planned on converting this Excel sheet into a CSV and manipulating it in SQL like with the smaller sample, but this did not work.

    Immediately, there were problems. I had initially tried to just convert the file into a CSV and drop it into SQL, but there were functions that did not transfer properly from what was functionally the PDF I had been emailed. So instead of working with SQL, I decided to pull this into google sheets and recreate the functions for this spreadsheet. We only need the most recent 6 months of scores to calculate our handicap, so once I made a working copy I deleted the data from before this time period. Once that was cleaned up, I started working on a function that would pull the working average from these values, which is still determined by how many total values there were. This correlates as follows: for 20 or more scores average the lowest 8, for 15 to 19 scores average the lowest 6, for 6 to 14 scores average the lowest 4 and for 6 or fewer scores average the lowest 2. We also need to ensure that an average value of 0 returns a value of 0 so our handicap calculator works. My formula ended up being:

    =IF(COUNT(E2:AT2)>=20, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&8)))), IF(COUNT(E2:AT2)>=15, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&6)))), IF(COUNT(E2:AT2)>=6, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&4)))), IF(COUNT(E2:AT2)>=1, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&2)))), IF(COUNT(E2:AT2)=0, 0, "")))))

    The handicap is just this value minus 29, so for the handicap column the script is relatively simple: =IF(D2=0,0,IF(D2>47,18,D2-29)) This ensures that we will not get a negative value for our handicap, and pulls the basic average from the right place. It also sets the handicap to zero if there are no scores present.

    Now that we have our spreadsheet back in working order with our new scripts, we are functionally done. We have recreated what my Grandpa’s league uses to generate handicaps.

  2. f

    Independent Data Aggregation, Quality Control and Visualization of...

    • datasetcatalog.nlm.nih.gov
    Updated Oct 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ly, Chun; Knott, Cheryl; McCleary, Jill; Castiello-Gutiérrez, Santiago (2020). Independent Data Aggregation, Quality Control and Visualization of University of Arizona COVID-19 Re-Entry Testing Data [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000484783
    Explore at:
    Dataset updated
    Oct 21, 2020
    Authors
    Ly, Chun; Knott, Cheryl; McCleary, Jill; Castiello-Gutiérrez, Santiago
    Description

    AbstractThe dataset provided here contains the efforts of independent data aggregation, quality control, and visualization of the University of Arizona (UofA) COVID-19 testing programs for the 2019 novel Coronavirus pandemic. The dataset is provided in the form of machine-readable tables in comma-separated value (.csv) and Microsoft Excel (.xlsx) formats.Additional InformationAs part of the UofA response to the 2019-20 Coronavirus pandemic, testing was conducted on students, staff, and faculty prior to start of the academic year and throughout the school year. These testings were done at the UofA Campus Health Center and through their instance program called "Test All Test Smart" (TATS). These tests identify active cases of SARS-nCoV-2 infections using the reverse transcription polymerase chain reaction (RT-PCR) test and the Antigen test. Because the Antigen test provided more rapid diagnosis, it was greatly used three weeks prior to the start of the Fall semester and throughout the academic year.As these tests were occurring, results were provided on the COVID-19 websites. First, beginning in early March, the Campus Health Alerts website reported the total number of positive cases. Later, numbers were provided for the total number of tests (March 12 and thereafter). According to the website, these numbers were updated daily for positive cases and weekly for total tests. These numbers were reported until early September where they were then included in the reporting for the TATS program.For the TATS program, numbers were provided through the UofA COVID-19 Update website. Initially on August 21, the numbers provided were the total number (July 31 and thereafter) of tests and positive cases. Later (August 25), additional information was provided where both PCR and Antigen testings were available. Here, the daily numbers were also included. On September 3, this website then provided both the Campus Health and TATS data. Here, PCR and Antigen were combined and referred to as "Total", and daily and cumulative numbers were provided.At this time, no official data dashboard was available until September 16, and aside from the information provided on these websites, the full dataset was not made publicly available. As such, the authors of this dataset independently aggregated data from multiple sources. These data were made publicly available through a Google Sheet with graphical illustration provided through the spreadsheet and on social media. The goal of providing the data and illustrations publicly was to provide factual information and to understand the infection rate of SARS-nCoV-2 in the UofA community.Because of differences in reported data between Campus Health and the TATS program, the dataset provides Campus Health numbers on September 3 and thereafter. TATS numbers are provided beginning on August 14, 2020.Description of Dataset ContentThe following terms are used in describing the dataset.1. "Report Date" is the date and time in which the website was updated to reflect the new numbers2. "Test Date" is to the date of testing/sample collection3. "Total" is the combination of Campus Health and TATS numbers4. "Daily" is to the new data associated with the Test Date5. "To Date (07/31--)" provides the cumulative numbers from 07/31 and thereafter6. "Sources" provides the source of information. The number prior to the colon refers to the number of sources. Here, "UACU" refers to the UA COVID-19 Update page, and "UARB" refers to the UA Weekly Re-Entry Briefing. "SS" and "WBM" refers to screenshot (manually acquired) and "Wayback Machine" (see Reference section for links) with initials provided to indicate which author recorded the values. These screenshots are available in the records.zip file.The dataset is distinguished where available by the testing program and the methods of testing. Where data are not available, calculations are made to fill in missing data (e.g., extrapolating backwards on the total number of tests based on daily numbers that are deemed reliable). Where errors are found (by comparing to previous numbers), those are reported on the above Google Sheet with specifics noted.For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu

  3. S&T Project 20026 Data: eRNA Data Set

    • data.usbr.gov
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Bureau of Reclamation (2023). S&T Project 20026 Data: eRNA Data Set [Dataset]. https://data.usbr.gov/catalog/6407/item/72733
    Explore at:
    Dataset updated
    Mar 14, 2023
    Dataset authored and provided by
    United States Bureau of Reclamationhttp://www.usbr.gov/
    Description

    This zip file contains the RT-qPCR results from the final report ST-2023-20026-01: Investigation of environmental RNA (eRNA) as a detection method for dreissenid mussels and other invasive species.

    RT-qPCR (reverse transcriptase quantification polymerase chain reaction) analysis was conducted on eRNA (environmental ribosomal nucleic acid) isolated from water samples collected at Canyon Reservoir, AZ. The goal of the project was to test out three different RNA preservation methods and three different RNA extraction methods. RT-qPCR was used to detect the presence of eRNA in the samples. The analysis was conducted using the CFX Maestro instrument. Included in the zip file is the CFX Maestro software information. The Cq (quantification value) was obtained using RT-qPCR for each sample, analyzed, and used to create the figures in the final report.

    Following each RT-qPCR assay, all the files associated with the experiment were downloaded and saved. There are 14 folders, and each contain a series of Excel spreadsheets that contain the information on the RT-qPCR experiment. These Excel spreadsheets include the following data: ANOVA results, end point results, gene expression results, melt curve results, quantification amplification results, Cq results, plate view results, standard curve, and run information for each RT-qPCR analysis. Some of the folders also contain images of the amplification curve, melt curve, melt peak, and standard curve for the experiment.

    The Cq values used in the report were taken from the quantification amplification file for each of the experiments. These Cq values were placed into the eRNA Data and Figures Excel spreadsheet. In this spreadsheet the Cq values were analyzed, and graphs were made with the data.

  4. Excel tables include all values used to generate graphs.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hashim Ali; David Noyvert; Jacqueline Hankinson; Gemma Lindsey; Aleksei Lulla; Valeria Lulla (2024). Excel tables include all values used to generate graphs. [Dataset]. http://doi.org/10.1371/journal.ppat.1011959.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Hashim Ali; David Noyvert; Jacqueline Hankinson; Gemma Lindsey; Aleksei Lulla; Valeria Lulla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel tables include all values used to generate graphs.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
FletcherKennamer (2023). Grandpa Golf [Dataset]. https://www.kaggle.com/datasets/fletcherkennamer/grandpa-golf
Organization logo

Grandpa Golf

Data from my Grandpa's Golf league that I reverse engineered

Explore at:
zip(5860 bytes)Available download formats
Dataset updated
Sep 12, 2023
Authors
FletcherKennamer
Description

My Grandpa asked if the programs I was using could calculate his Golf League’s handicaps, so I decided to play around with SQL and Google Sheets to see if I could functionally recreate what they were doing.

The goal is to calculate a player’s handicap, which is the average of the last six months of their scores minus 29. The average is calculated based on how many games they have actually played in the last six months, and the number of scores averaged correlates to total games. For example, Clem played over 20 games so his handicap will be calculated with the maximum possible scores accounted for, that being 8. Schomo only played six games, so the lowest 4 will be used for their average. Handicap is always calculated with the lowest available scores.

This league uses Excel, so upon receiving the data I converted it into a CSV and uploaded it into bigQuery.

First thing I did was change column names to best represent what they were and simplify things in the code. It is much easier to remember ‘someone_scores’ than ‘int64_field_number’. It also seemed to confuse SQL less, as int64 can mean something independently. (ALTER TABLE grandpa-golf.grandpas_golf_35.should only need the one RENAME COLUMN int64_field_4 TO schomo_scores;)

To Find the average of Clem’s scores: SELECT AVG(clem_scores) FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 8; RESULT: 43.1

Remembering that handicap is the average minus 29, the final computation looks like: SELECT AVG(clem_scores) - 29 FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 8; RESULT: 14.1

Find the average of Schomo’s scores: SELECT AVG(schomo_scores) - 29 FROM grandpa-golf.grandpas_golf_35.should only need the one LIMIT 6; RESULT: 10.5

This data was already automated to calculate a handicap in the league’s excel spreadsheet, so I asked for more data to see if i could recreate those functions.

Grandpa provided the past three years of league data. The names were all replaced with generic “Golfer 001, Golfer 002, etc”. I had planned on converting this Excel sheet into a CSV and manipulating it in SQL like with the smaller sample, but this did not work.

Immediately, there were problems. I had initially tried to just convert the file into a CSV and drop it into SQL, but there were functions that did not transfer properly from what was functionally the PDF I had been emailed. So instead of working with SQL, I decided to pull this into google sheets and recreate the functions for this spreadsheet. We only need the most recent 6 months of scores to calculate our handicap, so once I made a working copy I deleted the data from before this time period. Once that was cleaned up, I started working on a function that would pull the working average from these values, which is still determined by how many total values there were. This correlates as follows: for 20 or more scores average the lowest 8, for 15 to 19 scores average the lowest 6, for 6 to 14 scores average the lowest 4 and for 6 or fewer scores average the lowest 2. We also need to ensure that an average value of 0 returns a value of 0 so our handicap calculator works. My formula ended up being:

=IF(COUNT(E2:AT2)>=20, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&8)))), IF(COUNT(E2:AT2)>=15, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&6)))), IF(COUNT(E2:AT2)>=6, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&4)))), IF(COUNT(E2:AT2)>=1, AVERAGE(SMALL(E2:AT2, ROW(INDIRECT("1:"&2)))), IF(COUNT(E2:AT2)=0, 0, "")))))

The handicap is just this value minus 29, so for the handicap column the script is relatively simple: =IF(D2=0,0,IF(D2>47,18,D2-29)) This ensures that we will not get a negative value for our handicap, and pulls the basic average from the right place. It also sets the handicap to zero if there are no scores present.

Now that we have our spreadsheet back in working order with our new scripts, we are functionally done. We have recreated what my Grandpa’s league uses to generate handicaps.

Search
Clear search
Close search
Google apps
Main menu