100+ datasets found
  1. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  2. d

    Replication Data for: Revisiting 'The Rise and Decline' in a Population of...

    • search.dataone.org
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill (2023). Replication Data for: Revisiting 'The Rise and Decline' in a Population of Peer Production Projects [Dataset]. http://doi.org/10.7910/DVN/SG3LP1
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill
    Description

    This archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.

  3. Storage and Transit Time Data and Code

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Felton; Andrew Felton (2024). Storage and Transit Time Data and Code [Dataset]. http://doi.org/10.5281/zenodo.11582455
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Felton; Andrew Felton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description


    Author: Andrew J. Felton
    Date: 5/5/2024

    This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis and figure production for the study entitled:

    "Global estimates of the storage and transit time of water through vegetation"

    Please note that 'turnover' and 'transit' are used interchangeably in this project.

    Data information:

    The data folder contains key data sets used for analysis. In particular:

    "data/turnover_from_python/updated/annual/multi_year_average/average_annual_turnover.nc" contains a global array summarizing five year (2016-2020) averages of annual transit, storage, canopy transpiration, and number of months of data. This is the core dataset for the analysis; however, each folder has much more data, including a dataset for each year of the analysis. Data are also available is separate .csv files for each land cover type. Oterh data can be found for the minimum, monthly, and seasonal transit time found in their respective folders. These data were produced using the python code found in the "supporting_code" folder given the ease of working with .nc and EASE grid in the xarray python module. R was used primarily for data visualization purposes. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here.

    #Code information

    Python scripts can be found in the "supporting_code" folder.

    Each R script in this project has a particular function:

    01_start.R: This script loads the R packages used in the analysis, sets the
    directory, and imports custom functions for the project. You can also load in the
    main transit time (turnover) datasets here using the `source()` function.

    02_functions.R: This script contains the custom function for this analysis,
    primarily to work with importing the seasonal transit data. Load this using the
    `source()` function in the 01_start.R script.

    03_generate_data.R: This script is not necessary to run and is primarily
    for documentation. The main role of this code was to import and wrangle
    the data needed to calculate ground-based estimates of aboveground water storage.

    04_annual_turnover_storage_import.R: This script imports the annual turnover and
    storage data for each landcover type. You load in these data from the 01_start.R script
    using the `source()` function.

    05_minimum_turnover_storage_import.R: This script imports the minimum turnover and
    storage data for each landcover type. Minimum is defined as the lowest monthly
    estimate.You load in these data from the 01_start.R script
    using the `source()` function.

    06_figures_tables.R: This is the main workhouse for figure/table production and
    supporting analyses. This script generates the key figures and summary statistics
    used in the study that then get saved in the manuscript_figures folder. Note that all
    maps were produced using Python code found in the "supporting_code"" folder.

  4. n

    Data from: Generalizable EHR-R-REDCap pipeline for a national...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +2more
    zip
    Updated Jan 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller (2022). Generalizable EHR-R-REDCap pipeline for a national multi-institutional rare tumor patient registry [Dataset]. http://doi.org/10.5061/dryad.rjdfn2zcm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2022
    Dataset provided by
    Harvard Medical School
    Massachusetts General Hospital
    Authors
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Objective: To develop a clinical informatics pipeline designed to capture large-scale structured EHR data for a national patient registry.

    Materials and Methods: The EHR-R-REDCap pipeline is implemented using R-statistical software to remap and import structured EHR data into the REDCap-based multi-institutional Merkel Cell Carcinoma (MCC) Patient Registry using an adaptable data dictionary.

    Results: Clinical laboratory data were extracted from EPIC Clarity across several participating institutions. Labs were transformed, remapped and imported into the MCC registry using the EHR labs abstraction (eLAB) pipeline. Forty-nine clinical tests encompassing 482,450 results were imported into the registry for 1,109 enrolled MCC patients. Data-quality assessment revealed highly accurate, valid labs. Univariate modeling was performed for labs at baseline on overall survival (N=176) using this clinical informatics pipeline.

    Conclusion: We demonstrate feasibility of the facile eLAB workflow. EHR data is successfully transformed, and bulk-loaded/imported into a REDCap-based national registry to execute real-world data analysis and interoperability.

    Methods eLAB Development and Source Code (R statistical software):

    eLAB is written in R (version 4.0.3), and utilizes the following packages for processing: DescTools, REDCapR, reshape2, splitstackshape, readxl, survival, survminer, and tidyverse. Source code for eLAB can be downloaded directly (https://github.com/TheMillerLab/eLAB).

    eLAB reformats EHR data abstracted for an identified population of patients (e.g. medical record numbers (MRN)/name list) under an Institutional Review Board (IRB)-approved protocol. The MCCPR does not host MRNs/names and eLAB converts these to MCCPR assigned record identification numbers (record_id) before import for de-identification.

    Functions were written to remap EHR bulk lab data pulls/queries from several sources including Clarity/Crystal reports or institutional EDW including Research Patient Data Registry (RPDR) at MGB. The input, a csv/delimited file of labs for user-defined patients, may vary. Thus, users may need to adapt the initial data wrangling script based on the data input format. However, the downstream transformation, code-lab lookup tables, outcomes analysis, and LOINC remapping are standard for use with the provided REDCap Data Dictionary, DataDictionary_eLAB.csv. The available R-markdown ((https://github.com/TheMillerLab/eLAB) provides suggestions and instructions on where or when upfront script modifications may be necessary to accommodate input variability.

    The eLAB pipeline takes several inputs. For example, the input for use with the ‘ehr_format(dt)’ single-line command is non-tabular data assigned as R object ‘dt’ with 4 columns: 1) Patient Name (MRN), 2) Collection Date, 3) Collection Time, and 4) Lab Results wherein several lab panels are in one data frame cell. A mock dataset in this ‘untidy-format’ is provided for demonstration purposes (https://github.com/TheMillerLab/eLAB).

    Bulk lab data pulls often result in subtypes of the same lab. For example, potassium labs are reported as “Potassium,” “Potassium-External,” “Potassium(POC),” “Potassium,whole-bld,” “Potassium-Level-External,” “Potassium,venous,” and “Potassium-whole-bld/plasma.” eLAB utilizes a key-value lookup table with ~300 lab subtypes for remapping labs to the Data Dictionary (DD) code. eLAB reformats/accepts only those lab units pre-defined by the registry DD. The lab lookup table is provided for direct use or may be re-configured/updated to meet end-user specifications. eLAB is designed to remap, transform, and filter/adjust value units of semi-structured/structured bulk laboratory values data pulls from the EHR to align with the pre-defined code of the DD.

    Data Dictionary (DD)

    EHR clinical laboratory data is captured in REDCap using the ‘Labs’ repeating instrument (Supplemental Figures 1-2). The DD is provided for use by researchers at REDCap-participating institutions and is optimized to accommodate the same lab-type captured more than once on the same day for the same patient. The instrument captures 35 clinical lab types. The DD serves several major purposes in the eLAB pipeline. First, it defines every lab type of interest and associated lab unit of interest with a set field/variable name. It also restricts/defines the type of data allowed for entry for each data field, such as a string or numerics. The DD is uploaded into REDCap by every participating site/collaborator and ensures each site collects and codes the data the same way. Automation pipelines, such as eLAB, are designed to remap/clean and reformat data/units utilizing key-value look-up tables that filter and select only the labs/units of interest. eLAB ensures the data pulled from the EHR contains the correct unit and format pre-configured by the DD. The use of the same DD at every participating site ensures that the data field code, format, and relationships in the database are uniform across each site to allow for the simple aggregation of the multi-site data. For example, since every site in the MCCPR uses the same DD, aggregation is efficient and different site csv files are simply combined.

    Study Cohort

    This study was approved by the MGB IRB. Search of the EHR was performed to identify patients diagnosed with MCC between 1975-2021 (N=1,109) for inclusion in the MCCPR. Subjects diagnosed with primary cutaneous MCC between 2016-2019 (N= 176) were included in the test cohort for exploratory studies of lab result associations with overall survival (OS) using eLAB.

    Statistical Analysis

    OS is defined as the time from date of MCC diagnosis to date of death. Data was censored at the date of the last follow-up visit if no death event occurred. Univariable Cox proportional hazard modeling was performed among all lab predictors. Due to the hypothesis-generating nature of the work, p-values were exploratory and Bonferroni corrections were not applied.

  5. r

    R codes and dataset for Visualisation of Diachronic Constructional Change...

    • researchdata.edu.au
    Updated Apr 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg (2019). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768
    Explore at:
    Dataset updated
    Apr 1, 2019
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg; Gede Primahadi Wijaya Rajeg
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Publication


    Primahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387

    Description of R codes and data files in the repository

    This repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).

    The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).

    These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt.

    Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.

    Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).

    The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

  6. d

    Child 1: Nutrient and streamflow model-input data

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Child 1: Nutrient and streamflow model-input data [Dataset]. https://catalog.data.gov/dataset/child-1-nutrient-and-streamflow-model-input-data
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    Trends in nutrient fluxes and streamflow for selected tributaries in the Lake Erie watershed were calculated using monitoring data at 10 locations. Trends in flow-normalized nutrient fluxes were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Site information and streamflow and water-quality records are contained in 3 zipped files named as follows: INFO (site information), Daily (daily streamflow records), and Sample (water-quality records). The INFO, Daily (flow), and Sample files contain the input data, by water-quality parameter and by site as .csv files, used to run trend analyses. These files were generated by the R (version 3.1.2) software package called EGRET - Exploration and Graphics for River Trends (version 2.5.1) (Hirsch and DeCicco, 2015), and can be used directly as input to run graphical procedures and WRTDS trend analyses using EGRET R software. The .csv files are identified according to water-quality parameter (TP, SRP, TN, NO23, and TKN) and site reference number (e.g. TPfiles.1.INFO.csv, SRPfiles.1.INFO.csv, TPfiles.2.INFO.csv, etc.). Water-quality parameter abbreviations and site reference numbers are defined in the file "Site-summary_table.csv" on the landing page, where there is also a site-location map ("Site_map.pdf"). Parameter information details, including abbreviation definitions, appear in the abstract on the Landing Page. SRP data records were available at only 6 of the 10 trend sites, which are identified in the file "site-summary_table.csv" (see landing page) as monitored by the organization NCWQR (National Center for Water Quality Research). The SRP sites are: RAIS, MAUW, SAND, HONE, ROCK, and CUYA. The model-input dataset is presented in 3 parts: 1. INFO.zip (site information) 2. Daily.zip (daily streamflow records) 3. Sample.zip (water-quality records) Reference: Hirsch, R.M., and De Cicco, L.A., 2015 (revised). User Guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R Packages for Hydrologic Data, Version 2.0, U.S. Geological Survey Techniques Methods, 4-A10. U.S. Geological Survey, Reston, VA., 93 p. (at: http://dx.doi.org/10.3133/tm4A10).

  7. Data from: Optimized SMRT-UMI protocol produces highly accurate sequence...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Westfall; Mullins James (2023). Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies [Dataset]. http://doi.org/10.5061/dryad.w3r2280w0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    HIV Prevention Trials Network
    HIV Vaccine Trials Networkhttp://www.hvtn.org/
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    PEPFAR
    Authors
    Dylan Westfall; Mullins James
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies. Methods This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies" Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005 For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub. The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub. The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results. Sequence_Analysis.Rmd has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd and Figures.Rmd. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program. To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper. Using Identifying_Recombinant_Reads.Rmd, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd. Figures.Rmd used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.

  8. f

    Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    figshare
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  9. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  10. R scripts and data files

    • figshare.com
    zip
    Updated Feb 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Viktoria Wagner (2021). R scripts and data files [Dataset]. http://doi.org/10.6084/m9.figshare.13697329.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 2, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Viktoria Wagner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The uploaded files on Figshare include the data and R scripts for data filtering, the GAM/qGAMs and Random Forest analyses, implemented in the manuscript Wagner et al. (2021) Alien plant invasion hotspots and invasion debt in European woodlands. Not included are the extraction and preparation of predictor and response variables (given that some variables had to be prepared in QGIS and ArcGIS), the R script for preparing Fig. 1 (map) and data summary tables (since these can be easily produced). These excluded files, however, can be requested from the first author (viktoria.wagner@ualberta.ca).

    The data include only the most essential data from the European Vegetation Archive. To retrieve more information for plots, including species abundances, permission must be requested from the individual Custodians (for more information, contact chytry@sci.muni.cz).Check the Readme.txt file for meta-data.

  11. v

    United States import data of Blue r from China

    • volza.com
    csv
    Updated May 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza.LLC (2021). United States import data of Blue r from China [Dataset]. https://www.volza.com/imports-united-states/united-states-import-data-of-blue+r-from-china
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 10, 2021
    Dataset provided by
    Volza.LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2014 - Sep 30, 2021
    Area covered
    China, United States
    Variables measured
    Count of exporters, Count of importers, Count of shipments, Sum of import value
    Description

    1116 United States import shipment records of Blue r from China with prices, volume & current Buyer’s suppliers relationships based on actual United States import trade database.

  12. w

    Randomized Hourly Load Data for use with Taxonomy Distribution Feeders

    • data.wu.ac.at
    application/unknown
    Updated Aug 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy (2017). Randomized Hourly Load Data for use with Taxonomy Distribution Feeders [Dataset]. https://data.wu.ac.at/schema/data_gov/NWYwYmFmYTItOWRkMC00OWM0LTk3OGYtZDcyYzZiOWY5N2Ez
    Explore at:
    application/unknownAvailable download formats
    Dataset updated
    Aug 29, 2017
    Dataset provided by
    Department of Energy
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset was developed by NREL's distributed energy systems integration group as part of a study on high penetrations of distributed solar PV [1]. It consists of hourly load data in CSV format for use with the PNNL taxonomy of distribution feeders [2]. These feeders were developed in the open source GridLAB-D modelling language [3]. In this dataset each of the load points in the taxonomy feeders is populated with hourly averaged load data from a utility in the feeder’s geographical region, scaled and randomized to emulate real load profiles. For more information on the scaling and randomization process, see [1].

    The taxonomy feeders are statistically representative of the various types of distribution feeders found in five geographical regions of the U.S. Efforts are underway (possibly complete) to translate these feeders into the OpenDSS modelling language.

    This data set consists of one large CSV file for each feeder. Within each CSV, each column represents one load bus on the feeder. The header row lists the name of the load bus. The subsequent 8760 rows represent the loads for each hour of the year. The loads were scaled and randomized using a Python script, so each load series represents only one of many possible randomizations. In the header row, "rl" = residential load and "cl" = commercial load. Commercial loads are followed by a phase letter (A, B, or C). For regions 1-3, the data is from 2009. For regions 4-5, the data is from 2000.

    For use in GridLAB-D, each column will need to be separated into its own CSV file without a header. The load value goes in the second column, and corresponding datetime values go in the first column, as shown in the sample file, sample_individual_load_file.csv. Only the first value in the time column needs to written as an absolute time; subsequent times may be written in relative format (i.e. "+1h", as in the sample). The load should be written in P+Qj format, as seen in the sample CSV, in units of Watts (W) and Volt-amps reactive (VAr). This dataset was derived from metered load data and hence includes only real power; reactive power can be generated by assuming an appropriate power factor. These loads were used with GridLAB-D version 2.2.

    Browse files in this dataset, accessible as individual files and as a single ZIP file. This dataset is approximately 242MB compressed or 475MB uncompressed.

    For questions about this dataset, contact andy.hoke@nrel.gov.

    If you find this dataset useful, please mention NREL and cite [1] in your work.

    References:

    [1] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, “Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders,” IEEE Transactions on Sustainable Energy, April 2013, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6357275 .

    [2] K. Schneider, D. P. Chassin, R. Pratt, D. Engel, and S. Thompson, “Modern Grid Initiative Distribution Taxonomy Final Report”, PNNL, Nov. 2008. Accessed April 27, 2012: http://www.gridlabd.org/models/feeders/taxonomy of prototypical feeders.pdf

    [3] K. Schneider, D. Chassin, Y. Pratt, and J. C. Fuller, “Distribution power flow for smart grid technologies”, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, Mar. 2009, pp. 1-7, 15-18.

  13. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  14. d

    Input data, model output, and R scripts for a machine learning streamflow...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Input data, model output, and R scripts for a machine learning streamflow model on the Wyoming Range, Wyoming, 2012–17 [Dataset]. https://catalog.data.gov/dataset/input-data-model-output-and-r-scripts-for-a-machine-learning-streamflow-model-on-the-wyomi
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Wyoming, Wyoming Range
    Description

    A machine learning streamflow (MLFLOW) model was developed in R (model is in the Rscripts folder) for modeling monthly streamflow from 2012 to 2017 in three watersheds on the Wyoming Range in the upper Green River basin. Geospatial information for 125 site features (vector data are in the Sites.shp file) and discrete streamflow observation data and environmental predictor data were used in fitting the MLFLOW model and predicting with the fitted model. Tabular calibration and validation data are in the Model_Fitting_Site_Data.csv file, totaling 971 discrete observations and predictions of monthly streamflow. Geospatial information for 17,518 stream grid cells (raster data are in the Streams.tif file) and environmental predictor data were used for continuous streamflow predictions with the MLFLOW model. Tabular prediction data for all the study area (17,518 stream grid cells) and study period (72 months; 2012–17) are in the Model_Prediction_Stream_Data.csv file, totaling 1,261,296 predictions of spatially and temporally continuous monthly streamflow. Additional information about the datasets is in the metadata included in the four zipped dataset files and about the MLFLOW model is in the readme included in the zipped model archive folder.

  15. Global import data of Blue R

    • volza.com
    csv
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Blue R [Dataset]. https://www.volza.com/imports-united-states/united-states-import-data-of-blue+r-from-brazil
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    114 Global import shipment records of Blue R with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  16. v

    United States import data of Tinuvin r from De Germany

    • volza.com
    csv
    Updated Nov 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza.LLC (2021). United States import data of Tinuvin r from De Germany [Dataset]. https://www.volza.com/imports-united-states/united-states-import-data-of-tinuvin+r-from-de-germany
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 10, 2021
    Dataset provided by
    Volza.LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2014 - Sep 30, 2021
    Area covered
    Germany, United States
    Variables measured
    Count of exporters, Count of importers, Count of shipments, Sum of import value
    Description

    0 United States import shipment records of Tinuvin r from De Germany with prices, volume & current Buyer’s suppliers relationships based on actual United States import trade database.

  17. R import data of HS code 20055900 from United States - Seair.co.in

    • seair.co.in
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim, R import data of HS code 20055900 from United States - Seair.co.in [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  18. Global import data of Blue R

    • volza.com
    csv
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Blue R [Dataset]. https://www.volza.com/imports-singapore/singapore-import-data-of-blue+r
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    3546 Global import shipment records of Blue R with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  19. d

    Statistical Methods in Water Resources - Supporting Materials

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Statistical Methods in Water Resources - Supporting Materials [Dataset]. https://catalog.data.gov/dataset/statistical-methods-in-water-resources-supporting-materials
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset contains all of the supporting materials to accompany Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A., and Gilroy, E.J., 2020, Statistical methods in water resources: U.S. Geological Survey Techniques and Methods, book 4, chapter A3, 454 p., https://doi.org/10.3133/tm4a3. [Supersedes USGS Techniques of Water-Resources Investigations, book 4, chapter A3, version 1.1.]. Supplemental material (SM) for each chapter are available to re-create all examples and figures, and to solve the exercises at the end of each chapter, with relevant datasets provided in an electronic format readable by R. The SM provide (1) datasets as .Rdata files for immediate input into R, (2) datasets as .csv files for input into R or for use with other software programs, (3) R functions that are used in the textbook but not part of a published R package, (4) R scripts to produce virtually all of the figures in the book, and (5) solutions to the exercises as .html and .Rmd files. The suffix .Rmd refers to the file format for code written in the R Markdown language; the .Rmd file that is provided in the SM was used to generate the .html file containing the solutions to the exercises. All data used in the in-text examples, figures, and exercises are not new and already available through publicly-available data portals.

  20. Seair Exim Solutions

    • seair.co.in
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim, Seair Exim Solutions [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    Canada, United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1

Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research

Explore at:
txtAvailable download formats
Dataset updated
Dec 4, 2023
Dataset provided by
figshare
Authors
Kingsley Okoye; Samira Hosseini
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

Search
Clear search
Close search
Google apps
Main menu