Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
These datasets are generated by ReapTEC (read-level pre-filtering and transcribed enhancer call) using 5' single-cell RNA-seq data on human heterogenous CD4+ T cells. By taking advantage of a unique “cap signature” derived from the 5′-end of a transcript, ReapTEC simultaneously profiles gene expression and enhancer activity at nucleotide resolution using 5′-end single-cell RNA-sequencing (5′ scRNA-seq). The detail of ReapTEC pipeline is described in https://github.com/MurakawaLab/ReapTEC.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Scripts used for analysis of V1 and V2 Datasets.seurat_v1.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, PCA analysis, clustering, tSNE visualization. Used for v1 datasets. merge_seurat.R - merge two or more seurat objects into one seurat object. Perform linear regression to remove batch effects from separate objects. Used for v1 datasets. subcluster_seurat_v1.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA. Used for v1 datasets.seurat_v2.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, and PCA analysis. Used for v2 datasets. clustering_markers_v2.R - clustering and tSNE visualization for v2 datasets. subcluster_seurat_v2.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA analysis. Used for v2 datasets.seurat_object_analysis_v1_and_v2.R - downstream analysis and plotting functions for seurat object created by seurat_v1.R or seurat_v2.R. merge_clusters.R - merge clusters that do not meet gene threshold. Used for both v1 and v2 datasets. prepare_for_monocle_v1.R - subcluster cells of interest and perform linear regression, but not scaling in order to input normalized, regressed values into monocle with monocle_seurat_input_v1.R monocle_seurat_input_v1.R - monocle script using seurat batch corrected values as input for v1 merged timecourse datasets. monocle_lineage_trace.R - monocle script using nUMI as input for v2 lineage traced dataset. monocle_object_analysis.R - downstream analysis for monocle object - BEAM and plotting. CCA_merging_v2.R - script for merging v2 endocrine datasets with canonical correlation analysis and determining the number of CCs to include in downstream analysis. CCA_alignment_v2.R - script for downstream alignment, clustering, tSNE visualization, and differential gene expression analysis.
The dataset contains an integrated, annotated Seurat v4 object. One can load the dataset into the R environment using the code below:
seurat_obj <- readRDS('PATH/TO/DOWNLOAD/seurat.rds')
The object has three assays: (I) RNA, (II) SCT and (III) integrated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Processed naive CD4 and CD8 T cell single-cell RNAseq data from human samples. The file contains a Seurat object stored as an .rds file which can be read into R with the readRDS() function. It was generated using the raw data of similar name in this project, as well as the code stored here: https://github.com/dtm2451/ProgressiveHematopoiesis
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the Seurat object in .rds format with the raw matrix information (after filtering) , cell type annotation information and the UMAP coordinates. Users can use R readRDS function to load this .rds file. If you are using this dataset, please cite our paper: Qian, Peipei, Jiahui Kang, Dong Liu, and Gangcai Xie. "Single cell transcriptome sequencing of Zebrafish testis revealed novel spermatogenesis marker genes and stronger Leydig-germ cell paracrine interactions." Frontiers in genetics 13 (2022): 851719.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The power of single-cell RNA sequencing (scRNA-seq) in detecting cell heterogeneity or developmental process is becoming more and more evident every day. The granularity of this knowledge is further propelled when combining two batches of scRNA-seq into a single large dataset. This strategy is however hampered by technical differences between these batches. Typically, these batch effects are resolved by matching similar cells across the different batches. Current approaches, however, do not take into account that we can constrain this matching further as cells can also be matched on their cell type identity. We use an auto-encoder to embed two batches in the same space such that cells are matched. To accomplish this, we use a loss function that preserves: (1) cell-cell distances within each of the two batches, as well as (2) cell-cell distances between two batches when the cells are of the same cell-type. The cell-type guidance is unsupervised, i.e., a cell-type is defined as a cluster in the original batch. We evaluated the performance of our cluster-guided batch alignment (CBA) using pancreas and mouse cell atlas datasets, against six state-of-the-art single cell alignment methods: Seurat v3, BBKNN, Scanorama, Harmony, LIGER, and BERMUDA. Compared to other approaches, CBA preserves the cluster separation in the original datasets while still being able to align the two datasets. We confirm that this separation is biologically meaningful by identifying relevant differential expression of genes for these preserved clusters.
Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, in...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single cell RNA-sequencing dataset of peripheral blood mononuclear cells (pbmc: T, B, NK and monocytes) extracted from two healthy donors.
Cells labeled as C26 come from a 30 years old female and cells labeled as C27 come from a 53 years old male. Cells have been isolated from blood using ficoll. Samples were sequenced using standard 3' v3 chemistry protocols by 10x genomics. Cellranger v4.0.0 was used for the processing, and reads were aligned to the ensembl GRCg38 human genome (GRCg38_r98-ensembl_Sept2019). QC metrics were calculated on the count matrix generated by cellranger (filtered_feature_bc_matrix). Cells with less than 3 genes per cells, less than 500 reads per cell and more than 20% of mithocondrial genes were discarded.
The processing steps was performed with the R package Seurat (https://satijalab.org/seurat/), including sample integration, data normalisation and scaling, dimensional reduction, and clustering. SCTransform method was adopted for the normalisation and scaling steps. The clustered cells were manually annotated using known cell type markers.
Files content:
- raw_dataset.csv: raw gene counts
- normalized_dataset.csv: normalized gene counts (single cell matrix)
- cell_types.csv: cell types identified from annotated cell clusters
- cell_types_macro.csv: cell macro types
- UMAP_coordinates.csv: 2d cell coordinates computed with UMAP algorithm in Seurat
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Processed hematopoietic stem and progenitor cell (HSPC) single-cell RNAseq data from human samples. The file contains a Seurat object stored as an .rds file which can be read into R with the readRDS() function. It was generated using the raw data of similar name in this project, as well as the code stored here: https://github.com/dtm2451/ProgressiveHematopoiesis
Table of Contents
1. Main Description
---------------------------
This is the Zenodo repository for the manuscript titled "A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity.". The code included in the file titled `marengo_code_for_paper_jan_2023.R` was used to generate the figures from the single-cell RNA sequencing data.
The following libraries are required for script execution:
File Descriptions
---------------------------
Linked Files
---------------------
This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. The "Rdata" or "Rds" file was deposited in Zenodo. Provided below are descriptions of the linked datasets:
Gene Expression Omnibus (GEO) ID: GSE223311(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223311)
Sequence read archive (SRA) repository ID: SRX19088718 and SRX19088719
Zenodo DOI: 10.5281/zenodo.7566113(https://zenodo.org/record/7566113#.ZCcmvC2cbrJ)
Installation and Instructions
--------------------------------------
The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation:
> Ensure you have R version 4.1.2 or higher for compatibility.
> Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code.
1. Download the *"Rdata" or ".Rds" file from Zenodo (https://zenodo.org/record/7566113#.ZCcmvC2cbrJ) (Zenodo DOI: 10.5281/zenodo.7566113).
2. Open R-Studios (https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R.
3. Set your working directory to where the following files are located:
You can use the following code to set the working directory in R:
> setwd(directory)
4. Open the file titled "Install_Packages.R" and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies in order to set up an environment where the code in "marengo_code_for_paper_jan_2023.R" can be executed.
5. Once the "Install_Packages.R" script has been successfully executed, re-start R-Studios or your IDE of choice.
6. Open the file "marengo_code_for_paper_jan_2023.R" file in R-studios or your IDE of choice.
7. Execute commands in the file titled "marengo_code_for_paper_jan_2023.R" in R-Studios or your IDE of choice to generate the plots.
Single-cell RNAseq dataset to demonstrate the use of NicheNet directly on a Seurat object. The data came from "Medaglia et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 2017". This data was generated via the NICHE-seq method to characterize immune cell composition in the T cell area of inguinal lymph nodes, both in steady-state and 72 hours after lymphocytic choriomeningitis virus (LCMV) infection. The Seurat objects contain the aggregated data after applying the Seurat alignment pipeline. seuratObj.rds: full dataset seuratObj_test.rds: dataset with reduced size (only highly variable genes and CD8 T cells and monocytes) {"references": ["Medaglia et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 2017"]}
This is the GitHub repository for the single cell RNA sequencing data analysis for the human manuscript. The following essential libraries are required for script execution: Seurat scReportoire ggplot2 dplyr ggridges ggrepel ComplexHeatmap Linked File: -------------------------------------- This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. Provided below are descriptions of the linked datasets: 1. Gene Expression Omnibus (GEO) ID: GSE229626 - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the matrix.mtx
, barcodes.tsv
, and genes.tsv
files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token"(https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). 2. Sequence read archive (SRA) repository - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the "raw sequencing" or .fastq.gz
files, which are tab delimited text files. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token" (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). Please note that since the GSE submission is private, the raw data deposited at SRA may not be accessible until the embargo on GSE229626 has been lifted. Installation and Instructions -------------------------------------- The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation: > Ensure you have R version 4.1.2 or higher for compatibility. > Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code. The following code can be used to set working directory in R: > setwd(directory) Steps: 1. Download the "Human_code_April2023.R" and "Install_Packages.R" R scripts, and the processed data from GSE229626. 2. Open "R-Studios"(https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R. 3. Set your working directory to where the following files are located: - Human_code_April2023.R - Install_Packages.R 4. Open the file titled Install_Packages.R
and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies. 5. Open the Human_code_April2023.R
R script and execute commands as necessary.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is used for the Seurat version of the batch correction and integration tutorial on the Galaxy Training Network. The input data was provided by Seurat in the 'Integrative Analysis in Seurat v5' tutorial. The input dataset provided here has been filtered to include only cells for which nFeature_RNA > 1000. The other datasets were produced on Galaxy. The original dataset was published as: Ding, J., Adiconis, X., Simmons, S.K. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38, 737–746 (2020). https://doi.org/10.1038/s41587-020-0465-8.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Seurat matrix referring to scRNA-seq of Mm1 mouse tumors in CyC manuscript
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page includes the data and code necessary to reproduce the results of the following paper: Yang Liao, Dinesh Raghu, Bhupinder Pal, Lisa Mielke and Wei Shi. cellCounts: fast and accurate quantification of 10x Chromium single-cell RNA sequencing data. Under review. A Linux computer running an operating system of CentOS 7 (or later) or Ubuntu 20.04 (or later) is recommended for running this analysis. The computer should have >2 TB of disk space and >64 GB of RAM. The following software packages need to be installed before running the analysis. Software executables generated after installation should be included in the $PATH environment variable.
R (v4.0.0 or newer) https://www.r-project.org/ Rsubread (v2.12.2 or newer) http://bioconductor.org/packages/3.16/bioc/html/Rsubread.html CellRanger (v6.0.1) https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome STARsolo (v2.7.10a) https://github.com/alexdobin/STAR sra-tools (v2.10.0 or newer) https://github.com/ncbi/sra-tools Seurat (v3.0.0 or newer) https://satijalab.org/seurat/ edgeR (v3.30.0 or newer) https://bioconductor.org/packages/edgeR/ limma (v3.44.0 or newer) https://bioconductor.org/packages/limma/ mltools (v0.3.5 or newer) https://cran.r-project.org/web/packages/mltools/index.html
Reference packages generated by 10x Genomics are also required for this analysis and they can be downloaded from the following link (2020-A version for individual human and mouse reference packages should be selected): https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest After all these are done, you can simply run the shell script ‘test-all-new.bash’ to perform all the analyses carried out in the paper. This script will automatically download the mixture scRNA-seq data from the SRA database, and it will output a text file called ‘test-all.log’ that contains all the screen outputs and speed/accuracy results of CellRanger, STARsolo and cellCounts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each tissue's gene expression profile was processed by experts to annotate clusters of cells with biological functions. These are the Robjects created using Seurat to normalize and cluster the single-cell RNA-seq expression data.Update 2018-03-27: Updated to resubmitted RobjUpdate 2018-09-20: Updated to accepted Robj
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.
The provided datasets correspond to the analyses of individual donor single-cell RNA Sequencing (scRNA-Seq) datasets, before their integration. The datasets have been saved as Seurat v4.0.5 objects. For clustering, we used default settings in Seurat 4.0.5 (resolution 0.8) and increased resolution, if necessary, to separate epithelium in proximal and distal. The *_clusters.pdf files show the suggested clusters in the individual datasets and the _indiv_anno1.pdf files show the cell annotations according to the 84 cell states, described in the study with title "Developmental origins of cell heterogeneity in the human lung" (1st preprint version doi: https://doi.org/10.1101/2022.01.11.475631). The "_cluster_annotations.csv" files provide information about the suggested annotations of the clusters. The "*_object_raw_and_log_counts.RData" objects contain the metadata and the UMI-counts [raw and log2(counts+1)] for each donor scRNA-Seq dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset details the scRNASeq and TCR-Seq analysis of sorted PD-1+ CD8+ T cells from patients with melanoma treated with checkpoint therapy (anti-PD-1 monotherapy and anti-PD-1 & anti-CTLA-4 combination therapy) at baseline and after the first cycle of therapy. A major publication using this dataset is accessible here: (reference)
*experimental design
Single-cell RNA sequencing was performed using 10x Genomics with feature barcoding technology to multiplex cell samples from different patients undergoing mono or dual therapy so that they can be loaded on one well to reduce costs and minimize technical variability. Hashtag oligomers (oligos) were obtained as purified and already oligo-conjugated in TotalSeq-C format from BioLegend. Cells were thawed, counted and 20 million cells per patient and time point were used for staining. Cells were stained with barcoded antibodies together with a staining solution containing antibodies against CD3, CD4, CD8, PD-1/IgG4 and fixable viability dye (eBioscience) prior to FACS sorting. Barcoded antibody concentrations used were 0.5 µg per million cells, as recommended by the manufacturer (BioLegend) for flow cytometry applications. After staining, cells were washed twice in PBS containing 2% BSA and 0.01% Tween 20, followed by centrifugation (300 xg 5 min at 4 °C) and supernatant exchange. After the final wash, cells were resuspended in PBS and filtered through 40 µm cell strainers and proceeded for sorting. Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions. Gene expression, hashing and TCR libraries were pooled to desired quantities to obtain the sequencing depths of 15,000 reads per cell for gene expression libraries and 5,000 reads per cell for hashing and TCR libraries. Libraries were sequenced on a NovaSeq 6000 flow cell in a 2X100 paired-end format.
*extract protocol
PBMCs were thawed, counted and 20 million cells per patient and time point were used for staining. Cells were stained with barcoded antibodies together with a staining solution containing antibodies against CD3, CD4, CD8, PD-1/IgG4 and fixable viability dye (eBioscience) prior to FACS sorting. Barcoded antibody concentrations used were 0.5 µg per million cells, as recommended by the manufacturer (BioLegend) for flow cytometry applications. After staining, cells were washed twice in PBS containing 2% BSA and 0.01% Tween 20, followed by centrifugation (300 xg 5 min at 4 °C) and supernatant exchange. After the final wash, cells were resuspended in PBS and filtered through 40 µm cell strainers and proceeded for sorting. Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions.
*library construction protocol
Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions. Gene expression, hashing and TCR libraries were pooled to desired quantities to obtain the sequencing depths of 15,000 reads per cell for gene expression libraries and 5,000 reads per cell for hashing and TCR libraries. Libraries were sequenced on a NovaSeq 6000 flow cell in a 2X100 paired-end format.
*library strategy
scRNA-seq and scTCR-seq
*data processing step
Pre-processing of sequencing results to generate count matrices (gene expression and HTO barcode counts) was performed using the 10x genomics Cell Ranger pipeline.
Further processing was done with Seurat (cell and gene filtering, hashtag identification, clustering, differential gene expression analysis based on gene expression).
*genome build/assembly
Alignment was performed using prebuilt Cell Ranger human reference GRCh38.
*processed data files format and content
RNA counts and HTO counts are in sparse matrix format and TCR clonotypes are in csv format.
Datasets were merged and analyzed by Seurat and the analyzed objects are in rds format.
file name |
file checksum |
PD1CD8_160421_filtered_feature_bc_matrix.zip |
da2e006d2b39485fd8cf8701742c6d77 |
PD1CD8_190421_filtered_feature_bc_matrix.zip |
e125fc5031899bba71e1171888d78205 |
PD1CD8_160421_filtered_contig_annotations.csv |
927241805d507204fbe9ef7045d0ccf4 |
PD1CD8_190421_filtered_contig_annotations.csv |
8ca544d27f06e66592b567d3ab86551e |
*processed data file |
antibodies/tags |
PD1CD8_160421_filtered_feature_bc_matrix.zip |
none |
PD1CD8_160421_filtered_feature_bc_matrix.zip |
TotalSeq™-C0251 anti-human Hashtag 1 Antibody - (HASH_1) - M1_base_monotherapy |
PD1CD8_160421_filtered_contig_annotations.csv |
none |
PD1CD8_190421_filtered_feature_bc_matrix.zip |
none |
PD1CD8_190421_filtered_feature_bc_matrix.zip |
TotalSeq™-C0251 anti-human Hashtag 1 Antibody - (HASH_1) - M2_base_monotherapy |
PD1CD8_190421_filtered_contig_annotations.csv |
none |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.