100+ datasets found
  1. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +2more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. Data from: R scripts for the practical exercises with QGIS in the book "Land...

    • zenodo.org
    • produccioncientifica.ucm.es
    • +1more
    zip
    Updated Sep 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jean-François Mas; Jean-François Mas; David García-Álvarez; David García-Álvarez; Ramón Molinero Parejo; Ramón Molinero Parejo (2021). R scripts for the practical exercises with QGIS in the book "Land Use Cover Datasets and Validation Tools" [Dataset]. http://doi.org/10.5281/zenodo.5418985
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 4, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jean-François Mas; Jean-François Mas; David García-Álvarez; David García-Álvarez; Ramón Molinero Parejo; Ramón Molinero Parejo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes a series of R scripts required to carry out some of the practical exercises in the book “Land Use Cover Datasets and Validation Tools”, available in open access.

    The scripts have been designed within the context of the R Processing Provider, a plugin that integrates the R processing environment into QGIS. For all the information about how to use these scripts in QGIS, please refer to Chapter 1 of the book referred to above.

    The dataset includes 15 different scripts, which can implement the calculation of different metrics in QGIS:

    • Change statistics such as absolute change, relative change and annual rate of change (Change_Statistics.rsx)
    • Areal and spatial agreement metrics, either overall (Overall Areal Inconsistency.rsx, Overall Spatial Agreement.rsx, Overall Spatial Inconsistency.rsx) or per category (Individual Areal Inconsistency.rsx, Individual Spatial Agreement.rsx)
    • The four components of change (gross gains, gross losses, net change and swap) proposed by Pontius Jr. (2004) (LUCCBudget.rsx)
    • The intensity analysis proposed by Aldwaik and Pontius (2012) (Intensity_analysis.rsx)
    • The Flow matrix proposed by Runfola and Pontius (2013) (Stable_change_flow_matrix.rsx, Flow_matrix_graf.rsx)
    • Pearson and Spearman correlations (Correlation.rsx)
    • The Receiver Operating Characteristic (ROC) (ROCAnalysis.rsx)
    • The Goodness of Fit (GOF) calculated using the MapCurves method proposed by Hargrove et al. (2006) (MapCurves_raster.rsx, MapCurves_vector.rsx)
    • The spatial distribution of overall, user and producer’s accuracies, obtained through Geographical Weighted Regression methods (Local accuracy assessment statistics.rsx).

    Descriptions of all these methods can be found in different chapters of the aforementioned book.

    The dataset also includes a readme file listing all the scripts provided, detailing their authors and the references on which their methods are based.

  4. o

    Sample Geodata and Software for Demonstrating Geospatial Preprocessing for...

    • opendata.swiss
    • gimi9.com
    png, service, tiff +1
    Updated Dec 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EnviDat (2019). Sample Geodata and Software for Demonstrating Geospatial Preprocessing for Forest Accessibility and Wood Harvesting at FOSS4G2019 [Dataset]. https://opendata.swiss/de/dataset/sample-geodata-and-software-for-demonstrating-geospatial-preprocessing-for-forest-accessibility
    Explore at:
    service, zip, png, tiffAvailable download formats
    Dataset updated
    Dec 2, 2019
    Dataset authored and provided by
    EnviDat
    Description

    This dataset contains open vector data for railways, forests and power lines, as well an open digital elevation model (DEM) for a small area around a sample forest range in Europe (Germany, Upper Bavaria, Kochel Forest Range, some 70 km south of München, at the edge of Bavarian Alps). The purpose of this dataset is to provide a documented sample dataset in order to demonstrate geospatial preprocessing at FOSS4G2019 based on open data and software. This sample has been produced based on several existing open data sources (detailed below), therefore documenting the sources for obtaining some data needed for computations related to forest accessibility and wood harvesting. For example, they can be used with the open methodology and QGIS plugin Seilaplan for optimising the geometric layout cable roads or with additional open software for computing the forest accessibility for wood harvesting. The vector data (railways, forests and power lines) was extracted from OpenStreetMap (data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org). The railways and forests were downloaded and extracted on 18.05.2019 using the open sources QGIS (https://www.qgis.org) with the QuickOSM plugin, while the power lines were downloaded a couple of days later on 23.05.2019.

    Additional notes for vector data: Please note that OpenStreeMap data extracts such as forests, roads and railways (except power lines) can also be downloaded in a GIS friendly format (Shapefile) from http://download.geofabrik.de/ or using the QGIS built-in download function for OpenStreetMap data. The most efficient way to retrieve specific OSM tags (such as power=line) is to use the QuickOSM plugin for QGIS (using the Overpass API - https://wiki.openstreetmap.org/wiki/Overpass_API) or directly using overpass turbo (https://overpass-turbo.eu/). Finally, the digitised perimeter of the sample forest range is also made available for reproducibility purposes, although any perimeter or area can be digitised freely using the QGIS editing toolbar.

    The DEM was originally adapted and modified also with QGIS (https://www.qgis.org) based on the elevation data available from two different sources, by reprojecting and downsampling datasets to 25m then selecting, for each individual raster cell, the elevation value that was closer to the average. These two different elevation sources are:

    This methodology was chosen as a way of performing a basic quality check, by comparing the EU-DEM v.1.1 derived from globally available DEM data (such as SRTM) with more authoritative data for the randomly selected region, since using authoritative data is preferred (if open and available). For other sample regions, where authoritative open data is not available, such comparisons cannot longer be performed.

    Additional notes DEM: a very good DEM open data source for Germany is the open data set collected and resampled by Sonny (sonnyy7@gmail.com) and made available on the Austrian Open Data Portal http://data.opendataportal.at/dataset/dtm-germany. In order to simplify end-to-end reproducibility of the paper planned for FOSS4G2019, we use and distribute an adapted (reprojected and resampled to 25 meters) sample of the above mentioned dataset for the selected forest range.

    This sample dataset is accompanied by software in Python, as a Jupiter Notebook that generates harmonized output rasters with the same extent from the input data. The extent is given by the polygon vector dataset (Perimeter). These output rasters, such as obstacles, aspect, slope, forest cover, can serve as input data for later computations related to forest accessibility and wood harvesting questions. The obstacles output is obtained by transforming line vector datasets (railway lines, high voltage power lines) to raster. Aspect and slope are both derived from the sample digital elevation model.

  5. d

    Auckland Faults QGIS database, GIS file for Appendix 1 - Dataset -...

    • catalogue.data.govt.nz
    Updated Nov 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Auckland Faults QGIS database, GIS file for Appendix 1 - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/oai-figshare-com-article-27886353
    Explore at:
    Dataset updated
    Nov 21, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Auckland
    Description

    AbstractLocating faults can be challenging in urban environments and low-strain rate regions, where anthropogenic and surface processes between earthquakes erode surface expressions of faulting. Concealed fault detection is critical for hazard assessment and mitigation, as earthquakes on unidentified faults can have serious consequences. Common geophysical methods for identifying subsurface faults are challenging to implement in urban areas due to, for example, difficulties associated with permitting and anthropogenic noise. However, urban development can provide rich resources for identifying concealed faults, such as geotechnical boreholes and high-resolution LiDAR topography. The Tāmaki Makaurau Auckland area of Aotearoa/New Zealand is the country’s most populated region in a relatively tectonically stable setting, where intense urbanisation and Quaternary volcanics mask potential faults. We developed a new methodology and workflow to identify and assess the reliability of concealed structures in Auckland, using borehole, geophysical and outcrop data. From a database of >8,200 boreholes, we identify 46 post-Miocene structures, including ten likely and 25 possible faults. We also provide a new QGIS database of borehole and fault data to enable future refinement of our interpretations. This work shows how data associated with urbanisation can be leveraged to complement traditional methods of identifying concealed faults.

  6. S

    Continuous MODIS land surface temperature dataset over the Eastern...

    • data.subak.org
    • data.niaid.nih.gov
    • +1more
    csv
    Updated Feb 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Continuous MODIS land surface temperature dataset over the Eastern Mediterranean [Dataset]. https://data.subak.org/dataset/continuous-modis-land-surface-temperature-dataset-over-the-eastern-mediterranean
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    Department of Geography and Environment, Bar-Ilan University, Ramat Gan, Israel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mediterranean Sea
    Description

    A continuous dataset of Land Surface Temperature (LST) is vital for climatological and environmental studies. LST can be regarded as a combination of seasonal mean temperature (climatology) and daily anomaly, which is attributed mainly to the synoptic-scale atmospheric circulation (weather). To reproduce LST in cloudy pixels, time series (2002-2019) of cloud-free 1km MODIS Aqua LST images were generated and the pixel-based seasonality (climatology) was calculated using temporal Fourier analysis. To add the anomaly, we used the NCEP Climate Forecast System Version 2 (CFSv2) model, which provides air surface temperature under both cloudy and clear sky conditions. The combination of the two sources of data enables the estimation of LST in cloudy pixels.

    Data structure

    The dataset consists of geo-located continuous LST (Day, Night and Daily) which calculates LST values of cloudy pixels. The spatial domain of the data is the Eastern Mediterranean, at the resolution of the MYD11A1 product (~1 Km). Data are stored in GeoTIFF format as signed 16-bit integers using a scale factor of 0.02, with one file per day, each defined by 4 dimensions (Night LST Cont., Day LST Cont., Daily Average LST Cont., QA). The QA band stores information about the presence of cloud in the original pixel. If in both original files, Day LST and Night LST there was NoData due to clouds, then the QA value is 0. QA value of 1 indicates NoData at original Day LST, 2 indicates NoData at Night LST and 3 indicates valid data at both, day and night. File names follow this naming convention: LST_ 

    represents the day. Files of each year (2002-2019) are compressed in a ZIP file. The same data is also provided in NetCDF format, each file represents a whole year and is consist of 4 bands (Night LST Cont., Day LST Cont., Daily Average LST Cont., QA) for each day.

    The file LSTcont_validation.tif contains the validation dataset in which the MAE, RMSE, and Pearson (r) of the validation with true LST are provided. Data are stored in GeoTIFF format as signed 32-bit floats, with the same spatial extent and resolution as the LSTcont dataset. These data are stored with one file containing three bands (MAE, RMSE, and Perarson_r). The same data with the same structure is also provided in NetCDF format.

    How to use

    The data can be read in various of program languages such as Python, IDL, Matlab etc.and can be visualize in a GIS program such as ArcGis or Qgis. A short animation demonstrates how to visualize the data using the Qgis open source program is available in the project Github code reposetory.

    Web application

    The *LSTcont*web application (https://shilosh.users.earthengine.app/view/continuous-lst) is an Earth Engine app. The interface includes a map and a date picker. The user can select a date (July 2002 – present) and visualize *LSTcont*for that day anywhere on the globe. The web app calculate *LSTcont*on the fly based on ready-made global climatological files. The *LSTcont*can be downloaded as a GeoTiff with 5 bands in that order: Mean daily LSTcont, Night original LST, Night LSTcont, Day original LST, Day LSTcont.

    Code availability

    Datasets for other regions can be easily produced by the GEE platform with the code provided project Github code reposetory.

  7. Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:10,000 scale 2008 mapping) (NPS, GRD, GRI, CALO, CALO_geomorphology digital map) adapted from a East Carolina University unpublished map and digital data by Ames and Riggs (2008) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geomorphic-gis-map-of-cape-lookout-national-seashore-north-carolina-1-10000-scale-
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cape Lookout, North Carolina
    Description

    The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:10,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. r

    Connectivity of North East Australia Seascapes – Data and Maps (NESP TWQ...

    • researchdata.edu.au
    • catalogue.eatlas.org.au
    bin
    Updated 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric, Dr; Johnson, Johanna; David Welch (2019). Connectivity of North East Australia Seascapes – Data and Maps (NESP TWQ 3.3.3, AIMS and JCU) [Dataset]. https://researchdata.edu.au/connectivity-north-east-aims-jcu/1371443
    Explore at:
    binAvailable download formats
    Dataset updated
    2019
    Dataset provided by
    eAtlas
    Authors
    Lawrey, Eric, Dr; Johnson, Johanna; David Welch
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Aug 17, 2017 - Sep 5, 2018
    Area covered
    Australia
    Description

    This dataset shows the results of mapping the connectivity of key values (natural heritage, indigenous heritage, social and historic and economic) of the Great Barrier Reef with its neighbouring regions (Torres Strait, Coral Sea and Great Sandy Strait). The purpose of this mapping process was to identify values that need joint management across multiple regions. It contains a spreadsheet containing the connection information obtained from expert elicitation, all maps derived from this information and all GIS files needed to recreate these maps. This dataset contains the connection strength for 59 attributes of the values between 7 regions (GBR Far Northern, GBR Cairns-Cooktown, GBR Whitsunday-Townsville, GBR Mackay-Capricorn, Torres Strait, Coral Sea and Great Sandy Strait) based on expert opinion. Each connection is assessed based on its strength, mechanism and confidence. Where a connection was known to not exist between two regions then this was also explicitly recorded. A video tutorial on this dataset and its maps is available from https://vimeo.com/335053846.

    Methods:

    The information for the connectivity maps was gathered from experts (~30) during a 3-day workshop in August 2017. Experts were provided with a template containing a map of Queensland and the neighbouring seas, with an overlay of the regions of interest to assess the connectivity. These were Torres Strait, GBR:Far North Queensland, GBR:Cairns to Cooktown, GBC: Townsville to Whitsundays, GBR: Mackay to Capricorn Bunkers and Great Sandy Strait (which includes Hervey bay). A range of reference maps showing locations of the values were provided, where this information could be obtained. As well as the map the template provided 7x7 table for filling in the connectivity strength and connection type between all combinations of these regions. The experts self-organised into groups to discuss and complete the template for each attribute to be mapped. Each expert was asked to estimate the strength of connection between each region as well as the connection mechanism and their confidence in the information. Due to the limited workshop time the experts were asked to focus on initially recording the connections between the GBR and its neighbouring regions and not to worry about the internal connections in the GBR, or long-distance connections along the Queensland coast. In the second half of the workshop the experts were asked to review the maps created and expand on the connections to include those internal to the GBR. After the workshop an initial set of maps were produced and reviewed by the project team and a range of issues were identified and resolved. Additional connectivity maps for some attributes were prepared after the workshop by the subject experts within the project team. The data gathered from these templates was translated into a spreadsheet, then processing into the graphic maps using QGIS to present the connectivity information. The following are the value attributes where their connectivity was mapped: Seagrass meadows: pan-regional species (e.g. Halophila spp. and Halodule spp.) Seagrass meadows: tropical/sub-tropical (Cymodocea serrulata, Syringodium isoetifolium) Seagrass meadows: tropical (Thalassia, Cymodocea, Thalassodendron, Enhalus, Rotundata) Seagrass meadows: Zostera muelleri Mangroves & saltmarsh Hard corals Crustose coralline algae Macroalgae Crown of thorns starfish larval flow Acropora larval flow Casuarina equisetifolia & Pandanus tectorius Argusia argentia Pisonia grandis: cay vegetation Inter-reef gardens (sponges + gorgonians) (Incomplete) Halimeda Upwellings Pelagic foraging seabirds Inshore and offshore foraging seabirds Migratory shorebirds Ornate rock lobster Yellowfin tuna Black marlin Spanish mackerel Tiger shark Grey nurse shark Humpback whales Dugongs Green turtles Hawksbill turtles Loggerhead turtles Flatback turtles Longfin & Shortfin Eels Red-spot king prawn Brown tiger prawn Eastern king prawns Great White Shark Sandfish (H. scabra) Black teatfish (H. whitmaei) Location of sea country Tangible cultural resources Location of place attachment Location of historic shipwrecks Location of places of social significance Location of commercial fishing activity Location of recreational use Location of tourism destinations Australian blacktip shark (C. tilstoni) Barramundi Common black tip shark (C. limbatus) Dogtooth tuna Grey mackerel Mud crab Coral trout (Plectropomus laevis) Coral trout (Plectropomus leopardus) Red throat emperor Reef manta Saucer scallop (Ylistrum balloti) Bull shark Grey reef shark

    Limitations of the data:

    The connectivity information in this dataset is only rough in nature, capturing the interconnections between 7 regions. The connectivity data is based on expert elicitation and so is limited by the knowledge of the experts that were available for the workshop. In most cases the experts had sufficient knowledge to create robust maps. There were however some cases where the knowledge of the participants was limited, or the available scientific knowledge on the topic was limited (particularly for the ‘inter-reefal gardens’ attribute) or the exact meaning of the value attribute was poorly understood or could not be agreed up on (particularly for the social and indigenous heritage maps). This information was noted with the maps. These connectivity maps should be considered as an initial assessment of the connections between each of the regions and should not be used as authoritative maps without consulting with additional sources of information. Each of the connectivity links between regions was recorded with a level of confidence, however these were self-reported, and each assessment was performed relatively quickly, with little time for reflection or review of all the available evidence. It is likely that in many cases the experts tended to have a bias to mark links with strong confidence. During subsequent revisions of some maps there were substantial corrections and adjustments even for connections with a strong confidence, indicating that there could be significant errors in the maps where the experts were not available for subsequent revisions. Each of the maps were reviewed by several project team members with broad general knowledge. Not all connection combinations were captured in this process due to the limited expert time available. A focus was made on capturing the connections between the GBR and its neighbouring regions. Where additional time was available the connections within 4 regions in the GBR was also captured. The connectivity maps only show connections between immediately neighbouring regions, not far connections such as between Torres Strait and Great Sandy Strait. In some cases the connection information for longer distances was recorded from the experts but not used in the mapping process. The coastline polygon and the region boundaries in the maps are not spatially accurate. They were simplified to make the maps more diagrammatic. This was done to reduce the chance of misinterpreting the connection arrows on the map as being spatially explicit.

    Format:

    This dataset is made up of a spreadsheet that contains all the connectivity information recorded from the expert elicitation and all the GIS files needed to recreate the generated maps.

    original/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_Master_v2018-09-05.xlsx: ‘Values connectivity’: This sheet contains the raw connectivity codes transcribed from the templates produced prepared by the subject experts. This is the master copy of the connection information. Subsequent sheets in the spreadsheet are derived using formulas from this table. 1-Vertical-data: This is a transformation of the ‘Values connectivity’ sheet so that each source and destination connection is represented as a single row. This also has the connection mechanism codes split into individual columns to allow easier processing in the map generation. This sheet pulls in the spatial information for the arrows on the maps (‘LinkGeom’ attribute) or crosses that represent no connections (‘NoLinkGeom’) using lookup tables from the ‘Arrow-Geom-LUT’ and ‘NoConnection-Geom-LUT’ sheets. 2.Point-extract: This contains all the ‘no connection’ points from the ‘Values connectivity’ dataset. This was saved as working/ GBR_NESP-TWQ-3-3-3_Seascape-connectivity_no-con-pt.csv and used by the QGIS maps to draw all the crosses on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘NoLinkGeom’ attribute is used to filter out all line features, by unchecking blank rows in the ‘NoLinkGeom’ filter. 2.Line-extract: This contains all the ‘connections’ between regions from the ‘Values connectivity’ dataset. This was saved as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_arrows.csv and used by the QGIS maps to draw all the arrows on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘LinkGeom’ attribute is used to filter out all point features, by unchecking blank rows in the ‘LinkGeom’ filter. Map-Atlas-Settings: This contains the metadata for each of the maps generated by QGIS. This sheet was exported as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_map-atlas-settings.csv and used by QGIS to drive its Atlas feature to generate one map per row of this table. The AttribID is used to enable and disable the appropriate connections on the map being generated. The WKT attribute (Well Known Text) determines the bounding box of the map to be generated and the other attributes are used to display text on the map. map-image-metadata: This table contains metadata descriptions for each of the value attribute maps. This metadata was exported as a CSV and saved into the final generated JPEG maps using the eAtlas Image Metadata Editor Application

  9. g

    A2.1.3 - Hydraulic hazard map - QGIS mapping project | gimi9.com

    • gimi9.com
    Updated Jan 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). A2.1.3 - Hydraulic hazard map - QGIS mapping project | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_0ebce82b-4e0f-480f-815e-181ef51f9b19
    Explore at:
    Dataset updated
    Jan 24, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please note: for a correct view and use of this dataset it is advisable to consult it at original page on the Arezzo Portal. At the same address there are also, for the enabled datasets, additional access formats, the preview of the visualization via API call, the consultation of the fields in DCAT-AP IT format, the possibility to express an evaluation and comment on the dataset itself. All resource formats available for this dataset can be downloaded as ZIP packages: inside the package sarà available the resource in the chosen format, complete with all the information on the metadata and the license associated with it. The resource consists of the file of the QGIS cartographic project prepared for the realization of the cartographic elaboration of the start of the procedure of the variant to the Structural Plan and of the new Operational Plan referred to in the title. The resource is in the *.qgs format, version 3.24.1.

  10. B

    Residential Schools Locations Dataset (Geodatabase)

    • borealisdata.ca
    • search.dataone.org
    Updated May 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Orlandini (2019). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 31, 2019
    Dataset provided by
    Borealis
    Authors
    Rosa Orlandini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Area covered
    Canada
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  11. Data from: Agricultural land use (raster) : National-scale crop type maps...

    • zenodo.org
    • openagrar.de
    • +1more
    bin, pdf, tiff
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Schwieder; Marcel Schwieder; Gideon Okpoti Tetteh; Gideon Okpoti Tetteh; Lukas Blickensdörfer; Lukas Blickensdörfer; Alexander Gocht; Alexander Gocht; Stefan Erasmi; Stefan Erasmi (2024). Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Dataset]. http://doi.org/10.5281/zenodo.10617623
    Explore at:
    tiff, bin, pdfAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marcel Schwieder; Marcel Schwieder; Gideon Okpoti Tetteh; Gideon Okpoti Tetteh; Lukas Blickensdörfer; Lukas Blickensdörfer; Alexander Gocht; Alexander Gocht; Stefan Erasmi; Stefan Erasmi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    The dataset contains maps of the main classes of agricultural land use (dominant crop types and other land use types) in Germany, which are produced annually at the Thünen Institute beginning with the year 2017 on the basis of satellite data. The maps cover the entire open landscape, i.e., the agriculturally used area (UAA) and e.g., uncultivated areas. The map was derived from time series of Sentinel-1, Sentinel-2, Landsat 8 and additional environmental data. Map production is based on the methods described in Blickensdörfer et al. (2022).

    All optical satellite data were managed, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019), in which SAR and environmental data were integrated.

    The map extent covers all areas in Germany that are defined in the respective year as cropland, grassland, small woody features, heathland, peatland or unvegetated areas according to ATKIS Basis-DLM (Geobasisdaten: © GeoBasis-DE / BKG, 2020).

    Version v201:
    Post-processing of the maps included a sieve filter as well as a ruleset for the reduction of non-plausible areas using the Basis-DLM and the digital terrain model of Germany (Geobasisdaten: © GeoBasis-DE / BKG, 2015).

    The maps are available as cloud optimized GeoTiffs, which makes downloading the full dataset optional. All data can directly be accessed in QGIS, R, Python or any supported software of your choice using the provided URL to the datasets (right click on the respective data set --> “copy link address”). By doing so the entire map area or only the regions of interest can be accessed. QGIS legend files for data visualization can be downloaded separately.

    Class-specific accuracies for each year are proveded in the respective tables. We provide this dataset "as is" without any warranty regarding the accuracy or completeness and exclude all liability.

    References:

    Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

    BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).

    BKG, Bundesamt für Kartographie und Geodäsie (2020). Digitales Basis-Landschaftsmodell.
    https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).

    Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

    Statistisches Bundesamt, Deutschland (2024). Ökosystematlas Deutschland
    https://oekosystematlas-ugr.destatis.de/ (last accessed: 08.02.2024).

    _
    National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) © 2024 by Schwieder, Marcel; Tetteh, Gideon Okpoti; Blickensdörfer, Lukas; Gocht, Alexander; Erasmi, Stefan; licensed under CC BY 4.0.

    Funding was provided by the German Federal Ministry of Food and Agriculture as part of the joint project “Monitoring der biologischen Vielfalt in Agrarlandschaften” (MonViA, Monitoring of biodiversity in agricultural landscapes).

    The study was financially supported by the European Environment Agency and the European Union’s Horizon Europe Research and Innovation programme under Grant Agreement No 101060423 (LAMASUS).

  12. g

    A2.1.2 - Geomorphological map - QGIS map project | gimi9.com

    • gimi9.com
    Updated Jan 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). A2.1.2 - Geomorphological map - QGIS map project | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_489c88a9-7dbb-48d1-bcc0-05988a395e76
    Explore at:
    Dataset updated
    Jan 24, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please note: for a correct view and use of this dataset it is advisable to consult it at original page on the Arezzo Portal. At the same address there are also, for the enabled datasets, additional access formats, the preview of the visualization via API call, the consultation of the fields in DCAT-AP IT format, the possibility to express an evaluation and comment on the dataset itself. All resource formats available for this dataset can be downloaded as ZIP packages: inside the package sarà available the resource in the chosen format, complete with all the information on the metadata and the license associated with it. The resource consists of the file of the QGIS cartographic project prepared for the realization of the cartographic elaboration of the start of the procedure of the variant to the Structural Plan and of the new Operational Plan referred to in the title. The resource is in the *.qgs format, version 3.24.1.

  13. Digital Geologic-GIS Map of Vicksburg National Military Park, Mississippi...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Vicksburg National Military Park, Mississippi and Louisiana (NPS, GRD, GRI, VICK, VICK digital map) adapted from Mississippi State University, Department of Geosciences unpublished maps and GIS data map by Smith and Schmitz (2016) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-vicksburg-national-military-park-mississippi-and-louisiana-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Vicksburg, Mississippi, Louisiana
    Description

    The Digital Geologic-GIS Map of Vicksburg National Military Park, Mississippi and Louisiana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (vick_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (vick_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (vick_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (vick_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (vick_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (vick_geology_metadata_faq.pdf). Please read the vick_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Mississippi State University, Department of Geosciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (vick_geology_metadata.txt or vick_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  14. g

    A3.3-4 - Perimeter urbanized territory comparison with current RU - QGIS map...

    • gimi9.com
    Updated Jan 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). A3.3-4 - Perimeter urbanized territory comparison with current RU - QGIS map project | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_18f9eaa1-1590-4d72-b675-72d1938391df
    Explore at:
    Dataset updated
    Jan 24, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please note: for a correct view and use of this dataset it is advisable to consult it at original page on the Arezzo Portal. At the same address there are also, for the enabled datasets, additional access formats, the preview of the visualization via API call, the consultation of the fields in DCAT-AP IT format, the possibility to express an evaluation and comment on the dataset itself. All resource formats available for this dataset can be downloaded as ZIP packages: inside the package sarà available the resource in the chosen format, complete with all the information on the metadata and the license associated with it. The resource consists of the file of the QGIS cartographic project prepared for the realization of the cartographic elaboration of the start of the procedure of the variant to the Structural Plan and of the new Operational Plan referred to in the title. The resource is in the *.qgs format, version 3.24.1.

  15. World - Terrain Elevation Above Sea Level (ELE) GIS Data, (Global Solar...

    • data.subak.org
    • datacatalog.worldbank.org
    geotiff
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (2023). World - Terrain Elevation Above Sea Level (ELE) GIS Data, (Global Solar Atlas) [Dataset]. https://data.subak.org/dataset/world-terrain-elevation-above-sea-level-ele-gis-data-global-solar-atlas
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains terrain elevation above sea level (ELE) in [m a.s.l.] covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characeristics: ELE GISdata (GeoTIFF) Data format: GEOTIFF File size : 826.8 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month *For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) *For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  16. Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005 Mapping), Florida (NPS, GRD, GRI, EVER, EVER_geohazard digital map) adapted from a Florida Geological Survey Bulletin map by Arthur, Baker, Cichon, Wood and Rudin (2005) [Dataset]. https://catalog.data.gov/dataset/digital-geohazards-gis-map-of-everglades-national-park-and-vicinity-2005-mapping-florida-n
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Florida
    Description

    The Digital Geohazards-GIS Map of Everglades National Park and Vicinity (2005 Mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ever_geohazard.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ever_geohazard.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ever_geohazard.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ever_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ever_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ever_geohazard_metadata_faq.pdf). Please read the ever_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Florida Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ever_geohazard_metadata.txt or ever_geohazard_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. Digital Geologic-GIS Map of Redwood National Park and Vicinity, California...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Redwood National Park and Vicinity, California (NPS, GRD, GRI, REDW, REDW digital map) adapted from a California Geological Survey Preliminary Geologic Map by Delattre and Rosinski (2012), and a Watershed Mapping Series map by Dell'Osso, Falls and McGuire (2002) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-redwood-national-park-and-vicinity-california-nps-grd-gri-redw
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California
    Description

    The Digital Geologic-GIS Map of Redwood National Park and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (redw_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (redw_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (redw_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (redw_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (redw_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (redw_geology_metadata_faq.pdf). Please read the redw_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (redw_geology_metadata.txt or redw_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. Forest fire assessement training dataset (2022-07-18 fire at Maclas -...

    • zenodo.org
    • data.niaid.nih.gov
    bin, tiff
    Updated Oct 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roelandt Nicolas; Roelandt Nicolas (2023). Forest fire assessement training dataset (2022-07-18 fire at Maclas - France) [Dataset]. http://doi.org/10.5281/zenodo.10006914
    Explore at:
    bin, tiffAvailable download formats
    Dataset updated
    Oct 16, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Roelandt Nicolas; Roelandt Nicolas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France, Maclas
    Description

    This dataset has been created to train Univ. Eiffel personnels on raster data handling with QGIS.

    It provides the following elements:

    • Geopackage database with the following layers:
      • QGIS project
      • Extract from the SENTINEL-2 2022-06-11 B8A band
      • Extract from the SENTINEL-2 2022-06-11 B12 band
      • Extract from the SENTINEL-2 2022-07-21 B8A band
      • Extract from the SENTINEL-2 2022-07-21 B12 band
      • Reclassified delta NBR raster layer
      • Delta NBR vector layer
      • Studied area bounding box
    • Intermediate results:
      • pre-event NBR raster file
      • post-event NBR raster file
      • Delta NBR raster file
      • Delta NBR raster file multiplied by 1000 (for easier reclassification)

    Data sources IDs from opensearch-theia.cnes.fr-sentinel2-l2a catalogue :

    • SENTINEL2B_20220721-104826-811_L2A_T31TFL_D
    • SENTINEL2B_20220611-104824-395_L2A_T31TFL_D

  19. Digital Geomorphic-GIS Map of Wright Brothers National Memorial (1:24,000...

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Wright Brothers National Memorial (1:24,000 scale 2007 mapping), North Carolina (NPS, GRD, GRI, WRBR, WRBR_geomorphology digital map) adapted from a North Carolina Geological Survey digital publication map by Hoffman, Coffey and Nickerson (2007) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geomorphic-gis-map-of-wright-brothers-national-memorial-1-24000-scale-2007-mapping
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    North Carolina
    Description

    The Digital Geomorphic-GIS Map of Wright Brothers National Memorial (1:24,000 scale 2007 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (wrbr_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (wrbr_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (wrbr_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geomorphology.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (wrbr_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geomorphology.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wrbr_geomorphology_metadata.txt or wrbr_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. World Countries Generalized

    • hub.arcgis.com
    • covid19.esriuk.com
    • +6more
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). World Countries Generalized [Dataset]. https://hub.arcgis.com/datasets/esri::world-countries-generalized
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Countries Generalized represents generalized boundaries for the countries of the world as of August 2022. The generalized political boundaries improve draw performance and effectiveness at a global or continental level. This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri and sourced from Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
Dataset updated
Oct 28, 2019
Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu