Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.
Facebook
TwitterStatewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm
Facebook
TwitterWhen rain falls over land, a portion of it runs off into stream channels and storm water systems while the remainder infiltrates into the soil or returns to the atmosphere directly through evaporation.Physical properties of soil affect the rate that water is absorbed and the amount of runoff produced by a storm. Hydrologic soil group provides an index of the rate that water infiltrates a soil and is an input to rainfall-runoff models that are used to predict potential stream flow.For more information on using hydrologic soil group in hydrologic modeling see the publication Urban Hydrology for Small Watersheds (Natural Resources Conservation Service, United States Department of Agriculture, Technical Release–55).Dataset SummaryPhenomenon Mapped: Soil hydrologic groupUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for hydrologic group is derived from the gSSURGO map unit aggregated attribute table field Hydrologic Group - Dominant Conditions (hydgrpdcd).The seven classes of hydrologic soil group followed by definitions:Group A - Group A soils consist of deep, well drained sands or gravelly sands with high infiltration and low runoff rates.Group B - Group B soils consist of deep well drained soils with a moderately fine to moderately coarse texture and a moderate rate of infiltration and runoff.Group C - Group C consists of soils with a layer that impedes the downward movement of water or fine textured soils and a slow rate of infiltration.Group D - Group D consists of soils with a very slow infiltration rate and high runoff potential. This group is composed of clays that have a high shrink-swell potential, soils with a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material.Group A/D - Group A/D soils naturally have a very slow infiltration rate due to a high water table but will have high infiltration and low runoff rates if drained.Group B/D - Group B/D soils naturally have a very slow infiltration rate due to a high water table but will have a moderate rate of infiltration and runoff if drained.Group C/D - Group C/D soils naturally have a very slow infiltration rate due to a high water table but will have a slow rate of infiltration if drained.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "soil hydrologic group" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "soil hydrologic group" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Facebook
TwitterThe Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities. Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: May 7, 2025 This layer is derived from the May 7, 2025 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 94 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 94 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel. Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Data DictionaryMaking a copy of your area of interest using copyraster in arcgis pro will copy the layer's attribute table to your network alongside the local output raster. The raster attribute table in the copied raster will contain the flood zone, zone subtype, and special flood hazard area true/false flag which corresponds to each value in the layer for your area of interest. For your convienence, we also included a table in CSV format in the box below as a data dictionary you can use as an index to every value in the layer. Value,FLD_ZONE,ZONE_SUBTY,SFHA_TF 2,A,, 3,A,,F 4,A,,T 5,A,,T 6,A,,T 7,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 8,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 9,A,ADMINISTRATIVE FLOODWAY,T 10,A,COASTAL FLOODPLAIN,T 11,A,FLOWAGE EASEMENT AREA,T 12,A99,,T 13,A99,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 14,AE,,F 15,AE,,T 16,AE,,T 17,AE,,T 18,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 19,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 20,AE,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",T 21,AE,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",T 22,AE,ADMINISTRATIVE FLOODWAY,T 23,AE,AREA OF SPECIAL CONSIDERATION,T 24,AE,COASTAL FLOODPLAIN,T 25,AE,COLORADO RIVER FLOODWAY,T 26,AE,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 27,AE,COMMUNITY ENCROACHMENT,T 28,AE,COMMUNITY ENCROACHMENT AREA,T 29,AE,DENSITY FRINGE AREA,T 30,AE,FLOODWAY,T 31,AE,FLOODWAY CONTAINED IN CHANNEL,T 32,AE,FLOODWAY CONTAINED IN STRUCTURE,T 33,AE,FLOWAGE EASEMENT AREA,T 34,AE,RIVERINE FLOODWAY IN COMBINED RIVERINE AND COASTAL ZONE,T 35,AE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 36,AE,STATE ENCROACHMENT AREA,T 37,AH,,T 38,AH,,T 39,AH,FLOODWAY,T 40,AO,,T 41,AO,COASTAL FLOODPLAIN,T 42,AO,FLOODWAY,T 43,AREA NOT INCLUDED,,F 44,AREA NOT INCLUDED,,T 45,AREA NOT INCLUDED,,U 46,D,,F 47,D,,T 48,D,AREA WITH FLOOD RISK DUE TO LEVEE,F 49,OPEN WATER,,F 50,OPEN WATER,,T 51,OPEN WATER,,U 52,V,,T 53,V,COASTAL FLOODPLAIN,T 54,VE,,T 55,VE,,T 56,VE,COASTAL FLOODPLAIN,T 57,VE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 58,X,,F 59,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,F 60,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,T 61,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,U 62,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,F 63,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,F 64,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COASTAL ZONE,F 65,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COMBINED RIVERINE AND COASTAL ZONE,F 66,X,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",F 67,X,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",F 68,X,1 PCT DEPTH LESS THAN 1 FOOT,F 69,X,1 PCT DRAINAGE AREA LESS THAN 1 SQUARE MILE,F 70,X,1 PCT FUTURE CONDITIONS,F 71,X,1 PCT FUTURE CONDITIONS CONTAINED IN STRUCTURE,F 72,X,"1 PCT FUTURE CONDITIONS, COMMUNITY ENCROACHMENT",F 73,X,"1 PCT FUTURE CONDITIONS, FLOODWAY",F 74,X,"1 PCT FUTURE IN STRUCTURE, COMMUNITY ENCROACHMENT",F 75,X,"1 PCT FUTURE IN STRUCTURE, FLOODWAY",F 76,X,AREA OF MINIMAL FLOOD HAZARD, 77,X,AREA OF MINIMAL FLOOD HAZARD,F 78,X,AREA OF MINIMAL FLOOD HAZARD,T 79,X,AREA OF MINIMAL FLOOD HAZARD,U 80,X,AREA OF SPECIAL CONSIDERATION,F 81,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,F 82,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 83,X,FLOWAGE EASEMENT AREA,F 84,X,1 PCT FUTURE CONDITIONS,T 85,AH,COASTAL FLOODPLAIN,T 86,AE,,U 87,AE,FLOODWAY,F 88,X,AREA WITH REDUCED FLOOD HAZARD DUE TO ACCREDITED LEVEE SYSTEM,F 89,X,530,F 90,VE,100,T 91,AE,100,T 92,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO LEVEE SYSTEM,T 93,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO NON-ACCREDITED LEVEE SYSTEM,T 94,A,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 250,AREA NOT INCLUDED,Not Mapped by FEMA, Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterCoordinate system Update:
Notably, this dataset will be provided in NAD 83 Connecticut State Plane (2011) (EPSG 2234) projection, instead of WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857) which is the coordinate system of the 2023 dataset and will remain in Connecticut State Plane moving forward.
Ownership Suppression and Data Access:
The updated dataset now includes parcel data for all towns across the state, with some towns featuring fully suppressed ownership information. In these instances, the owner’s name will be replaced with the label "Current Owner," the co-owner’s name will be listed as "Current Co-Owner," and the mailing address will appear as the property address itself. For towns with suppressed ownership data, users should be aware that there was no "Suppression" field in the submission to verify specific details. This measure was implemented this year to help verify compliance with Suppression.
New Data Fields:
The new dataset introduces the "Land Acres" field, which will display the total acreage for each parcel. This additional field allows for more detailed analysis and better supports planning, zoning, and property valuation tasks. An important new addition is the FIPS code field, which provides the Federal Information Processing Standards (FIPS) code for each parcel’s corresponding block. This allows users to easily identify which block the parcel is in.
Updated Service URL:
The new parcel service URL includes all the updates mentioned above, such as the improved coordinate system, new data fields, and additional geospatial information. Users are strongly encouraged to transition to the new service as soon as possible to ensure that their workflows remain uninterrupted. The URL for this service will remain persistent moving forward. Once you have transitioned to the new service, the URL will remain constant, ensuring long term stability.
For a limited time, the old service will continue to be available, but it will eventually be retired. Users should plan to switch to the new service well before this cutoff to avoid any disruptions in data access.
The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2024 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually.
These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on 10/31/2024 from data collected in 2023-2024. Data was processed using Python scripts and ArcGIS Pro, ensuring standardization and integration of the data.
CAMA Notes:
The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,353,595 entries and information on property assessments and other relevant attributes.
CAMA was provided by the towns.
Spatial Data Notes:
Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,290,196 parcels.
No alteration has been made to the spatial geometry of the data.
Fields that are associated with CAMA data were provided by towns.
The data fields that have information from the CAMA were sourced from the towns’ CAMA data.
If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.
Linking fields were renamed to "Link".
All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.
Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.
Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.
Field names for town (Muni, Municipality) were renamed to "Town Name".
The attributes included in the data:
Town Name
Owner
Co-Owner
Link
Editor
Edit Date
Collection year – year the parcels were submitted
Location
Mailing Address
Mailing City
Mailing State
Assessed Total
Assessed Land
Assessed Building
Pre-Year Assessed Total
Appraised Land
Appraised Building
Appraised Outbuilding
Condition
<span
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Pursuant to Section 7-100l of the Connecticut General Statutes, each municipality is required to transmit a digital parcel file and an accompanying assessor’s database file (known as a CAMA report), to its respective regional council of governments (COG) by May 1 annually. The dataset has combined the Parcels and Computer-Assisted Mass Appraisal (CAMA) data for 2025 into a single dataset. This dataset is designed to make it easier for stakeholders and the GIS community to use and access the information as a geospatial dataset. Included in this dataset are geometries for all 169 municipalities and attribution from the CAMA data for all but one municipality. These data were gathered from the CT municipalities by the COGs and then submitted to CT OPM. This dataset was created on September 2025 from data collected in 2024-2025. Data was processed using Python scripts and ArcGIS Pro for standardization and integration of the data. To learn more about Parcel and CAMA in CT visit our Parcels Page in the Geodata Portal.Coordinate system: This dataset is provided in NAD 83 Connecticut State Plane (2011) (EPSG 2234) projection as it was for 2024. Prior versions were provided at WGS 1984 Web Mercator Auxiliary Sphere (EPSG 3857). Ownership Suppression: The updated dataset includes parcel data for all towns across the state, with some towns featuring fully suppressed ownership information. In these instances, the owner’s name was replaced with the label "Current Owner," the co-owner’s name will be listed as "Current Co-Owner," and the mailing address will appear as the property address itself. For towns with fully suppressed ownership data, please note that no "Suppression" field was included in the submission to confirm these details and this labeling approach was implemented as the solution.New Data Fields:The new dataset introduces the “Property Zip” and “Mailing Zip” fields, which will display the zip codes for the owner and property.Service URL:In 2024, we implemented a stable URL to maintain public access to the most up-to-date data layer. Users are strongly encouraged to transition to the new service as soon as possible to ensure uninterrupted workflows. This URL will remain persistent, providing long-term stability for your applications and integrations. Once you’ve transitioned to the new service, no further URL changes will be necessary.CAMA Notes:The CAMA underwent several steps to standardize and consolidate the information. Python scripts were used to concatenate fields and create a unique identifier for each entry. The resulting dataset contains 1,354,720 entries and information on property assessments and other relevant attributes.CAMA was provided by the towns.Spatial Data Notes:Data processing involved merging the parcels from different municipalities using ArcGIS Pro and Python. The resulting dataset contains 1,282,833 parcels.No alteration has been made to the spatial geometry of the data.Fields that are associated with CAMA data were provided by towns.The data fields that have information from the CAMA were sourced from the towns’ CAMA data.If no field for the parcels was provided for linking back to the CAMA by the town a new field within the original data was selected if it had a match rate above 50%, that joined back to the CAMA.Linking fields were renamed to "Link".All linking fields had a census town code added to the beginning of the value to create a unique identifier per town.Any field that was not town name, Location, Editor, Edit Date, or a field associated back to the CAMA, was not used in the creation of this Dataset.Only the fields related to town name, location, editor, edit date, and link fields associated with the towns’ CAMA were included in the creation of this dataset. Any other field provided in the original data was deleted or not used.Field names for town (Muni, Municipality) were renamed to "Town Name".Attributes included in the data: Town Name OwnerCo-OwnerLinkEditorEdit DateCollection year – year the parcels were submittedLocationProperty ZipMailing AddressMailing CityMailing StateMailing ZipAssessed TotalAssessed LandAssessed BuildingPre-Year Assessed Total Appraised LandAppraised BuildingAppraised OutbuildingConditionModelValuationZoneState UseState Use DescriptionLand Acre Living AreaEffective AreaTotal roomsNumber of bedroomsNumber of BathsNumber of Half-BathsSale PriceSale DateQualifiedOccupancyPrior Sale PricePrior Sale DatePrior Book and PagePlanning RegionFIPS Code *Please note that not all parcels have a link to a CAMA entry.*If any discrepancies are discovered within the data, whether pertaining to geographical inaccuracies or attribute inaccuracy, please directly contact the respective municipalities to request any necessary amendmentsAdditional information about the specifics of data availability and compliance will be coming soon.If you need a WFS service for use in specific applications : Please Click HereContact: opm.giso@ct.gov
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into tree and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Trees is useful in applications such as high-quality 3D basemap creation, urban planning, forestry workflows, and planning climate change response.Trees could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Tree in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.InputThe model is trained with classified LiDAR that follows the LINZ base specification. The input data should be similar to this specification.Note: The model is dependent on additional attributes such as Intensity, Number of Returns, etc, similar to the LINZ base specification. This model is trained to work on classified and unclassified point clouds that are in a projected coordinate system, in which the units of X, Y and Z are based on the metric system of measurement. If the dataset is in degrees or feet, it needs to be re-projected accordingly. The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 5 Trees / High-vegetationApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Wellington CityTesting dataset - Tawa CityValidation/Evaluation dataset - Christchurch City Dataset City Training Wellington Testing Tawa Validating ChristchurchModel architectureThis model uses the PointCNN model architecture implemented in ArcGIS API for Python.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.991200 0.975404 0.983239 High Vegetation 0.933569 0.975559 0.954102Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 80%, Test: 20%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-121.69 m to 26.84 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-15 to +15 Maximum points per block8192 Block Size20 Meters Class structure[0, 5]Sample resultsModel to classify a dataset with 5pts/m density Christchurch city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story
Facebook
TwitterImpervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. Phenomenon Mapped: The proportion of the landscape that is impervious to water.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the lower 48 conterminous US states. A small portion of Alaska around Anchorage displays a time series of 2001, 2011, and 2016. Hawaii, Puerto Rico, and the US Virgin Islands unfortunately only have data for 2001 so there is only one image in the series. This information may be used in conjunction with the USA NLCD Land Cover layer.Units: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: CONUS, Hawaii, A portion of Alaska around Anchorage, District of Columbia, Puerto RicoNoData Value: 127Source: Multi-Resolution Land Characteristics ConsortiumPublication Date: June 30, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every few years in the lower 48 states, in 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are produced with a different methodology, and are not set up to be directly compared the way the CONUS time series is. To analyze change between the latest two data years for this portion of Alaska, be sure to use the NLCD 2011 to 2016 Developed Impervious Change raster. For Hawaii and Puerto Rico, only the year 2001 is available for download at the MRLC.North America Albers ProjectionAll NLCD layers in the Living Atlas are projected into the North America Albers Projection before serving in the Living Atlas. This allows the coterminous USA, Puerto Rico, Hawaii, and Alaska to be served from a common projection and analyzed together. In tests performed by esri, the NLCD land cover classes after projection to North America Albers had the exact same number of pixels in input as output, but pixels had been slightly rearranged after projection. Processing TemplatesThis layer comes with two color schemes, cool and warm. The default is a cool gray color scheme, designed to look good on light and dark gray web maps. To choose a warm color scheme which was the default until 2021, change the processing template to the Impervious Surface Warm Renderer in your map client.Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterThis dynamic image service provides float values representing ground heights in meters, based on 3DEP seamless 1 arc-second data from USGS 3D Elevation Program (3DEP). Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: AnnuallyCoverage: conterminous United States, Hawaii, Alaska, Puerto Rico, Territorial Islands of the United States; Canada and Mexico.Data Source: The data for this layer comes from 3DEP seamless 1 arc-second dataset from the USGS's 3D Elevation Program with original source data in its native coordinate system.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as hillshade, slope, consider using the appropriate server-side function defined on this service.
Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. The layer is restricted to a 24,000 x 24,000 pixel limit.
NOTE: The image service uses North America Albers Equal Area Conic projection (WKID: 102008) and resamples the data dynamically to the requested projection, extent and pixel size. For analyses requiring the highest accuracy, when using ArcGIS Desktop, you will need to use native coordinates (GCS_North_American_1983, WKID: 4269) and specify the native resolutions (0.0002777777777779 degrees) as the cell size geoprocessing environment setting and ensure that the request is aligned with the source pixels.
Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates. Slope Degrees Slope Percentage Aspect Hillshade Slope Degrees MapThis layer has query, identify, and export image services available. The layer is restricted to a 24,000 x 24,000 pixel limit.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Facebook
TwitterThe US National Park Service manages 84.4 million acres that include the United States" 63 national parks, many national monuments, and other conservation and historical properties. These lands range from the 13 million acre Wrangell-St. Elias National Park and Preserve in Alaska to the 0.02 acre Thaddeus Kosciuszko National Memorial in Pennsylvania.Dataset SummaryPhenomenon Mapped: Administrative boundaries of U.S. National Park Service landsGeographic Extent: 50 United States, District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana IslandsData Coordinate System: WGS 1984Visible Scale: The data is visible at all scalesSource: NPS Administrative Boundaries of National Park System Units layerPublication Date: April, 2025This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Park Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "national park service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "national park service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe U.S. Defense Department oversees the USA"s armed forces and manages over 30 million acres of land. With over 2.8 million service members and civilian employees the department is the world"s largest employer.Dataset SummaryPhenomenon Mapped: Lands managed by the U.S. Department of DefenseGeographic Extent: United States, Guam, Puerto RicoData Coordinate System: WGS 1984Visible Scale: The data is visible at all scalesSource: DOD Military Installations Ranges and Training Areas layer. Publication Date: May 2025This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Department of Defense lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "department of defense" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "department of defense" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterSoil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent clay (clay).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, clay is defined as particles that are smaller than 0.002mm, making them only visible in an electron microscope. Clay soils contain low amounts of air, and water drains through them very slowly.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for percent clay are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of clay particles (< 0.002 mm) in the fine earth fraction in g/100g (%)Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for clay were used to create this layer. You may access the percent clay in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Facebook
TwitterThis layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Facebook
TwitterOne-eighth of the United States (247.3 million acres) is managed by the Bureau of Land Management. As part of the Department of the Interior, the agency oversees the 30 million acre National Landscape Conservation System, a collection of lands that includes 221 wilderness areas, 23 national monuments and 636 other protected areas. Bureau of Land Management Lands contain over 63,000 oil and gas wells and provide forage for over 18,000 grazing permit holders on 155 million acres of land. Dataset SummaryPhenomenon Mapped: United States lands managed by the Bureau of Land ManagementGeographic Extent: Contiguous United States and AlaskaData Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales larger than 1:2,000,000.Source: BLM Surface Management Agency layer, Rasterized by Esri from features May 2025.Publication Date: December 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Bureau of Land Management lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "bureau of land management" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "bureau of land management" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThis eelgrass layer includes the maximum extent of eelgrass beds that have been surveyed in the San Francisco Bay shown in green. It was created by merging the Bay-wide eelgrass surveys conducted by Merkel & Associates, Inc. (Merkel) in 2003, 2009, 2014, and a Richardson Bay survey conducted by Merkel in 2019. Merkel has granted permission for public use of these data. These eelgrass surveys represent the best available data on comprehensive eelgrass extent throughout San Francisco Bay in 2021 and are developed using a combination of acoustic and aerial surveys and site-specific ground truthing. This layer may be used as a reference to determine potential direct and indirect impacts to eelgrass habitat from dredging projects. These data do not replace the need for site-specific eelgrass surveys.Data from the 2003, 2009, and 2014 eelgrass surveys and associated Merkel reports which include information on mapping methodology are available for download on the San Francisco Estuary Institute’s (SFEI) website. Methods for creating this layer are as follows:Downloaded the Merkel Baywide Eelgrass Surveys for 2003, 2009, and 2014 from SFEI and combined into a single layer. Obtained original Richardson Bay 2019 eelgrass survey data from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to the NAD 1983 UTM Zone 10N coordinate system. Ran union of both the SFEI and Richardson Bay 2019 layers. Merged features to create one single attribute table for eelgrass cover from all survey years. Removed extraneous columns in the attribute table, recalculated area fields based on new extent, and applied symbology.
Facebook
TwitterThe Intelligent Road Network dataset provided by the Transport Department includes traffic directions, turning restrictions at road junctions, stopping restrictions, on-street parking spaces and other road traffic data for supporting the development of intelligent transport system, fleet management system and car navigation etc. by the public.
Esri China (HK) has prepared this File Geodatabase containing a Network Dataset for the Intelligent Road Network to support Esri GIS users to use the dataset in ArcGIS Pro without going through long configuration steps. Please refer to this guideline to use the Road Network Dataset in ArcGIS Pro for routing analysis. This network dataset has been configured and deployed the following restrictions:
Speed LimitTurnIntersectionTraffic FeaturesPedestrian ZoneTraffic Sign of ProhibitionVehicle RestrictionThe coordinate system of this dataset is Hong Kong 1980 Grid.The objectives of uploading the network dataset to ArcGIS Online platform are to facilitate our Hong Kong ArcGIS users to utilize the data in a spatial ready format and save their data conversion effort.For details about the schema and information about the content and relationship of the data, please refer to the data dictionary provided by Transport Department at https://data.gov.hk/en-data/dataset/hk-td-tis_15-road-network-v2.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.Dataset last updated on: 2021 July
Facebook
TwitterAlbedo measures the reflectivity of an object. Surfaces that are black reflect little light and have low albedo values while white surfaces reflect most of the light striking them and have high albedo values. Albedo is measured on a scale of 0 (no light reflected) to 1 (100% of light reflected). Albedo is measured using a scale of 0 (no light reflected) to 1 (100% of the light is reflected). Divide each integer"s raw pixel value by one hundred to find its representative albedo value. Thus, a pixel with the value of 24 represents an albedo value of 0.24 while a pixel with the value of 38 represents the albedo value 0.38. Dataset SummaryPhenomenon Mapped: Soil albedoGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: NoneCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Typical albedo values:Fresh asphalt 0.04Worn asphalt 0.12Confier forest 0.08 – 0.15Deciduous trees 0.15 – 0.18Bare soil 0.17Green grass 0.25Desert sand 0.4New concrete 0.55Ocean ice 0.5 – 0.7Fresh snow 0.8-0.9 Albedo is used in climate and water cycle models. Estimates of evapotranspiration rate and prediction of soil water balances require albedo values. Soil hydrology models that are part of water quality and resource assessment programs also require albedo. Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for soil albedo is derived from the gSSURGO component table field Albedo Dry - Representative Value (albedodry_r). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "albedo" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "albedo" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterSoil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable organic carbon density (ocd) which measures carbon mass in proportion to volume of soil (mass divided by volume.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for organic carbon density are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Organic carbon density in kg/m³Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for ocd were used to create this layer. You may access organic carbon density values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Facebook
TwitterThe US Fish and Wildlife Service manages the United States" 573 National Wildlife Refuges and thousands of small wetlands and other special management areas. These lands cover more than 150 million acres that protect fish, wildlife, plants, and their habitats.Dataset SummaryPhenomenon Mapped: United States lands managed by the US Fish and Wildlife ServiceGeographic Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, and the Northern Mariana Islands. The layer also includes Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Data Coordinate System: WGS 1984Visible Scale: The data is visible at all scales.Source: USFWS Interest Simplified layerPublication Date: January 2024This layer is a view of the USA Federal Lands layer. A filter has been used on this layer to eliminate non-Fish and Wildlife Service lands. For more information on layers for other agencies see the USA Federal Lands layer.What can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "fish and wildlife service" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box expand Portal if necessary then select Living Atlas. Type "fish and wildlife service" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shape file or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe combined processes of evaporation and transpiration, known as evapotranspiration (ET), plays a key role in the water cycle. Precipitation that falls on land can either run off in streams and rivers, soak into the ground, or return to the atmosphere through evapotranspiration. Water that evaporates returns directly to the atmosphere while water that is transpired is taken up by plant roots and lost to the atmosphere through the leaves.Evapotranspiration data can be used to calculate regional water and energy balance and soil water status and provides key information for water resource management. Potential evapotranspiration, the amount of ET that would occur if soil moisture were not limited, is a purely meteorological characteristic, based on air temperature, solar radiation, and wind speed. Actual evapotranspiration also depends on water availability, so it might occur at very close to the potential rate in a rainforest, but be much lower in a desert despite the higher potential there.Dataset SummaryPhenomenon Mapped: EvapotranspirationUnits: Millimeters per yearCell Size: 927.6623821756539 metersSource Type: ContinuousPixel Type: 16-bit unsigned integerData Coordinate System: Web Mercator Auxiliary SphereExtent: Global Source: University of Montana Numerical Terradynamic Simulation GroupPublication Date: March 10, 2015ArcGIS Server URL: https://landscape6.arcgis.com/arcgis/This layer provides access to a 1km cell sized raster of average annual evaporative loss from the land surface, measured in mm/year. Data are from the MOD16 Global Evapotranspiration Product, which is derived from MODIS imagery by a team of researchers at the University of Montana. This algorithm, which involves estimating land surface temperature and albedo and using them to solve the Penman-Monteith equation, is not valid over urban or barren land so these are shown as NoData, as is any open water. For all other pixels, the algorithm was used to estimate evapotranspiration for every 8-day period from 2000 to 2014 and these estimates have been averaged together to come up with the annual normal. You can also get access to the monthly totals using the MODIS Toolbox.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "evapotranspiration" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "evapotranspiration" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.