Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite recent papers on problems associated with full-model and stepwise regression, their use is still common throughout ecological and environmental disciplines. Alternative approaches, including generating multiple models and comparing them post-hoc using techniques such as Akaike's Information Criterion (AIC), are becoming more popular. However, these are problematic when there are numerous independent variables and interpretation is often difficult when competing models contain many different variables and combinations of variables. Here, we detail a new approach, REVS (Regression with Empirical Variable Selection), which uses all-subsets regression to quantify empirical support for every independent variable. A series of models is created; the first containing the variable with most empirical support, the second containing the first variable and the next most-supported, and so on. The comparatively small number of resultant models (n = the number of predictor variables) means that post-hoc comparison is comparatively quick and easy. When tested on a real dataset – habitat and offspring quality in the great tit (Parus major) – the optimal REVS model explained more variance (higher R2), was more parsimonious (lower AIC), and had greater significance (lower P values), than full, stepwise or all-subsets models; it also had higher predictive accuracy based on split-sample validation. Testing REVS on ten further datasets suggested that this is typical, with R2 values being higher than full or stepwise models (mean improvement = 31% and 7%, respectively). Results are ecologically intuitive as even when there are several competing models, they share a set of “core” variables and differ only in presence/absence of one or two additional variables. We conclude that REVS is useful for analysing complex datasets, including those in ecology and environmental disciplines.
Facebook
TwitterThis dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Sloan Digital Sky Survey (SDSS) is a comprehensive survey of the northern sky. This dataset contains a subset of this survey, of 60247 objects classified as galaxies, it includes a CSV file with a collection of information and a set of files for each object, namely JPG image files, FITS and spectra data. This dataset is used to train and explore the astromlp-models collection of deep learning models for galaxies characterisation.
The dataset includes a CSV data file where each row is an object from the SDSS database, and with the following columns (note that some data may not be available for all objects):
Besides the CSV file a set of directories are included in the dataset, in each directory you'll find a list of files named after the objid column from the CSV file, with the corresponding data, the following directories tree is available:
sdss-gs/
├── data.csv
├── fits
├── img
├── spectra
└── ssel
Where, each directory contains:
Changelog
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.
The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This
Facebook
TwitterMultivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which can contain up to several gigabytes of data. Surprisingly, research on MTS search is very limited. Most existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two provably correct algorithms to solve this problem — (1) an R-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences, and (2) a List Based Search (LBS) algorithm which uses sorted lists for indexing. We demonstrate the performance of these algorithms using two large MTS databases from the aviation domain, each containing several millions of observations. Both these tests show that our algorithms have very high prune rates (>95%) thus needing actual disk access for only less than 5% of the observations. To the best of our knowledge, this is the first flexible MTS search algorithm capable of subsequence search on any subset of variables. Moreover, MTS subsequence search has never been attempted on datasets of the size we have used in this paper.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: These are results from a network of 65 tree census plots in Panama. At each, every individual stem in a rectangular area of specified size is given a unique number and identified to species, then stem diameter measured in one or more censuses. Data from these numerous plots and inventories were collected following the same methods as, and species identity harmonized with, the 50-ha long-term tree census at Barro Colorado Island. Precise location of every site, elevation, and estimated rainfall (for many sites) are also included. These data were gathered over many years, starting in 1994 and continuing to the present, by principal investigators R. Condit, R. Perez, S. Lao, and S. Aguilar. Funding has been provided by many organizations.Description:marenaRecent.full.Rdata5Jan2013.zip: A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format, designed for data analysis. This and all other tables labelled 'full' have one record per individual tree found in that census. Detailed documentations of the 'full' tables is given in RoutputFull.pdf (see component 10 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. These are the best data to use if only a single plot census is needed. marena2cns.full.Rdata5Jan2013.zip: R Analytical Tables of the style 'full' for 44 plots with two censuses: 'marena2cns.full1.rdata' for the first census and 'marena2cns.full2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.full (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed. marena3cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for nine plots with three censuses: 'marena3cns.full1.rdata' for the first census through 'marena2cns.full3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.full (component 2): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed. marena4cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for six plots with four censuses: 'marena4cns.full1.rdata' for the first census through 'marena4cns.full4.rdata' for the fourth census. These six plots are a subset of the nine found in marena3cns.full (component 3): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed. marenaRecent.stem.Rdata5Jan2013.zip. A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format. These are designed for data analysis. This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. The table has one record per individual stem, necessary because some individual trees have more than one stem. Detailed documentations of these tables is given in RoutputFull.pdf (see component 11 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). These are the best data to use if only a single plot census is needed, and individual stems are desired. marena2cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for 44 plots with two censuses: 'marena2cns.stem1.rdata' for the first census and 'marena3cns.stem2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.stem (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed, and individual stems are desired. marena3cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for nine plots with three censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.stem (component 6): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed, and individual stems are desired. marena4cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for six plots with four censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These six plots are a subset of the nine found in marena3cns.stem (component 7): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed, and individual stems are desired. bci.spptable.rdata. A list of the 1414 species found across all tree plots and inventories in Panama, in R format. The column 'sp' in this table is a code identifying the species in the full census tables (marena.full and marena.stem, components 1-4 and 5-8 above). RoutputFull.pdf: Detailed documentation of the 'full' tables in Rdata format (components 1-4 above). RoutputStem.pdf: Detailed documentation of the 'stem' tables in Rdata format (component 5-8 above). PanamaPlot.txt: Locations of all tree plots and inventories in Panama.
Facebook
TwitterTo make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.
You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:
df<-read.csv('uber.csv')
df_black<-subset(uber_df, uber_df$name == 'Black')
write.csv(df_black, "nameofthefileyouwanttosaveas.csv")
getwd()
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the data used for the publication:
Jia, T., de Vries, R., Kapelan, Z., van Emmerik, T. H., & Taormina, R. (2024). Detecting floating litter in freshwater bodies with semi-supervised deep learning. Water Research, 266, 122405. https://doi.org/10.1016/j.watres.2024.122405
This dataset is a subset of the large-scale "TU Delft - Green Village" (TUD-GV), which includes 9,473 RGB images. More details on the TUD-GV dataset can be found at: https://doi.org/10.5281/zenodo.7636124. This subset used in this publication consists of 1,501 images, selected from the full TUD-GV dataset. All floating litter items in this subset have been annotated with bounding boxes. This subset is specifically for detecting floating litter in object detection tasks.
The 1,501 images are stored in the images.zip file, the annotations are stored in the labels_txt.zip file, and the class of the annotation (i.e., litter) is stored in the classes.txt file.
If you use this dataset for a publication, please cite the paper. Here is a BibTeX entry:
@article{jia2024detecting,
title={Detecting floating litter in freshwater bodies with semi-supervised deep learning},
author={Jia, Tianlong and de Vries, Rinze and Kapelan, Zoran and van Emmerik, Tim HM and Taormina, Riccardo},
journal={Water Research},
volume={266},
pages={122405},
year={2024},
publisher={Elsevier}
}
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a subset of the W2S dataset: Zhou, R., El Helou, M., Sage, D., Laroche, T., Seitz, A., Süsstrunk, S. (2020). W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_31
The selected subset contains 120 images with three channels, acquired using a conventional fluorescence widefield, in the form of a single multi-channel tiff file.
Code, data, and a copy of the original paper is available at https://github.com/IVRL/w2s
AI4Life has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement number 101057970. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Free-to-use Calligraphy
Dataset Details
This dataset was collected on 25th May, 2024. It's a small subset of /r/lettering on reddit.
Dataset Description
This dataset contains images specifically relating to handwriting, captioned with XGEN-MM (BLIP3).
Curated by: @pseudoterminalx License: Free-to-use, commercial license
Dataset Sources
Repository: https://reddit.com/r/lettering
Dataset Structure
A single parquet file contains several… See the full description on the dataset page: https://huggingface.co/datasets/bghira/free-to-use-calligraphy.
Facebook
TwitterData from the IFLS, merged across waves, most outcomes taken from wave 5. Includes birth order, family structure, Big 5 Personality, intelligence tests, and risk lotteries
This table contains variable names, labels, and number of missing values. See the complete codebook for more.
[truncated]
This dataset was automatically described using the codebook R package (version 0.8.2).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This code is not mine. The dataset provided here is a balanced subset derived from the original dataset, and I do not claim ownership over the original data.
The CODE dataset was collected by the Telehealth Network of Minas Gerais (TNMG) in the period between 2010 and 2016. TNMG is a public telehealth system assisting 811 out of the 853 municipalities in the state of Minas Gerais, Brazil.
The CODE 15% dataset is obtained from stratified sampling from the CODE dataset. This subset of the CODE dataset is described in and used for assessing model performance:
"Deep neural network estimated electrocardiographic-age as a mortality predictor"
Emilly M Lima, Antônio H Ribeiro, Gabriela MM Paixão, Manoel Horta Ribeiro, Marcelo M Pinto Filho, Paulo R Gomes, Derick M Oliveira, Ester C Sabino, Bruce B Duncan, Luana Giatti, Sandhi M Barreto, Wagner Meira Jr, Thomas B Schön, Antonio Luiz P Ribeiro. MedRXiv (2021) https://www.doi.org/10.1101/2021.02.19.21251232
This dataset is a subset of the CODE 15% dataset obtained by random sampling from the negative class while maintaining all the observations of the positive class to create a balanced dataset without the need to focus on class imbalance.
The code15_hdf5 folder contains the exams and labels for the entire CODE 15% dataset. The code15_wfdb folder contains the exam records file in .dat format.
An additional file (signals_features.csv) is provided, containing handcrafted features from the ECG records (lead II) related to P, Q, R, S, and T waves. Features such as P wave duration, PR interval, PR segment, QRS duration, ST segment, and ST slope were computed by first extracting all the points using the neurokit2 Python library and then aggregated for each record ID using descriptive statistics. Heart rate variability features were also included along with the P, Q, R, S, and T waves.
Link to the original dataset: https://doi.org/10.5281/zenodo.4916206
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Self-citation analysis data based on PubMed Central subset (2002-2005) ---------------------------------------------------------------------- Created by Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, and Vetle Torvik on April 5th, 2018 ## Introduction This is a dataset created as part of the publication titled: Mishra S, Fegley BD, Diesner J, Torvik VI (2018) Self-Citation is the Hallmark of Productive Authors, of Any Gender. PLOS ONE. It contains files for running the self citation analysis on articles published in PubMed Central between 2002 and 2005, collected in 2015. The dataset is distributed in the form of the following tab separated text files: * Training_data_2002_2005_pmc_pair_First.txt (1.2G) - Data for first authors * Training_data_2002_2005_pmc_pair_Last.txt (1.2G) - Data for last authors * Training_data_2002_2005_pmc_pair_Middle_2nd.txt (964M) - Data for middle 2nd authors * Training_data_2002_2005_pmc_pair_txt.header.txt - Header for the data * COLUMNS_DESC.txt file - Descriptions of all columns * model_text_files.tar.gz - Text files containing model coefficients and scores for model selection. * results_all_model.tar.gz - Model coefficient and result files in numpy format used for plotting purposes. v4.reviewer contains models for analysis done after reviewer comments. * README.txt file ## Dataset creation Our experiments relied on data from multiple sources including properitery data from Thompson Rueter's (now Clarivate Analytics) Web of Science collection of MEDLINE citations. Author's interested in reproducing our experiments should personally request from Clarivate Analytics for this data. However, we do make a similar but open dataset based on citations from PubMed Central which can be utilized to get similar results to those reported in our analysis. Furthermore, we have also freely shared our datasets which can be used along with the citation datasets from Clarivate Analytics, to re-create the datased used in our experiments. These datasets are listed below. If you wish to use any of those datasets please make sure you cite both the dataset as well as the paper introducing the dataset. * MEDLINE 2015 baseline: https://www.nlm.nih.gov/bsd/licensee/2015_stats/baseline_doc.html * Citation data from PubMed Central (original paper includes additional citations from Web of Science) * Author-ity 2009 dataset: - Dataset citation: Torvik, Vetle I.; Smalheiser, Neil R. (2018): Author-ity 2009 - PubMed author name disambiguated dataset. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4222651_V1 - Paper citation: Torvik, V. I., & Smalheiser, N. R. (2009). Author name disambiguation in MEDLINE. ACM Transactions on Knowledge Discovery from Data, 3(3), 1–29. https://doi.org/10.1145/1552303.1552304 - Paper citation: Torvik, V. I., Weeber, M., Swanson, D. R., & Smalheiser, N. R. (2004). A probabilistic similarity metric for Medline records: A model for author name disambiguation. Journal of the American Society for Information Science and Technology, 56(2), 140–158. https://doi.org/10.1002/asi.20105 * Genni 2.0 + Ethnea for identifying author gender and ethnicity: - Dataset citation: Torvik, Vetle (2018): Genni + Ethnea for the Author-ity 2009 dataset. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-9087546_V1 - Paper citation: Smith, B. N., Singh, M., & Torvik, V. I. (2013). A search engine approach to estimating temporal changes in gender orientation of first names. In Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries - JCDL ’13. ACM Press. https://doi.org/10.1145/2467696.2467720 - Paper citation: Torvik VI, Agarwal S. Ethnea -- an instance-based ethnicity classifier based on geo-coded author names in a large-scale bibliographic database. International Symposium on Science of Science March 22-23, 2016 - Library of Congress, Washington DC, USA. http://hdl.handle.net/2142/88927 * MapAffil for identifying article country of affiliation: - Dataset citation: Torvik, Vetle I. (2018): MapAffil 2016 dataset -- PubMed author affiliations mapped to cities and their geocodes worldwide. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4354331_V1 - Paper citation: Torvik VI. MapAffil: A Bibliographic Tool for Mapping Author Affiliation Strings to Cities and Their Geocodes Worldwide. D-Lib magazine : the magazine of the Digital Library Forum. 2015;21(11-12):10.1045/november2015-torvik * IMPLICIT journal similarity: - Dataset citation: Torvik, Vetle (2018): Author-implicit journal, MeSH, title-word, and affiliation-word pairs based on Author-ity 2009. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-4742014_V1 * Novelty dataset for identify article level novelty: - Dataset citation: Mishra, Shubhanshu; Torvik, Vetle I. (2018): Conceptual novelty scores for PubMed articles. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-5060298_V1 - Paper citation: Mishra S, Torvik VI. Quantifying Conceptual Novelty in the Biomedical Literature. D-Lib magazine : The Magazine of the Digital Library Forum. 2016;22(9-10):10.1045/september2016-mishra - Code: https://github.com/napsternxg/Novelty * Expertise dataset for identifying author expertise on articles: * Source code provided at: https://github.com/napsternxg/PubMed_SelfCitationAnalysis Note: The dataset is based on a snapshot of PubMed (which includes Medline and PubMed-not-Medline records) taken in the first week of October, 2016. Check here for information to get PubMed/MEDLINE, and NLMs data Terms and Conditions Additional data related updates can be found at Torvik Research Group ## Acknowledgments This work was made possible in part with funding to VIT from NIH grant P01AG039347 and NSF grant 1348742. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ## License Self-citation analysis data based on PubMed Central subset (2002-2005) by Shubhanshu Mishra, Brent D. Fegley, Jana Diesner, and Vetle Torvik is licensed under a Creative Commons Attribution 4.0 International License. Permissions beyond the scope of this license may be available at https://github.com/napsternxg/PubMed_SelfCitationAnalysis.
Facebook
TwitterDataset with annotated 12-lead ECG records. The exams were taken in 811 counties in the state of Minas Gerais/Brazil by the Telehealth Network of Minas Gerais (TNMG) between 2010 and 2016. And organized by the CODE (Clinical outcomes in digital electrocardiography) group. Requesting access Researchers affiliated to educational or research institutions might make requests to access this data dataset. Requests will be analyzed on an individual basis and should contain: Name of PI and host organisation; Contact details (including your name and email); and, the scientific purpose of data access request. If approved, a data user agreement will be forwarded to the researcher that made the request (through the email that was provided). After the agreement has been signed (by the researcher or by the research institution) access to the dataset will be granted. Openly available subset: A subset of this dataset (with 15% of the patients) is openly available. See: "CODE-15%: a large scale annotated dataset of 12-lead ECGs" https://doi.org/10.5281/zenodo.4916206. Content The folder contains: A column separated file containing basic patient attributes. The ECG waveforms in the wfdb format. Additional references The dataset is described in the paper "Automatic diagnosis of the 12-lead ECG using a deep neural network". https://www.nature.com/articles/s41467-020-15432-4. Related publications also using this dataset are: - [1] G. Paixao et al., “Validation of a Deep Neural Network Electrocardiographic-Age as a Mortality Predictor: The CODE Study,” Circulation, vol. 142, no. Suppl_3, pp. A16883–A16883, Nov. 2020, doi: 10.1161/circ.142.suppl_3.16883.- [2] A. L. P. Ribeiro et al., “Tele-electrocardiography and bigdata: The CODE (Clinical Outcomes in Digital Electrocardiography) study,” Journal of Electrocardiology, Sep. 2019, doi: 10/gf7pwg.- [3] D. M. Oliveira, A. H. Ribeiro, J. A. O. Pedrosa, G. M. M. Paixao, A. L. P. Ribeiro, and W. Meira Jr, “Explaining end-to-end ECG automated diagnosis using contextual features,” in Machine Learning and Knowledge Discovery in Databases. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), Ghent, Belgium, Sep. 2020, vol. 12461, pp. 204--219. doi: 10.1007/978-3-030-67670-4_13.- [4] D. M. Oliveira, A. H. Ribeiro, J. A. O. Pedrosa, G. M. M. Paixao, A. L. Ribeiro, and W. M. Jr, “Explaining black-box automated electrocardiogram classification to cardiologists,” in 2020 Computing in Cardiology (CinC), 2020, vol. 47. doi: 10.22489/CinC.2020.452.- [5] G. M. M. Paixão et al., “Evaluation of mortality in bundle branch block patients from an electronic cohort: Clinical Outcomes in Digital Electrocardiography (CODE) study,” Journal of Electrocardiology, Sep. 2019, doi: 10/dcgk.- [6] G. M. M. Paixão et al., “Evaluation of Mortality in Atrial Fibrillation: Clinical Outcomes in Digital Electrocardiography (CODE) Study,” Global Heart, vol. 15, no. 1, p. 48, Jul. 2020, doi: 10.5334/gh.772.- [7] G. M. M. Paixão et al., “Electrocardiographic Predictors of Mortality: Data from a Primary Care Tele-Electrocardiography Cohort of Brazilian Patients,” Hearts, vol. 2, no. 4, Art. no. 4, Dec. 2021, doi: 10.3390/hearts2040035.- [8] G. M. Paixão et al., “ECG-AGE FROM ARTIFICIAL INTELLIGENCE: A NEW PREDICTOR FOR MORTALITY? THE CODE (CLINICAL OUTCOMES IN DIGITAL ELECTROCARDIOGRAPHY) STUDY,” Journal of the American College of Cardiology, vol. 75, no. 11 Supplement 1, p. 3672, 2020, doi: 10.1016/S0735-1097(20)34299-6.- [9] E. M. Lima et al., “Deep neural network estimated electrocardiographic-age as a mortality predictor,” Nature Communications, vol. 12, 2021, doi: 10.1038/s41467-021-25351-7.- [10] W. Meira Jr, A. L. P. Ribeiro, D. M. Oliveira, and A. H. Ribeiro, “Contextualized Interpretable Machine Learning for Medical Diagnosis,” Communications of the ACM, 2020, doi: 10.1145/3416965.- [11] A. H. Ribeiro et al., “Automatic diagnosis of the 12-lead ECG using a deep neural network,” Nature Communications, vol. 11, no. 1, p. 1760, 2020, doi: 10/drkd.- [12] A. H. Ribeiro et al., “Automatic Diagnosis of Short-Duration 12-Lead ECG using a Deep Convolutional Network,” Machine Learning for Health (ML4H) Workshop at NeurIPS, 2018.- [13] A. H. Ribeiro et al., “Automatic 12-lead ECG classification using a convolutional network ensemble,” 2020. doi: 10.22489/CinC.2020.130.- [14] V. Sangha et al., “Automated Multilabel Diagnosis on Electrocardiographic Images and Signals,” medRxiv, Sep. 2021, doi: 10.1101/2021.09.22.21263926.- [15] S. Biton et al., “Atrial fibrillation risk prediction from the 12-lead ECG using digital biomarkers and deep representation learning,” European Heart Journal - Digital Health, 2021, doi: 10.1093/ehjdh/ztab071. Code: The following github repositories perform analysis that use this dataset: - https://github.com/antonior92/automatic-ecg-diagnosis- https://github.com/antonior92/ecg-age-prediction Related Datasets: - CODE-test: An annotated 12-lead ECG dataset (https://doi.org/10.5281/zenodo.3765780)- CODE-15%: a large scale annotated dataset of 12-lead ECGs (https://doi.org/10.5281/zenodo.4916206)- Sami-Trop: 12-lead ECG traces with age and mortality annotations (https://doi.org/10.5281/zenodo.4905618) Ethics declarations The CODE Study was approved by the Research Ethics Committee of the Universidade Federal de Minas Gerais, protocol 49368496317.7.0000.5149.
Facebook
TwitterIf you wish to use this data please cite:
Katarzyna Baraniak, Marcin Sydow, A dataset for Sentiment analysis of Entities in News headlines (SEN), Procedia Computer Science, Volume 192, 2021, Pages 3627-3636, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.09.136. (https://www.sciencedirect.com/science/article/pii/S1877050921018755)
bibtex: users.pja.edu.pl/~msyd/bibtex/sydow-baraniak-SENdataset-kes21.bib
SEN is a novel publicly available human-labelled dataset for training and testing machine learning algorithms for the problem of entity level sentiment analysis of political news headlines.
On-line news portals play a very important role in the information society. Fair media should present reliable and objective information. In practice there is an observable positive or negative bias concerning named entities (e.g. politicians) mentioned in the on-line news headlines. Our dataset consists of 3819 human-labelled political news headlines coming from several major on-line media outlets in English and Polish.
Each record contains a news headline, a named entity mentioned in the headline and a human annotated label (one of “positive”, “neutral”, “negative” ). Our SEN dataset package consists of 2 parts: SEN-en (English headlines that split into SEN-en-R and SEN-en-AMT), and SEN-pl (Polish headlines). Each headline-entity pair was annotated via team of volunteer researchers (the whole SEN-pl dataset and a subset of 1271 English records: the SEN-en-R subset, “R” for “researchers”) or via the Amazon Mechanical Turk service (a subset of 1360 English records: the SEN-en-AMT subset).
During analysis of annotation outlying annotations and removed . Separate version of dataset without outliers is marked by "noutliers" in data file name.
Details of the process of preparing the dataset and presenting its analysis are presented in the paper.
In case of any questions, please contact one of the authors. Email adresses are in the paper.
Facebook
TwitterSentences and citation contexts identified from the PubMed Central open access articles ---------------------------------------------------------------------- The dataset is delivered as 24 tab-delimited text files. The files contain 720,649,608 sentences, 75,848,689 of which are citation contexts. The dataset is based on a snapshot of articles in the XML version of the PubMed Central open access subset (i.e., the PMCOA subset). The PMCOA subset was collected in May 2019. The dataset is created as described in: Hsiao TK., & Torvik V. I. (manuscript) OpCitance: Citation contexts identified from the PubMed Central open access articles. Files: • A_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with A. • B_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with B. • C_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with C. • D_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with D. • E_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with E. • F_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with F. • G_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with G. • H_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with H. • I_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with I. • J_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with J. • K_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with K. • L_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with L. • M_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with M. • N_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with N. • O_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with O. • P_p1_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with P (part 1). • P_p2_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with P (part 2). • Q_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with Q. • R_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with R. • S_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with S. • T_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with T. • UV_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with U or V. • W_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with W. • XYZ_journal_IntxtCit.tsv – Sentences and citation contexts identified from articles published in journals with journal titles starting with X, Y or Z. Each row in the file is a sentence/citation context and contains the following columns: • pmcid: PMCID of the article • pmid: PMID of the article. If an article does not have a PMID, the value is NONE. • location: The article component (abstract, main text, table, figure, etc.) to which the citation context/sentence belongs. • IMRaD: The type of IMRaD section associated with the citation context/sentence. I, M, R, and D represent introduction/background, method, results, and conclusion/discussion, respectively; NoIMRaD indicates that the section type is not identifiable. • sentence_id: The ID of the citation context/sentence in the article component • total_sentences: The number of sentences in the article component. • intxt_id: The ID of the citation. • intxt_pmid: PMID of the citation (as tagged in the XML file). If a citation does not have a PMID tagged in the XML file, the value is "-". • intxt_pmid_source: The sources where the intxt_pmid can be identified. Xml represents that the PMID is only identified from the XML file; xml,pmc represents that the PMID is not only from the XML file, but also in the citation data collected from the NCBI Entrez Programming Utilities. If a citation does not have an intxt_pmid, the value is "-". • intxt_mark: The citation marker associated with the inline citation. • best_id: The best source link ID (e.g., PMID) of the citation. • best_source: The sources that confirm the best ID. • best_id_diff: The comparison result between the best_id column and the intxt_pmid column. • citation: A citation context. If no citation is found in a sentence, the value is the sentence. • progression: Text progression of the citation context/sentence. Supplementary Files • PMC-OA-patci.tsv.gz – This file contains the best source link IDs for the references (e.g., PMID). Patci [1] was used to identify the best source link IDs. The best source link IDs are mapped to the citation contexts and displayed in the *_journal IntxtCit.tsv files as the best_id column. Each row in the PMC-OA-patci.tsv.gz file is a citation (i.e., a reference extracted from the XML file) and contains the following columns: • pmcid: PMCID of the citing article. • pos: The citation's position in the reference list. • fromPMID: PMID of the citing article. • toPMID: Source link ID (e.g., PMID) of the citation. This ID is identified by Patci. • SRC: The sources that confirm the toPMID. • MatchDB: The origin bibliographic database of the toPMID. • Probability: The match probability of the toPMID. • toPMID2: PMID of the citation (as tagged in the XML file). • SRC2: The sources that confirm the toPMID2. • intxt_id: The ID of the citation. • journal: The first letter of the journal title. This maps to the *_journal_IntxtCit.tsv files. • same_ref_string: Whether the citation string appears in the reference list more than once. • DIFF: The comparison result between the toPMID column and the toPMID2 column. • bestID: The best source link ID (e.g., PMID) of the citation. • bestSRC: The sources that confirm the best ID. • Match: Matching result produced by Patci. [1] Agarwal, S., Lincoln, M., Cai, H., & Torvik, V. (2014). Patci – a tool for identifying scientific articles cited by patents. GSLIS Research Showcase 2014. http://hdl.handle.net/2142/54885 • Supplementary_File_1.zip – This file contains the code for generating the dataset.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
🃏 Labelled r/Jokes Dataset
A dataset of Reddit jokes from r/Jokes annotated with humor, offensiveness, and sentiment using large language models (LLMs).
📊 Dataset Overview
LLM-Labeled Subset (Mistral-7B): 55,278 jokes
Model-Predicted Subset (Fine-tuned RoBERTa): 518,124 jokes
📄 Column Descriptions
Column Description
date Date the joke was posted on Reddit (r/Jokes)
joke The full text of the joke
score Number of… See the full description on the dataset page: https://huggingface.co/datasets/SajilAwale/FunnyData.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This is a multivariate type of dataset which means providing or involving a variety of separate mathematical or statistical variables, multivariate numerical data analysis. It is composed of 14 attributes which are age, sex, chest pain type, resting blood pressure, serum cholesterol, fasting blood sugar, resting electrocardiographic results, maximum heart rate achieved, exercise-induced angina, oldpeak — ST depression induced by exercise relative to rest, the slope of the peak exercise ST segment, number of major vessels and Thalassemia. This database includes 76 attributes, but all published studies relate to the use of a subset of 14 of them. The Cleveland database is the only one used by ML researchers to date. One of the major tasks on this dataset is to predict based on the given attributes of a patient that whether that particular person has heart disease or not and other is the experimental task to diagnose and find out various insights from this dataset which could help in understanding the problem more.
id: (Unique id for each patient)
age: (Age of the patient in years)
origin: (place of study)
sex: (Male/Female)
cp: chest pain type:
1. typical angina
2. atypical angina
3. non-anginal
4. asymptomatic
trestbps: resting blood pressure (resting blood pressure (in mm Hg on admission to the hospital))
chol: (serum cholesterol in mg/dl)
fbs: (if fasting blood sugar > 120 mg/dl)
restecg: (resting electrocardiographic results)
Values: [normal, stt abnormality, lv hypertrophy]
thalach: maximum heart rate achieved
exang: exercise-induced angina (True/ False)
oldpeak: ST depression induced by exercise relative to rest
slope: the slope of the peak exercise ST segment
ca: number of major vessels (0-3) colored by fluoroscopy
thal: [normal; fixed defect; reversible defect]
num: the predicted attribute [0 shows no disease and 1, 2, 3 and 4 shows different level of disease]
Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.
Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy, K., Lee, S., & Froelicher, V. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology, 64,304--310. David W. Aha & Dennis Kibler. "Instance-based prediction of heart-disease presence with the Cleveland database." Gennari, J.H., Langley, P, & Fisher, D. (1989). Models of incremental concept formation. Artificial Intelligence, 40, 11--61.
The authors of the databases have requested that any publications resulting from the use of the data include the names of the principal investigator responsible for the data collection at each institution.
They would be:
Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D. University Hospital, Zurich, Switzerland: William Steinbrunn, M.D. University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D. V.A. Medical Center, Long Beach and Cleveland Clinic Foundation:Robert Detrano, M.D., Ph.D.
Facebook
Twitterhttps://eidc.ac.uk/licences/ogl/plainhttps://eidc.ac.uk/licences/ogl/plain
This dataset contains time series observations of surface-atmosphere exchanges of sensible heat (H) and latent heat (LE) and momentum (τ) measured at UKCEH eddy covariance flux observation sites during summer 2019. The dataset includes ancillary weather and soil physics observations made at each site. Eddy covariance (EC) and micrometeorological observations were collected using open-path eddy covariance systems. Flux, meteorological and soil physics observations were collected and processed using harmonised protocols across all sites. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IndicVoices-R (IV-R) is the largest multilingual Indian text-to-speech (TTS) dataset derived from an automatic speech recognition (ASR) dataset. It contains 1,704 hours of high-quality speech from 10,496 speakers across 22 Indian languages. This subset contains Tamil language audio and metadata prepared for TTS research and benchmarking.
Key Features: - Speaker Diversity: Includes Tamil speakers across various demographics - High-Quality Samples: Audio restored from ASR-quality speech using HTDemucs, VoiceFixer, and DeepFilterNet3 - Natural Conversational Speech: Most recordings are extempore - Metadata: Includes speaker info, pitch, SNR, C50, duration, etc. - File Format: Audio in .wav (48 kHz), plus text, verbatim, normalized formats
License: CC-BY-4.0
Acknowledgements: Supported by Digital India Bhashini, EkStep Foundation, and Nilekani Philanthropies. Enhanced using PARAM-Siddhi supercomputing resources by CDAC Pune and supported by AI4Bharat team.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite recent papers on problems associated with full-model and stepwise regression, their use is still common throughout ecological and environmental disciplines. Alternative approaches, including generating multiple models and comparing them post-hoc using techniques such as Akaike's Information Criterion (AIC), are becoming more popular. However, these are problematic when there are numerous independent variables and interpretation is often difficult when competing models contain many different variables and combinations of variables. Here, we detail a new approach, REVS (Regression with Empirical Variable Selection), which uses all-subsets regression to quantify empirical support for every independent variable. A series of models is created; the first containing the variable with most empirical support, the second containing the first variable and the next most-supported, and so on. The comparatively small number of resultant models (n = the number of predictor variables) means that post-hoc comparison is comparatively quick and easy. When tested on a real dataset – habitat and offspring quality in the great tit (Parus major) – the optimal REVS model explained more variance (higher R2), was more parsimonious (lower AIC), and had greater significance (lower P values), than full, stepwise or all-subsets models; it also had higher predictive accuracy based on split-sample validation. Testing REVS on ten further datasets suggested that this is typical, with R2 values being higher than full or stepwise models (mean improvement = 31% and 7%, respectively). Results are ecologically intuitive as even when there are several competing models, they share a set of “core” variables and differ only in presence/absence of one or two additional variables. We conclude that REVS is useful for analysing complex datasets, including those in ecology and environmental disciplines.