Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead of
urban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.
As of 2023, about ** percent of surveyed employees from companies in the United States of America and United Kingdom claim to use artificial intelligence (AI) in the logic-based task of data analysis. Approximately ** percent claim to use it for routine administrative tasks. These numbers are forecasted to grow, as the share of employees that wish to use the technology for both tasks is much higher, lying around ** percent.
This page lists ad-hoc statistics released during the period July - September 2020. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.
If you would like any further information please contact evidence@dcms.gov.uk.
This analysis considers businesses in the DCMS Sectors split by whether they had reported annual turnover above or below £500 million, at one time the threshold for the Coronavirus Business Interruption Loan Scheme (CBILS). Please note the DCMS Sectors totals here exclude the Tourism and Civil Society sectors, for which data is not available or has been excluded for ease of comparability.
The analysis looked at number of businesses; and total GVA generated for both turnover bands. In 2018, an estimated 112 DCMS Sector businesses had an annual turnover of £500m or more (0.03% of the total DCMS Sector businesses). These businesses generated 35.3% (£73.9bn) of all GVA by the DCMS Sectors.
These are trends are broadly similar for the wider non-financial UK business economy, where an estimated 823 businesses had an annual turnover of £500m or more (0.03% of the total) and generated 24.3% (£409.9bn) of all GVA.
The Digital Sector had an estimated 89 businesses (0.04% of all Digital Sector businesses) – the largest number – with turnover of £500m or more; and these businesses generated 41.5% (£61.9bn) of all GVA for the Digital Sector. By comparison, the Creative Industries had an estimated 44 businesses with turnover of £500m or more (0.01% of all Creative Industries businesses), and these businesses generated 23.9% (£26.7bn) of GVA for the Creative Industries sector.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">42.5 KB</span></p>
This analysis shows estimates from the ONS Opinion and Lifestyle Omnibus Survey Data Module, commissioned by DCMS in February 2020. The Opinions and Lifestyles Survey (OPN) is run by the Office for National Statistics. For more information on the survey, please see the https://www.ons.gov.uk/aboutus/whatwedo/paidservices/opinions" class="govuk-link">ONS website.
DCMS commissioned 19 questions to be included in the February 2020 survey relating to the public’s views on a range of data related issues, such as trust in different types of organisations when handling personal data, confidence using data skills at work, understanding of how data is managed by companies and the use of data skills at work.
The high level results are included in the accompanying tables. The survey samples adults (16+) across the whole of Great Britain (excluding the Isles of Scilly).
This graph shows the tools used by French companies to analyze Big Data in 2016. The results show that almost 20 percent of the companies surveyed used Online Analytical Processing engines.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article discusses how to make statistical graphics a more prominent element of the undergraduate statistics curricula. The focus is on several different types of assignments that exemplify how to incorporate graphics into a course in a pedagogically meaningful way. These assignments include having students deconstruct and reconstruct plots, copy masterful graphs, create one-minute visual revelations, convert tables into “pictures,” and develop interactive visualizations, for example, with the virtual earth as a plotting canvas. In addition to describing the goals and details of each assignment, we also discuss the broader topic of graphics and key concepts that we think warrant inclusion in the statistics curricula. We advocate that more attention needs to be paid to this fundamental field of statistics at all levels, from introductory undergraduate through graduate level courses. With the rapid rise of tools to visualize data, for example, Google trends, GapMinder, ManyEyes, and Tableau, and the increased use of graphics in the media, understanding the principles of good statistical graphics, and having the ability to create informative visualizations is an ever more important aspect of statistics education. Supplementary materials containing code and data for the assignments are available online.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global app data statistics tool market size was valued at approximately USD 5.3 billion in 2023 and is projected to reach USD 11.9 billion by 2032, growing at a CAGR of 9.2% during the forecast period. Several growth factors, including the escalating demand for data-driven decision-making and the rise in mobile app usage, are driving this market. As organizations increasingly recognize the value of data analytics in enhancing user engagement and optimizing app performance, the adoption of app data statistics tools is expected to surge significantly.
The growth of the app data statistics tool market is primarily fueled by the exponential increase in mobile app usage worldwide. With billions of smartphone users generating vast amounts of data daily, companies are leveraging app data statistics tools to gain actionable insights. These tools help in understanding user behavior, tracking app performance, and identifying areas for improvement. Furthermore, the growing emphasis on personalized user experiences has led to an increased demand for sophisticated analytics tools, thereby driving market growth.
Another critical growth factor is the rising importance of data-driven decision-making in various industries. Organizations across sectors such as BFSI, healthcare, retail, and media are increasingly relying on app data statistics tools to make informed decisions. These tools enable businesses to analyze large datasets, uncover trends, and optimize their strategies. The adoption of analytics tools is also propelled by the need to improve customer satisfaction and loyalty, as companies strive to offer tailored experiences to their users. The integration of artificial intelligence and machine learning in analytics tools further enhances their efficiency and accuracy, contributing to market growth.
Moreover, the market is benefitting from technological advancements and the increasing availability of advanced analytics tools. Innovations such as real-time analytics, predictive analytics, and big data analytics are enhancing the capabilities of app data statistics tools. These advancements enable organizations to gain deeper insights and make faster, more accurate decisions. Additionally, the proliferation of cloud-based solutions is making analytics tools more accessible and affordable for businesses of all sizes. Cloud deployment offers scalability, flexibility, and cost-efficiency, which are particularly attractive to small and medium enterprises (SMEs).
The role of Product Analytics Software is becoming increasingly significant in the realm of app data statistics tools. These software solutions are designed to help businesses understand how users interact with their products, providing insights that are crucial for enhancing user experience and driving product development. By analyzing user data, companies can identify trends and patterns that inform strategic decisions, such as feature enhancements and marketing strategies. The integration of Product Analytics Software with app data statistics tools enables businesses to gain a comprehensive view of user behavior, facilitating more informed decision-making and ultimately leading to improved product offerings.
Regionally, North America holds the largest market share, driven by the presence of numerous tech giants and a high adoption rate of advanced technologies. However, the Asia Pacific region is expected to witness the fastest growth during the forecast period. The rapid digitization, increasing smartphone penetration, and the rising number of app developers in countries like China and India are driving the demand for app data statistics tools. Europe also presents significant growth opportunities, with increasing investments in technology and data analytics across various industries. Latin America and the Middle East & Africa are emerging markets with growing awareness and adoption of analytics tools.
The app data statistics tool market is segmented by components into software and services. Software components dominate the market, driven by the demand for sophisticated analytics solutions that can process vast amounts of data. These software tools are designed to collect, analyze, and visualize data, enabling organizations to derive meaningful insights. The growing adoption of artificial intelligence and machine learning technologies in software solutions further enhances their capabilities, making them indispensable for
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.
International Data & Economic Analysis (IDEA) is USAID's comprehensive source of economic and social data and analysis. IDEA brings together over 12,000 data series from over 125 sources into one location for easy access by USAID and its partners through the USAID public website. The data are broken down by countries, years and the following sectors: Economy, Country Ratings and Rankings, Trade, Development Assistance, Education, Health, Population, and Natural Resources. IDEA regularly updates the database as new data become available. Examples of IDEA sources include the Demographic and Health Surveys, STATcompiler; UN Food and Agriculture Organization, Food Price Index; IMF, Direction of Trade Statistics; Millennium Challenge Corporation; and World Bank, World Development Indicators. The database can be queried by navigating to the site displayed in the Home Page field below.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication Package for A Study on the Pythonic Functional Constructs' Understandability
This package contains several folders and files with code and data used in the study.
examples/
Contains the code snippets used as objects of the study, named as reported in Table 1, summarizing the experiment design.
RQ1-RQ2-files-for-statistical-analysis/
Contains three .csv files used as input for conducting the statistical analysis and drawing the graphs for addressing the first two research questions of the study. Specifically:
- ConstructUsage.csv contains the declared frequency usage of the three functional constructs object of the study. This file is used to draw Figure 4.
- RQ1.csv contains the collected data used for the mixed-effect logistic regression relating the use of functional constructs with the correctness of the change task, and the logistic regression relating the use of map/reduce/filter functions with the correctness of the change task.
- RQ1Paired-RQ2.csv contains the collected data used for the ordinal logistic regression of the relationship between the perceived ease of understanding of the functional constructs and (i) participants' usage frequency, and (ii) constructs' complexity (except for map/reduce/filter).
inter-rater-RQ3-files/
Contains four .csv files used as input for computing the inter-rater agreement for the manual labeling used for addressing RQ3. Specifically, you will find one file for each functional construct, i.e., comprehension.csv, lambda.csv, and mrf.csv, and a different file used for highlighting the reasons why participants prefer to use the procedural paradigm, i.e., procedural.csv.
Questionnaire-Example.pdf
This file contains the questionnaire submitted to one of the ten experimental groups within our controlled experiment. Other questionnaires are similar, except for the code snippets used for the first section, i.e., change tasks, and the second section, i.e., comparison tasks.
RQ2ManualValidation.csv
This file contains the results of the manual validation being done to sanitize the answers provided by our participants used for addressing RQ2. Specifically, we coded the behavior description using four different levels: (i) correct, (ii) somewhat correct, (iii) wrong, and (iv) automatically generated.
RQ3ManualValidation.xlsx
This file contains the results of the open coding applied to address our third research question. Specifically, you will find four sheets, one for each functional construct and one for the procedural paradigm. For each sheet, you will find the provided answers together with the categories assigned to them.
Appendix.pdf
This file contains the results of the logistic regression relating the use of map, filter, and reduce functions with the correctness of the change task, not shown in the paper.
FuncConstructs-Statistics.r
This file contains an R script that you can reuse to re-run all the analyses conducted and discussed in the paper.
FuncConstructs-Statistics.ipynb
This file contains the code to re-execute all the analysis conducted in the paper as a notebook.
This page lists ad-hoc statistics released during the period October to December 2020. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.
If you would like any further information please contact evidence@dcms.gov.uk.
This piece of analysis covers:
Here is a link to the lotteries and gambling page for the annual Taking Part survey.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">70.2 KB</span></p>
<p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
<details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
Request an accessible format.
If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@dcms.gov.uk" target="_blank" class="govuk-link">enquiries@dcms.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
This piece of analysis covers how often people feel they lack companionship, feel left out and feel isolated. This analysis also provides demographic breakdowns of the loneliness indicators.
Here is a link to the wellbeing and loneliness page for the annual Community Life survey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data is becoming increasingly ubiquitous today, and data literacy has emerged an essential skill in the workplace. Therefore, it is necessary to equip high school students with data literacy skills in order to prepare them for further learning and future employment. In Indonesia, there is a growing shift towards integrating data literacy in the high school curriculum. As part of a pilot intervention project, academics from two leading Universities organised data literacy boot camps for high school students across various cities in Indonesia. The boot camps aimed at increasing participants’ awareness of the power of analytical and exploration skills, which in turn, would contribute to creating independent and data-literate students. This paper explores student participants’ self-perception of their data literacy as a result of the skills acquired from the boot camps. Qualitative and quantitative data were collected through student surveys and a focus group discussion, and were used to analyse student perception post-intervention. The findings indicate that students became more aware of the usefulness of data literacy and its application in future studies and work after participating in the boot camp. Of the materials delivered at the boot camps, students found the greatest benefit in learning basic statistical concepts and applying them through the use of Microsoft Excel as a tool for basic data analysis. These findings provide valuable policy recommendations that educators and policymakers can use as guidelines for effective data literacy teaching in high schools.
Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.
Most countries collect official statistics on energy use due to its vital role in the infrastructure, economy and living standards.
In Palestine, additional attention is warranted for energy statistics due to a scarcity of natural resources, the high cost of energy and high population density. These factors demand comprehensive and high quality statistics.
In this contest PCBS decided to conduct a special Energy Consumption in Transport Survey to provide high quality data about energy consumption by type, expenditure on maintenance and insurance for vehicles, and questions on vehicles motor capacity and year of production.
The survey aimed to provide data on energy consumption by transport sector and also on the energy consumption by the type of vehicles and its motor capacity and year of production.
Palestine
Vehicles
All the operating vehicles in Palestine in 2014.
Sample survey data [ssd]
Target Population: All the operating vehicles in Palestine in 2014.
2.1Sample Frame A list of the number of the operating vehicles in Palestine in 2014, they are broken down by governorates and vehicle types, this list was obtained from Ministry of transport.
2.2.1 Sample size The sample size is 6,974 vehicles.
2.2.2 Sampling Design it is stratified random sample, and in some of the small size strata the quota sample was used to cover them.
The method of reaching the vehicles sample was through : 1-reaching to all the dynamometers (the centers for testing the vehicles) 2-selecting a random sample of vehicles by type of vehicle, model, fuel type and engine capacity
Face-to-face [f2f]
The design of the questionnaire was based on the experiences of other similar countries in energy statistics subject to cover the most important indicators for energy statistics in transport sector, taking into account Palestine's particular situation.
The data processing stage consisted of the following operations: Editing and coding prior to data entry: all questionnaires were edited and coded in the office using the same instructions adopted for editing in the field.
Data entry: The survey questionnaire was uploaded on office computers. At this stage, data were entered into the computer using a data entry template developed in Access Database. The data entry program was prepared to satisfy a number of requirements: ·To prevent the duplication of questionnaires during data entry. ·To apply checks on the integrity and consistency of entered data. ·To handle errors in a user friendly manner. ·The ability to transfer captured data to another format for data analysis using statistical analysis software such as SPSS. Audit after data entered at this stage is data entered scrutiny by pulling the data entered file periodically and review the data and examination of abnormal values and check consistency between the different questions in the questionnaire, and if there are any errors in the data entered to be the withdrawal of the questionnaire and make sure this data and adjusted, even been getting the final data file that is the final extract data from it. Extraction Results: The extract final results of the report by using the SPSS program, and then display the results through tables to Excel format.
80.7%
Data of this survey may be affected by sampling errors due to use of a sample and not a complete enumeration. Therefore, certain differences are anticipated in comparison with the real values obtained through censuses. The variance was calculated for the most important indicators: the variance table is attached with the final report. There is no problem in the dissemination of results at national and regional level (North, Middle, South of West Bank, Gaza Strip).
The survey sample consisted of around 6,974 vehicles, of which 5,631 vehicles completed the questionnaire, 3,652 vehicles from the West Bank and 1,979 vehicles in Gaza Strip.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A simple table time series for school probability and statistics. We have to learn how to investigate data: value via time. What we try to do: - mean: average is the sum of all values divided by the number of values. It is also sometimes referred to as mean. - median is the middle number, when in order. Mode is the most common number. Range is the largest number minus the smallest number. - standard deviation s a measure of how dispersed the data is in relation to the mean.
This page lists ad-hoc statistics released during the period January to March 2021. These are additional analyses not included in any of the Department for Digital, Culture, Media and Sport’s standard publications.
If you would like any further information please contact evidence@dcms.gov.uk.
This piece of analysis covers adult (aged 16+) participation in craft activities in the last 12 months. Also, the analysis is broken down by area-level and demographic variables.
MS Excel Spreadsheet, 73.7 KB
This file may not be suitable for users of assistive technology.
Request an accessible format.Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Unsupervised exploratory data analysis (EDA) is often the first step in understanding complex data sets. While summary statistics are among the most efficient and convenient tools for exploring and describing sets of data, they are often overlooked in EDA. In this paper, we show multiple case studies that compare the performance, including clustering, of a series of summary statistics in EDA. The summary statistics considered here are pattern recognition entropy (PRE), the mean, standard deviation (STD), 1-norm, range, sum of squares (SSQ), and X4, which are compared with principal component analysis (PCA), multivariate curve resolution (MCR), and/or cluster analysis. PRE and the other summary statistics are direct methods for analyzing datathey are not factor-based approaches. To quantify the performance of summary statistics, we use the concept of the “critical pair,” which is employed in chromatography. The data analyzed here come from different analytical methods. Hyperspectral images, including one of a biological material, are also analyzed. In general, PRE outperforms the other summary statistics, especially in image analysis, although a suite of summary statistics is useful in exploring complex data sets. While PRE results were generally comparable to those from PCA and MCR, PRE is easier to apply. For example, there is no need to determine the number of factors that describe a data set. Finally, we introduce the concept of divided spectrum-PRE (DS-PRE) as a new EDA method. DS-PRE increases the discrimination power of PRE. We also show that DS-PRE can be used to provide the inputs for the k-nearest neighbor (kNN) algorithm. We recommend PRE and DS-PRE as rapid new tools for unsupervised EDA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An adequate imputation of missing data would significantly preserve the statistical power and avoid erroneous conclusions. In the era of big data, machine learning is a great tool to infer the missing values. The root means square error (RMSE) and the proportion of falsely classified entries (PFC) are two standard statistics to evaluate imputation accuracy. However, the Cox proportional hazards model using various types requires deliberate study, and the validity under different missing mechanisms is unknown. In this research, we propose supervised and unsupervised imputations and examine four machine learning-based imputation strategies. We conducted a simulation study under various scenarios with several parameters, such as sample size, missing rate, and different missing mechanisms. The results revealed the type-I errors according to different imputation techniques in the survival data. The simulation results show that the non-parametric “missForest” based on the unsupervised imputation is the only robust method without inflated type-I errors under all missing mechanisms. In contrast, other methods are not valid to test when the missing pattern is informative. Statistical analysis, which is improperly conducted, with missing data may lead to erroneous conclusions. This research provides a clear guideline for a valid survival analysis using the Cox proportional hazard model with machine learning-based imputations.
Biology students’ understanding of statistics is incomplete due to poor integration of these two disciplines. In some cases, students fail to learn statistics at the undergraduate level due to poor student interest and cursory teaching of concepts, highlighting a need for new and unique approaches to the teaching of statistics in the undergraduate biology curriculum. The most effective method of teaching statistics is to provide opportunities for students to apply concepts, not just learn facts. Opportunities to learn statistics also need to be prevalent throughout a student’s education to reinforce learning. The purpose of developing and implementing curriculum that integrates a topic in biology with an emphasis on statistical analysis was to improve students’ quantitative thinking skills. Our lesson focuses on the change in the richness of native species for a specified area with the aid of iNaturalist and the capacity for analysis afforded by Google Sheets. We emphasized the skills of data entry, storage, organization, curation and analysis. Students then had to report their findings, as well as discuss biases and other confounding factors. Pre- and post-lesson assessment revealed students’ quantitative thinking skills, as measured by a paired-samples t test, improved. At the end of the lesson, students had an increased understanding of basic statistical concepts, such as bias in research and making data-based claims, within the framework of biology.
Primary Image: Website screenshot of an iNaturalist observation (Clasping Milkweed – Asclepias amplexicalis). This image is an example of a data entry on iNaturalist. The data students export from iNaturalist is made up of hundreds, or even thousands, of observations like this one. This image is licensed under Creative Commons Attribution - Share Alike 4.0 International license. Source: Observation by cassi saari, 2014.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead of
urban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.