3 datasets found
  1. Linking water age, nitrate export regime, and nitrate isotope...

    • zenodo.org
    Updated Mar 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhongjie Yu; Zhongjie Yu (2023). Linking water age, nitrate export regime, and nitrate isotope biogeochemistry in a tile-drained agricultural field [Dataset] [Dataset]. http://doi.org/10.5281/zenodo.7761523
    Explore at:
    Dataset updated
    Mar 23, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Zhongjie Yu; Zhongjie Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the SAS model input data and the model results that can be used to reproduce the water age results for the three study tiles presented in Yu et al. Linking water age, nitrate export regime, and nitrate isotope biogeochemistry in a tile-drained agricultural field

    File 1: SAS_model_input_TileX.csv

    The input data for the SAS model calibration for the three tiles.

    File 2: behavioral_parameter_sets_Model#1_TileX.csv

    The behavioral parameter sets obtained from the calibration of SAS model 1 (i.e., time-invariant kQ).

    File 3: behavioral_parameter_sets_Model#2_TileX.csv

    The behavioral parameter sets obtained from the calibration of SAS model 2 (i.e., time-variant kQ).

    File 4: Cl_simulation_results_Model#1_TileX.csv

    Simulated chloride concentration based on the optimal parameter set of SAS model 1 (i.e., time-invariant kQ).

    File 5: Cl_simulation_results_Model#2_TileX.csv

    Simulated chloride concentration based on the optimal parameter set of SAS model 2 (i.e., time-variant kQ).

    File 6: median_water_age_Model#1_TileX.csv

    Median water age of tile discharge based on the optimal parameter set of SAS model 1 (i.e., time-invariant kQ).

    File 7: median_water_age_Model#2_TileX.csv

    Median water age of tile discharge based on the optimal parameter set of SAS model 2 (i.e., time-variant kQ).

    File 8: File_column_names.txt

    A text file that explains the column names for each file

  2. H

    Consumer Expenditure Survey (CE)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Consumer Expenditure Survey (CE) [Dataset]. http://doi.org/10.7910/DVN/UTNJAH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the consumer expenditure survey (ce) with r the consumer expenditure survey (ce) is the primo data source to understand how americans spend money. participating households keep a running diary about every little purchase over the year. those diaries are then summed up into precise expenditure categories. how else are you gonna know that the average american household spent $34 (±2) on bacon, $826 (±17) on cellular phones, and $13 (±2) on digital e-readers in 2011? an integral component of the market basket calculation in the consumer price index, this survey recently became available as public-use microdata and they're slowly releasing historical files back to 1996. hooray! for a t aste of what's possible with ce data, look at the quick tables listed on their main page - these tables contain approximately a bazillion different expenditure categories broken down by demographic groups. guess what? i just learned that americans living in households with $5,000 to $9,999 of annual income spent an average of $283 (±90) on pets, toys, hobbies, and playground equipment (pdf page 3). you can often get close to your statistic of interest from these web tables. but say you wanted to look at domestic pet expenditure among only households with children between 12 and 17 years old. another one of the thirteen web tables - the consumer unit composition table - shows a few different breakouts of households with kids, but none matching that exact population of interest. the bureau of labor statistics (bls) (the survey's designers) and the census bureau (the survey's administrators) have provided plenty of the major statistics and breakouts for you, but they're not psychic. if you want to comb through this data for specific expenditure categories broken out by a you-defined segment of the united states' population, then let a little r into your life. fun starts now. fair warning: only analyze t he consumer expenditure survey if you are nerd to the core. the microdata ship with two different survey types (interview and diary), each containing five or six quarterly table formats that need to be stacked, merged, and manipulated prior to a methodologically-correct analysis. the scripts in this repository contain examples to prepare 'em all, just be advised that magnificent data like this will never be no-assembly-required. the folks at bls have posted an excellent summary of what's av ailable - read it before anything else. after that, read the getting started guide. don't skim. a few of the descriptions below refer to sas programs provided by the bureau of labor statistics. you'll find these in the C:\My Directory\CES\2011\docs directory after you run the download program. this new github repository contains three scripts: 2010-2011 - download all microdata.R lo op through every year and download every file hosted on the bls's ce ftp site import each of the comma-separated value files into r with read.csv depending on user-settings, save each table as an r data file (.rda) or stat a-readable file (.dta) 2011 fmly intrvw - analysis examples.R load the r data files (.rda) necessary to create the 'fmly' table shown in the ce macros program documentation.doc file construct that 'fmly' table, using five quarters of interviews (q1 2011 thru q1 2012) initiate a replicate-weighted survey design object perform some lovely li'l analysis examples replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using unimputed variables replicate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t -tests using unimputed variables create an rsqlite database (to minimize ram usage) containing the five imputed variable files, after identifying which variables were imputed based on pdf page 3 of the user's guide to income imputation initiate a replicate-weighted, database-backed, multiply-imputed survey design object perform a few additional analyses that highlight the modified syntax required for multiply-imputed survey designs replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using imputed variables repl icate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t-tests using imputed variables replicate the %proc_reg() and %proc_logistic() macros found in "ce macros.sas" and provide some examples of regressions and logistic regressions using both unimputed and imputed variables replicate integrated mean and se.R match each step in the bls-provided sas program "integr ated mean and se.sas" but with r instead of sas create an rsqlite database when the expenditure table gets too large for older computers to handle in ram export a table "2011 integrated mean and se.csv" that exactly matches the contents of the sas-produced "2011 integrated mean and se.lst" text file click here to view these three scripts for...

  3. WIC Participant and Program Characteristics 2020

    • agdatacommons.nal.usda.gov
    docx
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Food and Nutrition Service, Office of Policy Support (2025). WIC Participant and Program Characteristics 2020 [Dataset]. http://doi.org/10.15482/USDA.ADC/1527885
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Food and Nutrition Servicehttps://www.fns.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Authors
    USDA Food and Nutrition Service, Office of Policy Support
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Background: In 1986, the Congress enacted Public Laws 99-500 and 99-591, requiring a biennial report on the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). In response to these requirements, FNS developed a prototype system that allowed for the routine acquisition of information on WIC participants from WIC State Agencies. Since 1992, State Agencies have provided electronic copies of these data to FNS on a biennial basis.FNS and the National WIC Association (formerly National Association of WIC Directors) agreed on a set of data elements for the transfer of information. In addition, FNS established a minimum standard dataset for reporting participation data. For each biennial reporting cycle, each State Agency is required to submit a participant-level dataset containing standardized information on persons enrolled at local agencies for the reference month of April. The 2020 Participant and Program Characteristics (PC2020) is the 17th to be completed using the prototype PC reporting system. In April 2020, there were 89 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and 33 Indian Tribal Organizations (ITOs).Processing methods and equipment used: Specifications on formats (“Guidance for States Providing Participant Data”) were provided to all State agencies in January 2020. This guide specified 20 minimum dataset (MDS) elements and 11 supplemental dataset (SDS) elements to be reported on each WIC participant. Each State Agency was required to submit all 20 MDS items and any SDS items collected by the State agency. Study date(s) and duration The information for each participant was from the participants’ most current WIC certification as of April 2020.Study spatial scale (size of replicates and spatial scale of study area): In April 2020, there were 89 State agencies: the 50 States, American Samoa, the District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and 33 Indian Tribal Organizations (ITOs).Level of true replication: UnknownSampling precision (within-replicate sampling or pseudoreplication):State Agency Data Submissions. PC2020 is a participant dataset consisting of 7,036,867 active records. The records, submitted to USDA by the State Agencies, comprise a census of all WIC enrollees, so there is no sampling involved in the collection of this data.PII Analytic Datasets. State agency files were combined to create a national census participant file of approximately 7 million records. The census dataset contains potentially personally identifiable information (PII) and is therefore not made available to the public.National Sample Dataset. The public use SAS analytic dataset made available to the public has been constructed from a nationally representative sample drawn from the census of WIC participants, selected by participant category. The national sample consists of 1 percent of the total number of participants, or 70,368 records. The distribution by category is 5,469 pregnant women, 6,131 breastfeeding women, 4,373 postpartum women, 16,817 infants, and 37,578 children.Level of subsampling (number and repeat or within-replicate sampling): The proportionate (or self-weighting) sample was drawn by WIC participant category: pregnant women, breastfeeding women, postpartum women, infants, and children. In this type of sample design, each WIC participant has the same probability of selection across all strata. Sampling weights are not needed when the data are analyzed. In a proportionate stratified sample, the largest stratum accounts for the highest percentage of the analytic sample.Study design (before–after, control–impacts, time series, before–after-control–impacts): None – Non-experimentalDescription of any data manipulation, modeling, or statistical analysis undertaken: Each entry in the dataset contains all MDS and SDS information submitted by the State agency on the sampled WIC participant. In addition, the file contains constructed variables used for analytic purposes. To protect individual privacy, the public use file does not include State agency, local agency, or case identification numbers.Description of any gaps in the data or other limiting factors: All State agencies provided data on a census of their WIC participants.Resources in this dataset:Resource Title: WIC PC 2020 National Sample File Public Use Codebook.; File Name: PC2020 National Sample File Public Use Codebook.docx; Resource Description: WIC PC 2020 National Sample File Public Use CodebookResource Title: WIC PC 2020 Public Use CSV Data.; File Name: wicpc2020_public_use.csv; Resource Description: WIC PC 2020 Public Use CSV DataResource Title: WIC PC 2020 Data Set SAS, R, SPSS, Stata.; File Name: PC2020 Ag Data Commons.zipResource; Description: WIC PC 2020 Data Set SAS, R, SPSS, Stata One dataset in multiple formats

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zhongjie Yu; Zhongjie Yu (2023). Linking water age, nitrate export regime, and nitrate isotope biogeochemistry in a tile-drained agricultural field [Dataset] [Dataset]. http://doi.org/10.5281/zenodo.7761523
Organization logo

Linking water age, nitrate export regime, and nitrate isotope biogeochemistry in a tile-drained agricultural field [Dataset]

Explore at:
Dataset updated
Mar 23, 2023
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Zhongjie Yu; Zhongjie Yu
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This repository contains the SAS model input data and the model results that can be used to reproduce the water age results for the three study tiles presented in Yu et al. Linking water age, nitrate export regime, and nitrate isotope biogeochemistry in a tile-drained agricultural field

File 1: SAS_model_input_TileX.csv

The input data for the SAS model calibration for the three tiles.

File 2: behavioral_parameter_sets_Model#1_TileX.csv

The behavioral parameter sets obtained from the calibration of SAS model 1 (i.e., time-invariant kQ).

File 3: behavioral_parameter_sets_Model#2_TileX.csv

The behavioral parameter sets obtained from the calibration of SAS model 2 (i.e., time-variant kQ).

File 4: Cl_simulation_results_Model#1_TileX.csv

Simulated chloride concentration based on the optimal parameter set of SAS model 1 (i.e., time-invariant kQ).

File 5: Cl_simulation_results_Model#2_TileX.csv

Simulated chloride concentration based on the optimal parameter set of SAS model 2 (i.e., time-variant kQ).

File 6: median_water_age_Model#1_TileX.csv

Median water age of tile discharge based on the optimal parameter set of SAS model 1 (i.e., time-invariant kQ).

File 7: median_water_age_Model#2_TileX.csv

Median water age of tile discharge based on the optimal parameter set of SAS model 2 (i.e., time-variant kQ).

File 8: File_column_names.txt

A text file that explains the column names for each file

Search
Clear search
Close search
Google apps
Main menu