32 datasets found
  1. n

    TROPIS - Tree Growth and Permanent Plot Information System database

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). TROPIS - Tree Growth and Permanent Plot Information System database [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214155153-SCIOPS
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    TROPIS is the acronym for the Tree Growth and Permanent Plot Information System sponsored by CIFOR to promote more effective use of existing data and knowledge about tree growth.

        TROPIS is concerned primarily with information about permanent plots and tree
        growth in both planted and natural forests throughout the world. It has five
        components:
    
        - a network of people willing to share permanent plot data and tree
        growth information;
        - an index to people and institutions with permanent plots;
        - a database management system to promote more efficient data management;
        - a method to find comparable sites elsewhere, so that observations
        can be supplemented or contrasted with other data; and
        - an inference system to allow growth estimates to be made in the
        absence of empirical data.
        - TROPIS is about people and information. The core of TROPIS is an
        index to people and their plots maintained in a relational
        database. The database is designed to fulfil two primary needs:
        - to provide for efficient cross-checking, error-checking and
        updating; and to facilitate searches for plots matching a wide range
        of specified criteria, including (but not limited to) location, forest
        type, taxa, plot area, measurement history.
    
        The database is essentially hierarchical: the key element of the
        database is the informant. Each informant may contribute information
        on many plot series, each of which has consistent objectives. In turn,
        each series may comprise many plots, each of which may have a
        different location or different size. Each plot may contain many
        species. A series may be a thinning or spacing experiment, some
        species or provenance trials, a continuous forest inventory system, or
        any other aggregation of plots convenient to the informant. Plots need
        not be current. Abandoned plots may be included provided that the
        location is known and the plot data remain accessible. In addition to
        details of the informant, we try to record details of additional
        contact people associated with plots, to maintain continuity when
        people transfer or retire. Thus the relational structure may appear
        complex, but ensures data integrity.
    
        At present, searches are possible only via mail, fax or email requests
        to the TROPIS co-ordinator at CIFOR. Self-service on-line searching
        will also be available in 1997. Clients may search for plots with
        specified taxa, locations, silvicultural treatment, or other specified
        criteria and combinations. TROPIS currently contains references to
        over 10,000 plots with over 2,000 species contributed by 100
        individuals world-wide.
    
        This database will help CIFOR as well as other users to make more
        efficient use of existing information, and to develop appropriate and
        effective techniques and policies for sustainable forest management
        world-wide.
    
        TROPIS is supported by the Government of Japan.
    
        This information is from the CIFOR web site.
    
  2. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.

  3. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • opendatalab.com
    • +5more
    application/rdfxml +5
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
    Explore at:
    application/rdfxml, tsv, csv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  4. COVID-19 Post-Vaccination Infection Data (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, xlsx, zip
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). COVID-19 Post-Vaccination Infection Data (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-post-vaccination-infection-data
    Explore at:
    csv(38212), xlsx(11056), csv(90508), csv(78921), zipAvailable download formats
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency.

    The California Department of Public Health (CDPH) is identifying vaccination status of COVID-19 cases, hospitalizations, and deaths by analyzing the state immunization registry and registry of confirmed COVID-19 cases. Post-vaccination cases are individuals who have a positive SARS-Cov-2 molecular test (e.g. PCR) at least 14 days after they have completed their primary vaccination series.

    Tracking cases of COVID-19 that occur after vaccination is important for monitoring the impact of immunization campaigns. While COVID-19 vaccines are safe and effective, some cases are still expected in persons who have been vaccinated, as no vaccine is 100% effective. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Post-Vaccine-COVID19-Cases.aspx

    Post-vaccination infection data is updated monthly and includes data on cases, hospitalizations, and deaths among the unvaccinated and the vaccinated. Partially vaccinated individuals are excluded. To account for reporting and processing delays, there is at least a one-month lag in provided data (for example data published on 9/9/22 will include data through 7/31/22).

    Notes:

    • On September 9, 2022, the post-vaccination data has been changed to compare unvaccinated with those with at least a primary series completed for persons age 5+. These data will be updated monthly (first Thursday of the month) and include at least a one month lag.

    • On February 2, 2022, the post-vaccination data has been changed to distinguish between vaccination with a primary series only versus vaccinated and boosted. The previous dataset has been uploaded as an archived table. Additionally, the lag on this data has been extended to 14 days.

    • On November 29, 2021, the denominator for calculating vaccine coverage has been changed from age 16+ to age 12+ to reflect new vaccine eligibility criteria. The previous dataset based on age 16+ denominators has been uploaded as an archived table.

  5. Z

    Dataset of IEEE 802.11 probe requests from an uncontrolled urban environment...

    • data.niaid.nih.gov
    Updated Jan 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleš Simončič (2023). Dataset of IEEE 802.11 probe requests from an uncontrolled urban environment [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7509279
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset provided by
    Andrej Hrovat
    Aleš Simončič
    Mihael Mohorčič
    Miha Mohorčič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    The 802.11 standard includes several management features and corresponding frame types. One of them are Probe Requests (PR), which are sent by mobile devices in an unassociated state to scan the nearby area for existing wireless networks. The frame part of PRs consists of variable-length fields, called Information Elements (IE), which represent the capabilities of a mobile device, such as supported data rates.

    This dataset contains PRs collected over a seven-day period by four gateway devices in an uncontrolled urban environment in the city of Catania.

    It can be used for various use cases, e.g., analyzing MAC randomization, determining the number of people in a given location at a given time or in different time periods, analyzing trends in population movement (streets, shopping malls, etc.) in different time periods, etc.

    Related dataset

    Same authors also produced the Labeled dataset of IEEE 802.11 probe requests with same data layout and recording equipment.

    Measurement setup

    The system for collecting PRs consists of a Raspberry Pi 4 (RPi) with an additional WiFi dongle to capture WiFi signal traffic in monitoring mode (gateway device). Passive PR monitoring is performed by listening to 802.11 traffic and filtering out PR packets on a single WiFi channel.

    The following information about each received PR is collected: - MAC address - Supported data rates - extended supported rates - HT capabilities - extended capabilities - data under extended tag and vendor specific tag - interworking - VHT capabilities - RSSI - SSID - timestamp when PR was received.

    The collected data was forwarded to a remote database via a secure VPN connection. A Python script was written using the Pyshark package to collect, preprocess, and transmit the data.

    Data preprocessing

    The gateway collects PRs for each successive predefined scan interval (10 seconds). During this interval, the data is preprocessed before being transmitted to the database. For each detected PR in the scan interval, the IEs fields are saved in the following JSON structure:

    PR_IE_data = { 'DATA_RTS': {'SUPP': DATA_supp , 'EXT': DATA_ext}, 'HT_CAP': DATA_htcap, 'EXT_CAP': {'length': DATA_len, 'data': DATA_extcap}, 'VHT_CAP': DATA_vhtcap, 'INTERWORKING': DATA_inter, 'EXT_TAG': {'ID_1': DATA_1_ext, 'ID_2': DATA_2_ext ...}, 'VENDOR_SPEC': {VENDOR_1:{ 'ID_1': DATA_1_vendor1, 'ID_2': DATA_2_vendor1 ...}, VENDOR_2:{ 'ID_1': DATA_1_vendor2, 'ID_2': DATA_2_vendor2 ...} ...} }

    Supported data rates and extended supported rates are represented as arrays of values that encode information about the rates supported by a mobile device. The rest of the IEs data is represented in hexadecimal format. Vendor Specific Tag is structured differently than the other IEs. This field can contain multiple vendor IDs with multiple data IDs with corresponding data. Similarly, the extended tag can contain multiple data IDs with corresponding data.
    Missing IE fields in the captured PR are not included in PR_IE_DATA.

    When a new MAC address is detected in the current scan time interval, the data from PR is stored in the following structure:

    {'MAC': MAC_address, 'SSIDs': [ SSID ], 'PROBE_REQs': [PR_data] },

    where PR_data is structured as follows:

    { 'TIME': [ DATA_time ], 'RSSI': [ DATA_rssi ], 'DATA': PR_IE_data }.

    This data structure allows to store only 'TOA' and 'RSSI' for all PRs originating from the same MAC address and containing the same 'PR_IE_data'. All SSIDs from the same MAC address are also stored. The data of the newly detected PR is compared with the already stored data of the same MAC in the current scan time interval. If identical PR's IE data from the same MAC address is already stored, only data for the keys 'TIME' and 'RSSI' are appended. If identical PR's IE data from the same MAC address has not yet been received, then the PR_data structure of the new PR for that MAC address is appended to the 'PROBE_REQs' key. The preprocessing procedure is shown in Figure ./Figures/Preprocessing_procedure.png

    At the end of each scan time interval, all processed data is sent to the database along with additional metadata about the collected data, such as the serial number of the wireless gateway and the timestamps for the start and end of the scan. For an example of a single PR capture, see the Single_PR_capture_example.json file.

    Folder structure

    For ease of processing of the data, the dataset is divided into 7 folders, each containing a 24-hour period. Each folder contains four files, each containing samples from that device.

    The folders are named after the start and end time (in UTC). For example, the folder 2022-09-22T22-00-00_2022-09-23T22-00-00 contains samples collected between 23th of September 2022 00:00 local time, until 24th of September 2022 00:00 local time.

    Files representing their location via mapping: - 1.json -> location 1 - 2.json -> location 2 - 3.json -> location 3 - 4.json -> location 4

    Environments description

    The measurements were carried out in the city of Catania, in Piazza Università and Piazza del Duomo The gateway devices (rPIs with WiFi dongle) were set up and gathering data before the start time of this dataset. As of September 23, 2022, the devices were placed in their final configuration and personally checked for correctness of installation and data status of the entire data collection system. Devices were connected either to a nearby Ethernet outlet or via WiFi to the access point provided.

    Four Raspbery Pi-s were used: - location 1 -> Piazza del Duomo - Chierici building (balcony near Fontana dell’Amenano) - location 2 -> southernmost window in the building of Via Etnea near Piazza del Duomo - location 3 -> nothernmost window in the building of Via Etnea near Piazza Università - location 4 -> first window top the right of the entrance of the University of Catania

    Locations were suggested by the authors and adjusted during deployment based on physical constraints (locations of electrical outlets or internet access) Under ideal circumstances, the locations of the devices and their coverage area would cover both squares and the part of Via Etna between them, with a partial overlap of signal detection. The locations of the gateways are shown in Figure ./Figures/catania.png.

    Known dataset shortcomings

    Due to technical and physical limitations, the dataset contains some identified deficiencies.

    PRs are collected and transmitted in 10-second chunks. Due to the limited capabilites of the recording devices, some time (in the range of seconds) may not be accounted for between chunks if the transmission of the previous packet took too long or an unexpected error occurred.

    Every 20 minutes the service is restarted on the recording device. This is a workaround for undefined behavior of the USB WiFi dongle, which can no longer respond. For this reason, up to 20 seconds of data will not be recorded in each 20-minute period.

    The devices had a scheduled reboot at 4:00 each day which is shown as missing data of up to a few minutes.

     Location 1 - Piazza del Duomo - Chierici
    

    The gateway device (rPi) is located on the second floor balcony and is hardwired to the Ethernet port. This device appears to function stably throughout the data collection period. Its location is constant and is not disturbed, dataset seems to have complete coverage.

     Location 2 - Via Etnea - Piazza del Duomo
    

    The device is located inside the building. During working hours (approximately 9:00-17:00), the device was placed on the windowsill. However, the movement of the device cannot be confirmed. As the device was moved back and forth, power outages and internet connection issues occurred. The last three days in the record contain no PRs from this location.

     Location 3 - Via Etnea - Piazza Università
    

    Similar to Location 2, the device is placed on the windowsill and moved around by people working in the building. Similar behavior is also observed, e.g., it is placed on the windowsill and moved inside a thick wall when no people are present. This device appears to have been collecting data throughout the whole dataset period.

     Location 4 - Piazza Università
    

    This location is wirelessly connected to the access point. The device was placed statically on a windowsill overlooking the square. Due to physical limitations, the device had lost power several times during the deployment. The internet connection was also interrupted sporadically.

    Recognitions

    The data was collected within the scope of Resiloc project with the help of City of Catania and project partners.

  6. analytics

    • kaggle.com
    zip
    Updated May 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eswar (2017). analytics [Dataset]. https://www.kaggle.com/eswarreddy/analytics
    Explore at:
    zip(22544 bytes)Available download formats
    Dataset updated
    May 3, 2017
    Authors
    Eswar
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  7. r

    Get Data-Ready for research from home

    • researchdata.edu.au
    Updated Aug 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Shafee (2020). Get Data-Ready for research from home [Dataset]. http://doi.org/10.26181/5E74330DAE56B
    Explore at:
    Dataset updated
    Aug 10, 2020
    Dataset provided by
    La Trobe University
    Authors
    Thomas Shafee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    An introduction to research data tools

    During the transition to increased research from home, here is a 3-minute introduction into the most useful tools to store, synchronise, organise and share your data.


    For a more detailed summary, see:

    Research Data Management at La Trobe.

    https://doi.org/10.26181/5e5c41c9f1dde


    Transcript

    With the increased relevance of working remotely, let's look at some tools you can use to organise, synchronise and share your data. All of these work without using the university VPN.

    Storage

    First on the list, CloudStor allows you to securely synchronise files and folders across a team. It's easiest to find via a web search and once you're on the Australian Academic and Research Network site, you can sign up to CloudStor using your university login. Once there, you can drag and drop any file or folder onto the web page. You start off with 1TB of storage, but you can request more from ICT if you need to. To synch these files and folders across any number of computers or other devices, you simply need the appropriate app. It then just appears like any other folder on your computer. You can securely share files and folders with a range of customisable options, and you can let other people send you files in a similar manner.

    Notebook

    So with your working storage sorted, what replaces the trusty paper lab notebook? LabArchives is a general purpose online research notebook. Again, just use your university login. You can create new project notebooks organised on an existing template, or create your own. These project notebooks are organised into folders which contain pages, and those pages are just like the page of a paper notebook where you can organise your thoughts, hypotheses, observations and experiments, and the conclusions that you draw from them. You can also embed files straight into the notebook, along with a number of other features.

    Sharing

    So you've put all this work into your research. What's the best way to share it? Well, the La Trobe open repository is based on FigShare, and once again, you can use your university login. When you create a new item, you just drag and drop in a file or folder and add some simple descriptive information so that people are able to find it. Items can include your publications, research data, publication slides or recordings, and more or less any other research output. Describe it as thoroughly as possible, because this makes it more searchable and therefore more visible. For supplementary data or an article postprint, link to the DOI of the published version. Choose a license for it to be released under. We recommend CC BY but there's a range to choose from. If required by a publisher you can apply an embargo. When you're done, you can either save a private draft, or share it publicly. Public items appear on the repository main page and are searchable and are also assigned a DOI. For items that aren't published elsewhere, like negative results or teaching material, this allws people to cite them and increases their visibility.

    For all things research data, check out our data ready guide, and join us for the digital drop-ins, first Tuesday of every month.

  8. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 2, 2025
    Authors
    The Associated Press
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  9. BlogFeedback Data Set

    • kaggle.com
    zip
    Updated Jul 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julio Tentor (2022). BlogFeedback Data Set [Dataset]. https://www.kaggle.com/datasets/jtentor/blogfeedback-data-set
    Explore at:
    zip(2550651 bytes)Available download formats
    Dataset updated
    Jul 15, 2022
    Authors
    Julio Tentor
    Description

    Source:

    Krisztian Buza Budapest University of Technology and Economics buza '@' cs.bme.hu http://www.cs.bme.hu/~buza

    You can download a zip file from https://archive.ics.uci.edu/ml/datasets/BlogFeedback

    Data Set Information:

    This data originates from blog posts. The raw HTML-documents of the blog posts were crawled and processed.

    The prediction task associated with the data is the prediction of the number of comments in the upcoming 24 hours.

    In order to simulate this situation, we choose a basetime (in the past) and select the blog posts that were published at most 72 hours before the selected base date/time. Then, we calculate all the features of the selected blog posts from the information that was available at the basetime, therefore each instance corresponds to a blog post. The target is the number of comments that the blog post received in the next 24 hours relative to the base time.

    In the train data, the base times were in the years 2010 and 2011. In the test data the base times were in February and March 2012.

    This simulates the real-world situation in which training data from the past is available to predict events in the future.

    The train data was generated from different base times that may temporally overlap.

    Therefore, if you simply split the train into disjoint partitions, the underlying time intervals may overlap.

    Therefore, you should use the provided, temporally disjoint train and test splits in order to ensure that the evaluation is fair.

    ** Attribute Information:**

    1...50: Average, standard deviation, min, max and median of the Attributes 51...60 for the source of the current blog post. With source we mean the blog on which the post appeared. For example, myblog.blog.org would be the source of the post myblog.blog.org/post_2010_09_10

    51: Total number of comments before basetime 52: Number of comments in the last 24 hours before the base time 53: Let T1 denote the datetime 48 hours before basetime, Let T2 denote the datetime 24 hours before basetime. This attribute is the number of comments in the time period between T1 and T2 54: Number of comments in the first 24 hours after the publication of the blog post, but before basetime 55: The difference of Attribute 52 and Attribute 53 56...60: The same features as the attributes 51...55, but features 56...60 refer to the number of links (trackbacks), while features 51...55 refer to the number of comments. 61: The length of time between the publication of the blog post and base time 62: The length of the blog post 63...262: The 200 bag of words features for 200 frequent words of the text of the blog post 263...269: binary indicator features (0 or 1) for the weekday (Monday...Sunday) of the basetime 270...276: binary indicator features (0 or 1) for the weekday (Monday...Sunday) of the date of publication of the blog post 277: Number of parent pages: we consider a blog post P as a parent of blog post B, if B is a reply (trackback) to blog post P. 278...280: Minimum, maximum, average number of comments that the parents received 281: The target: the number of comments in the next 24 hours (relative to base time)

    ** Relevant Papers:**

    Buza, K. (2014). Feedback Prediction for Blogs. In Data Analysis, Machine Learning and Knowledge Discovery (pp. 145-152). Springer International Publishing (http://cs.bme.hu/~buza/pdfs/gfkl2012_blogs.pdf).

  10. SF Budget

    • kaggle.com
    zip
    Updated Aug 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of San Francisco (2019). SF Budget [Dataset]. https://www.kaggle.com/san-francisco/sf-budget
    Explore at:
    zip(6446413 bytes)Available download formats
    Dataset updated
    Aug 21, 2019
    Dataset authored and provided by
    City of San Francisco
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    San Francisco
    Description

    Content

    The San Francisco Controller's Office maintains a database of budgetary data that appears in summarized form in each Annual Appropriation Ordinance (AAO). This data is presented on the Budget report hosted at http://openbook.sfgov.org, and is also available in this dataset in CSV format. New data is added on an annual basis when the AAO is published for each new fiscal year. Data is available from fiscal year 2010 forward.

    Context

    This is a dataset hosted by the city of San Francisco. The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore San Francisco's Data using Kaggle and all of the data sources available through the San Francisco organization page!

    • Update Frequency: This dataset is updated weekly.

    Acknowledgements

    This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.

    Cover photo by rawpixel on Unsplash
    Unsplash Images are distributed under a unique Unsplash License.

  11. d

    The Marshall Project: COVID Cases in Prisons

    • data.world
    csv, zip
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). The Marshall Project: COVID Cases in Prisons [Dataset]. https://data.world/associatedpress/marshall-project-covid-cases-in-prisons
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Apr 6, 2023
    Authors
    The Associated Press
    Time period covered
    Jul 31, 2019 - Aug 1, 2021
    Description

    Overview

    The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.

    Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.

    In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.

    This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.

    Methodology and Caveats

    The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.

    Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.

    The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.

    To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.

    To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.

    To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.

    As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.

    Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on parole. We removed these tests and cases for prisoners from the data prior to July 28. The staff cases remain.

    About the Data

    There are four tables in this data:

    • covid_prison_cases.csv contains weekly time series data on tests, infections and deaths in prisons. The first dates in the table are on March 26. Any questions that a prison agency could not or would not answer are left blank.

    • prison_populations.csv contains snapshots of the population of people incarcerated in each of these prison systems for whom data on COVID testing and cases are available. This varies by state and may not always be the entire number of people incarcerated in each system. In some states, it may include other populations, such as those on parole or held in state-run jails. This data is primarily for use in calculating rates of testing and infection, and we would not recommend using these numbers to compare the change in how many people are being held in each prison system.

    • staff_populations.csv contains a one-time, recent snapshot of the headcount of workers for each prison agency, collected as close to April 15 as possible.

    • covid_prison_rates.csv contains the rates of cases and deaths for prisoners. There is one row for every state and federal prison system and an additional row with the National totals.

    Queries

    The Associated Press and The Marshall Project have created several queries to help you use this data:

    Get your state's prison COVID data: Provides each week's data from just your state and calculates a cases-per-100000-prisoners rate, a deaths-per-100000-prisoners rate, a cases-per-100000-workers rate and a deaths-per-100000-workers rate here

    Rank all systems' most recent data by cases per 100,000 prisoners here

    Find what percentage of your state's total cases and deaths -- as reported by Johns Hopkins University -- occurred within the prison system here

    Attribution

    In stories, attribute this data to: “According to an analysis of state prison cases by The Marshall Project, a nonprofit investigative newsroom dedicated to the U.S. criminal justice system, and The Associated Press.”

    Contributors

    Many reporters and editors at The Marshall Project and The Associated Press contributed to this data, including: Katie Park, Tom Meagher, Weihua Li, Gabe Isman, Cary Aspinwall, Keri Blakinger, Jake Bleiberg, Andrew R. Calderón, Maurice Chammah, Andrew DeMillo, Eli Hager, Jamiles Lartey, Claudia Lauer, Nicole Lewis, Humera Lodhi, Colleen Long, Joseph Neff, Michelle Pitcher, Alysia Santo, Beth Schwartzapfel, Damini Sharma, Colleen Slevin, Christie Thompson, Abbie VanSickle, Adria Watson, Andrew Welsh-Huggins.

    Questions

    If you have questions about the data, please email The Marshall Project at info+covidtracker@themarshallproject.org or file a Github issue.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  12. s

    Data from: Normal People: A Novel

    • books.supportingcast.fm
    Updated Jun 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Supporting Cast (2021). Normal People: A Novel [Dataset]. https://books.supportingcast.fm/products/normal-people
    Explore at:
    Dataset updated
    Jun 30, 2021
    Dataset authored and provided by
    Supporting Cast
    License

    https://slate.com/termshttps://slate.com/terms

    Description

    List price: $17.50

    NOW AN EMMY-NOMINATED HULU ORIGINAL SERIES • NEW YORK TIMES BESTSELLER • “A stunning novel about the transformative power of relationships” (People) from the author of Conversations with Friends, “a master of the literary page-turner” (J. Courtney Sullivan).

    ONE OF THE TEN BEST NOVELS OF THE DECADE—Entertainment Weekly

    TEN BEST BOOKS OF THE YEAR—People, Slate, The New York Public Library, Harvard Crimson

    AND BEST BOOKS OF THE YEAR—The New York Times, The New York Times Book Review, O: The Oprah Magazine, Time, NPR, The Washington Post, Vogue, Esquire, Glamour, Elle, Marie Claire, Vox, The Paris Review, Good Housekeeping, Town & Country

    Connell and Marianne grew up in the same small town, but the similarities end there. At school, Connell is popular and well liked, while Marianne is a loner. But when the two strike up a conversation—awkward but electrifying—something life changing begins.

    A year later, they’re both studying at Trinity College in Dublin. Marianne has found her feet in a new social world while Connell hangs at the sidelines, shy and uncertain. Throughout their years at university, Marianne and Connell circle one another, straying toward other people and possibilities but always magnetically, irresistibly drawn back together. And as she veers into self-destruction and he begins to search for meaning elsewhere, each must confront how far they are willing to go to save the other.

    Normal People is the story of mutual fascination, friendship and love. It takes us from that first conversation to the years beyond, in the company of two people who try to stay apart but find that they can’t.

    Praise for Normal People

    “[A] novel that demands to be read compulsively, in one sitting.”—The Washington Post

    “Arguably the buzziest novel of the season, Sally Rooney’s elegant sophomore effort . . . is a worthy successor to Conversations with Friends. Here, again, she unflinchingly explores class dynamics and young love with wit and nuance.”—The Wall Street Journal

    “[Rooney] has been hailed as the first great millennial novelist for her stories of love and late capitalism. . . . [She writes] some of the best dialogue I’ve read.”—The New Yorker

    ISBN: 9781984843333 Published: April 16, 2019 By: Sally Rooney Read by: Aoife McMahon

  13. C

    Allegheny County COVID-19 Tests, Cases and Deaths (Archive)

    • data.wprdc.org
    csv, html
    Updated Jun 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2024). Allegheny County COVID-19 Tests, Cases and Deaths (Archive) [Dataset]. https://data.wprdc.org/dataset/allegheny-county-covid-19-tests-cases-and-deaths
    Explore at:
    csv, html, csv(277234), csv(14904), csv(339166949), csv(34046863), csv(840), csv(16109)Available download formats
    Dataset updated
    Jun 13, 2024
    Dataset provided by
    Allegheny County
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Allegheny County
    Description

    COVID-19 Cases information is reported through the Pennsylvania State Department’s National Electronic Disease Surveillance System (PA-NEDSS). As new cases are passed to the Allegheny County Health Department they are investigated by case investigators. During investigation some cases which are initially determined by the State to be in the Allegheny County jurisdiction may change, which can account for differences between publication of the files on the number of cases, deaths and tests. Additionally, information is not always reported to the State in a timely manner, delays can range from days to weeks, which can also account for discrepancies between previous and current files. Test and Case information will be updated daily. This resource contains individuals who received a COVID-19 test and individuals whom are probable cases. Every day, these records are overwritten with updates. Each row in the data reflects a person that is tested, not tests that are conducted. People that are tested more than once will have their testing and case data updated using the following rules:

    1. Positive tests overwrite negative tests.
    2. Polymerase chain reaction (PCR) tests overwrite antibody or antigen (AG) tests.
    3. The first positive PCR test is never overwritten. Data collected from additional tests do not replace the first positive PCR test.

    Note: On April 4th 2022 the Pennsylvania Department of Health no longer required labs to report negative AG tests. Therefore aggregated counts that included AG tests have been removed from the Municipality/Neighborhood files going forward. Versions of this data up to this cut-off have been retained as archived files.

    Individual Test information is also updated daily. This resource contains the details and results of individual tests along with demographic information of the individual tested. Only PCR and AG tests are included. Every day, these records are overwritten with updates. This resource should be used to determine positivity rates.

    The remaining datasets provide statistics on death demographics. Demographic, municipality and neighborhood information for deaths are reported on a weekly schedule and are not included with individual cases or tests. This has been done to protect the privacy and security of individuals and their families in accordance with the Health Insurance Portability and Accountability Act (HIPAA). Municipality or City of Pittsburgh Neighborhood is based off the geocoded home address of the individual tested.

    Individuals whose home address is incomplete may not be in Allegheny County but whose temporary residency, work or other mitigating circumstance are determined to be in Allegheny County by the Pennsylvania Department of Health are counted as "Undefined".

    Since the start of the pandemic, the ACHD has mapped every day’s COVID tests, cases, and deaths to their Allegheny County municipality and neighborhood. Tests were mapped to patient address, and if this was not available, to the provider location. This has recently resulted in apparent testing rates that exceeded the populations of various municipalities -- mostly those with healthcare providers. As this was brought to our attention, the health department and our data partners began researching and comparing methods to most accurately display the data. This has led us to leave those with missing home addresses off the map. Although these data will still appear in test, case and death counts, there will be over 20,000 fewer tests and almost 1000 fewer cases on the map. In addition to these map changes, we have identified specific health systems and laboratories that had data uploading errors that resulted in missing locations, and are working with them to correct these errors.

    Due to minor discrepancies in the Municipal boundary and the City of Pittsburgh Neighborhood files individuals whose City Neighborhood cannot be identified are be counted as “Undefined (Pittsburgh)”.

    On May 19, 2023, with the rescinding of the COVID-19 public health emergency, changes in data and reporting mechanisms prompted a change to an annual data sharing schedule for tests, cases, hospitalizations, and deaths. Dates for annual release are TBD. The weekly municipal counts and individual data produced before this changed are maintained as archive files.

    Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.

  14. N

    Forward township, Allegheny County, Pennsylvania Population Pyramid Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Forward township, Allegheny County, Pennsylvania Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/524ccba8-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Forward Township, Allegheny County
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Forward township, Allegheny County, Pennsylvania population pyramid, which represents the Forward township population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Forward township, Allegheny County, Pennsylvania, is 16.1.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Forward township, Allegheny County, Pennsylvania, is 41.3.
    • Total dependency ratio for Forward township, Allegheny County, Pennsylvania is 57.4.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Forward township, Allegheny County, Pennsylvania is 2.4.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Forward township population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Forward township for the selected age group is shown in the following column.
    • Population (Female): The female population in the Forward township for the selected age group is shown in the following column.
    • Total Population: The total population of the Forward township for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Forward township Population by Age. You can refer the same here

  15. N

    Forward township, Butler County, Pennsylvania Population Pyramid Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Forward township, Butler County, Pennsylvania Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/524ccc3d-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Butler County, Forward Township, Pennsylvania
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Forward township, Butler County, Pennsylvania population pyramid, which represents the Forward township population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Forward township, Butler County, Pennsylvania, is 24.6.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Forward township, Butler County, Pennsylvania, is 26.4.
    • Total dependency ratio for Forward township, Butler County, Pennsylvania is 51.0.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Forward township, Butler County, Pennsylvania is 3.8.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Forward township population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Forward township for the selected age group is shown in the following column.
    • Population (Female): The female population in the Forward township for the selected age group is shown in the following column.
    • Total Population: The total population of the Forward township for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Forward township Population by Age. You can refer the same here

  16. N

    Post, TX Population Pyramid Dataset: Age Groups, Male and Female Population,...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Post, TX Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f044ad5d-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Post
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Post, TX population pyramid, which represents the Post population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Post, TX, is 19.8.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Post, TX, is 25.0.
    • Total dependency ratio for Post, TX is 44.8.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Post, TX is 4.0.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Post population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Post for the selected age group is shown in the following column.
    • Population (Female): The female population in the Post for the selected age group is shown in the following column.
    • Total Population: The total population of the Post for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Post Population by Age. You can refer the same here

  17. Number of data compromises and impacted individuals in U.S. 2005-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of data compromises and impacted individuals in U.S. 2005-2024 [Dataset]. https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
    Explore at:
    Dataset updated
    Jul 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the number of data compromises in the United States stood at 3,158 cases. Meanwhile, over 1.35 billion individuals were affected in the same year by data compromises, including data breaches, leakage, and exposure. While these are three different events, they have one thing in common. As a result of all three incidents, the sensitive data is accessed by an unauthorized threat actor. Industries most vulnerable to data breaches Some industry sectors usually see more significant cases of private data violations than others. This is determined by the type and volume of the personal information organizations of these sectors store. In 2024 the financial services, healthcare, and professional services were the three industry sectors that recorded most data breaches. Overall, the number of healthcare data breaches in some industry sectors in the United States has gradually increased within the past few years. However, some sectors saw decrease. Largest data exposures worldwide In 2020, an adult streaming website, CAM4, experienced a leakage of nearly 11 billion records. This, by far, is the most extensive reported data leakage. This case, though, is unique because cyber security researchers found the vulnerability before the cyber criminals. The second-largest data breach is the Yahoo data breach, dating back to 2013. The company first reported about one billion exposed records, then later, in 2017, came up with an updated number of leaked records, which was three billion. In March 2018, the third biggest data breach happened, involving India’s national identification database Aadhaar. As a result of this incident, over 1.1 billion records were exposed.

  18. N

    Ship Bottom, NJ Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Ship Bottom, NJ Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis [Dataset]. https://www.neilsberg.com/research/datasets/635ba17e-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ship Bottom, New Jersey
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Ship Bottom, NJ population pyramid, which represents the Ship Bottom population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Ship Bottom, NJ, is 11.1.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Ship Bottom, NJ, is 73.4.
    • Total dependency ratio for Ship Bottom, NJ is 84.5.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Ship Bottom, NJ is 1.4.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Ship Bottom population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Ship Bottom for the selected age group is shown in the following column.
    • Population (Female): The female population in the Ship Bottom for the selected age group is shown in the following column.
    • Total Population: The total population of the Ship Bottom for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Ship Bottom Population by Age. You can refer the same here

  19. N

    Painted Post, NY Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Painted Post, NY Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/52660735-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Painted Post
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Painted Post, NY population pyramid, which represents the Painted Post population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Painted Post, NY, is 17.0.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Painted Post, NY, is 30.8.
    • Total dependency ratio for Painted Post, NY is 47.8.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Painted Post, NY is 3.2.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Painted Post population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Painted Post for the selected age group is shown in the following column.
    • Population (Female): The female population in the Painted Post for the selected age group is shown in the following column.
    • Total Population: The total population of the Painted Post for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Painted Post Population by Age. You can refer the same here

  20. d

    YouGov Pulse Data for 1200 people for June 2022

    • search.dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sood, Gaurav (2023). YouGov Pulse Data for 1200 people for June 2022 [Dataset]. http://doi.org/10.7910/DVN/VIV4TS
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Sood, Gaurav
    Description

    YouGov Pulse Data on 1200 people for June 2022. (This data seems to have come from RealityMine.) YouGov had initially accidentally sent data on only 900 respondents. On December 9th, they fixed the issue. I have kept both sets of files up.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2017). TROPIS - Tree Growth and Permanent Plot Information System database [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214155153-SCIOPS

TROPIS - Tree Growth and Permanent Plot Information System database

CIFOR_TROPIS_Not provided

Explore at:
Dataset updated
Apr 20, 2017
Time period covered
Jan 1, 1970 - Present
Area covered
Description

TROPIS is the acronym for the Tree Growth and Permanent Plot Information System sponsored by CIFOR to promote more effective use of existing data and knowledge about tree growth.

    TROPIS is concerned primarily with information about permanent plots and tree
    growth in both planted and natural forests throughout the world. It has five
    components:

    - a network of people willing to share permanent plot data and tree
    growth information;
    - an index to people and institutions with permanent plots;
    - a database management system to promote more efficient data management;
    - a method to find comparable sites elsewhere, so that observations
    can be supplemented or contrasted with other data; and
    - an inference system to allow growth estimates to be made in the
    absence of empirical data.
    - TROPIS is about people and information. The core of TROPIS is an
    index to people and their plots maintained in a relational
    database. The database is designed to fulfil two primary needs:
    - to provide for efficient cross-checking, error-checking and
    updating; and to facilitate searches for plots matching a wide range
    of specified criteria, including (but not limited to) location, forest
    type, taxa, plot area, measurement history.

    The database is essentially hierarchical: the key element of the
    database is the informant. Each informant may contribute information
    on many plot series, each of which has consistent objectives. In turn,
    each series may comprise many plots, each of which may have a
    different location or different size. Each plot may contain many
    species. A series may be a thinning or spacing experiment, some
    species or provenance trials, a continuous forest inventory system, or
    any other aggregation of plots convenient to the informant. Plots need
    not be current. Abandoned plots may be included provided that the
    location is known and the plot data remain accessible. In addition to
    details of the informant, we try to record details of additional
    contact people associated with plots, to maintain continuity when
    people transfer or retire. Thus the relational structure may appear
    complex, but ensures data integrity.

    At present, searches are possible only via mail, fax or email requests
    to the TROPIS co-ordinator at CIFOR. Self-service on-line searching
    will also be available in 1997. Clients may search for plots with
    specified taxa, locations, silvicultural treatment, or other specified
    criteria and combinations. TROPIS currently contains references to
    over 10,000 plots with over 2,000 species contributed by 100
    individuals world-wide.

    This database will help CIFOR as well as other users to make more
    efficient use of existing information, and to develop appropriate and
    effective techniques and policies for sustainable forest management
    world-wide.

    TROPIS is supported by the Government of Japan.

    This information is from the CIFOR web site.
Search
Clear search
Close search
Google apps
Main menu