This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways.
Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase.
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in shapefile format contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this data set, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The data set was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this data set,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School. When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. The geographic coordinate system for this dataset is WGS 1984. The data in shapefile format [IRS_locations.zip] can be viewed and mapped in a Geographic Information System software. Detailed metadata in xml format is available as part of the data in shapefile format. In addition, the field name descriptions (IRS_locfields.csv) and the detailed locations descriptions (IRS_locdescription.csv) should be used alongside the data in shapefile format.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
New political and administrative boundaries Shapefile of Nepal. Downloaded and republished from the Survey Department website.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
AT_2004_HARF File Geodatabase Feature Class Thumbnail Not Available Tags Socio-economic resources, Information, Social Institutions, Hierarchy, Territory, BES, Parcel, Property, Property View, A&T, Database, Assessors, Taxation Summary Serves as a basis for performing various analyses based on parcel data. Description Assessments & Taxation (A&T) Database from MD Property View 2004 for Harford County. The A&T Database contains parcel data from the State Department of Assessments and Taxation; it incorporates parcel ownership and address information, parcel valuation information and basic information about the land and structure(s) associated with a given parcel. These data form the basis for the 2004 Database, which also includes selected Computer Assisted Mass Appraisal (CAMA) characteristics, text descriptions to make parcel code field data more readily accessible and logical True/False fields which identify parcels with certain characteristics. Documentation for A&T, including a thorough definition for all attributes is enclosed. Complete Property View documentation can be found at http://www.mdp.state.md.us/data/index.htm under the "Technical Background" tab. It should be noted that the A&T Database consists of points and not parcel boundaries. For those areas where parcel polygon data exists the A&T Database can be joined using the ACCTID or a concatenation of the BLOCK and LOT fields, whichever is appropriate. (Spaces may have to be excluded when concatenating the BLOCK and LOT fields).
This layer is a high-resolution tree canopy change-detection layer for Baltimore City, MD. It contains three tree-canopy classes for the period 2007-2015: (1) No Change; (2) Gain; and (3) Loss. It was created by extracting tree canopy from existing high-resolution land-cover maps for 2007 and 2015 and then comparing the mapped trees directly. Tree canopy that existed during both time periods was assigned to the No Change category while trees removed by development, storms, or disease were assigned to the Loss class. Trees planted during the interval were assigned to the Gain category, as were the edges of existing trees that expanded noticeably. Direct comparison was possible because both the 2007 and 2015 maps were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset will be subjected to manual review and correction. 2006 LiDAR and 2014 LiDAR data was also used to assist in tree canopy change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a geospatial dataset representing local- and regional-scale aquifer system boundaries, defined on the basis of an extensive literature review and published in GebreEgziabher et al. (2022). Nature Communications, 13, 2129, https://www.nature.com/articles/s41467-022-29678-7
The database contains 440 polygons, each representing one study area analyzed in GebreEgziabher et al. (2022). The attribute table associated with the shapefile has two fields (column headings): (1) aquifer system title (Ocala Uplift sub-area of the broader Floridan Aquifer System), and (2) broader aquifer system title (e.g., the Floridan Aquifer System).
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This data set contains interpreted polygons describing different sedimentary energy environments of the Long Island Sound mapping project Phase II. This data set is the result of manual interpretation of detailed bathymetry data and resulting seafloor morphology, backscatter data, sediment core analysis results, and interpretation of sub-bottom data. It distinguishes high, low, and moderate energy environments, which can be caused by current and wave action. The outline of polygons was based on manual interpretation mostly following morphological and backscatter boundaries. Interpretation was cross-checked with sediment grab and core information. Polygon outlines are based on morphology and backscatter data that have 1 m pixel resolution, but interpretation could be several pixels (~ +/-10 m) in each direction, since the exact boundary is not always clear. Small pockets of different environments might not have been distinguished. The data is presented here as an ESRI shapefile in UTM-18 N projection. Funding was provided by the Long Island Sound Mapping Fund administered cooperatively by the EPA Long Island Sound Study and the Connecticut Department of Energy and Environmental Protection (DEEP).
Facilities and features in Chicago parks. For more information, visit http://www.chicagoparkdistrict.com/facilities/search/. To view or use these shapefiles, compression software and special GIS software, such as ESRI ArcGIS or QGIS, is required. To download this file, right-click the "Download" link above and choose "Save link as."
Parcels and property data maintained and provided by Lee County Property Appraiser are converted to points. Property attribute data joined to parcel GIS layer by Lee County Government GIS. This dataset is generally used in spatial analysis.Process description: Parcel polygons, condominium points and property data provided by the Lee County Property Appraiser are processed by Lee County's GIS Department using the following steps:Join property data to parcel polygons Join property data to condo pointsConvert parcel polygons to points using ESRI's ArcGIS tool "Feature to Point" and designate the "Source" field "P".Load Condominium points into this layer and designate the "Source" field "C". Add X/Y coordinates in Florida State Plane West, NAD 83, feet using the "Add X/Y" tool.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983
Name
Type
Length
Description
STRAP
String
25
17-digit Property ID (Section, Township, Range, Area, Block, Lot)
BLOCK
String
10
5-digit portion of STRAP (positions 9-13)
LOT
String
8
Last 4-digits of STRAP
FOLIOID
Double
8
Unique Property ID
MAINTDATE
Date
8
Date LeePA staff updated record
MAINTWHO
String
20
LeePA staff who updated record
UPDATED
Date
8
Data compilation date
HIDE_STRAP
String
1
Confidential parcel ownership
TRSPARCEL
String
17
Parcel ID sorted by Township, Range & Section
DORCODE
String
2
Department of Revenue. See https://leepa.org/Docs/Codes/DOR_Code_List.pdf
CONDOTYPE
String
1
Type of condominium: C (commercial) or R (residential)
UNITOFMEAS
String
2
Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
NUMUNITS
Double
8
Number of Land Units (units defined in UNITOFMEAS)
FRONTAGE
Integer
4
Road Frontage in Feet
DEPTH
Integer
4
Property Depth in Feet
GISACRES
Double
8
Total Computed Acres from GIS
TAXINGDIST
String
3
Taxing District of Property
TAXDISTDES
String
60
Taxing District Description
FIREDIST
String
3
Fire District of Property
FIREDISTDE
String
60
Fire District Description
ZONING
String
10
Zoning of Property
ZONINGAREA
String
3
Governing Area for Zoning
LANDUSECOD
SmallInteger
2
Land Use Code
LANDUSEDES
String
60
Land Use Description
LANDISON
String
5
BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
SITEADDR
String
55
Lee County Addressing/E911
SITENUMBER
String
10
Property Location - Street Number
SITESTREET
String
40
Street Name
SITEUNIT
String
5
Unit Number
SITECITY
String
20
City
SITEZIP
String
5
Zip Code
JUST
Double
8
Market Value
ASSESSED
Double
8
Building Value + Land Value
TAXABLE
Double
8
Taxable Value
LAND
Double
8
Land Value
BUILDING
Double
8
Building Value
LXFV
Double
8
Land Extra Feature Value
BXFV
Double
8
Building Extra Feature value
NEWBUILT
Double
8
New Construction Value
AGAMOUNT
Double
8
Agriculture Exemption Value
DISAMOUNT
Double
8
Disability Exemption Value
HISTAMOUNT
Double
8
Historical Exemption Value
HSTDAMOUNT
Double
8
Homestead Exemption Value
SNRAMOUNT
Double
8
Senior Exemption Value
WHLYAMOUNT
Double
8
Wholly Exemption Value
WIDAMOUNT
Double
8
Widow Exemption Value
WIDRAMOUNT
Double
8
Widower Exemption Value
BLDGCOUNT
SmallInteger
2
Total Number of Buildings on Parcel
MINBUILTY
SmallInteger
2
Oldest Building Built
MAXBUILTY
SmallInteger
2
Newest Building Built
TOTALAREA
Double
8
Total Building Area
HEATEDAREA
Double
8
Total Heated Area
MAXSTORIES
Double
8
Tallest Building on Parcel
BEDROOMS
Integer
4
Total Number of Bedrooms
BATHROOMS
Double
8
Total Number of Bathrooms / Not For Comm
GARAGE
String
1
Garage on Property 'Y'
CARPORT
String
1
Carport on Property 'Y'
POOL
String
1
Pool on Property 'Y'
BOATDOCK
String
1
Boat Dock on Property 'Y'
SEAWALL
String
1
Sea Wall on Property 'Y'
NBLDGCOUNT
SmallInteger
2
Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
NMINBUILTY
SmallInteger
2
Oldest New Building Built
NMAXBUILTY
SmallInteger
2
Newest New Building Built
NTOTALAREA
Double
8
Total New Building Area
NHEATEDARE
Double
8
Total New Heated Area
NMAXSTORIE
Double
8
Tallest New Building on Parcel
NBEDROOMS
Integer
4
Total Number of New Bedrooms
NBATHROOMS
Double
8
Total Number of New Bathrooms/Not For Comm
NGARAGE
String
1
New Garage on Property 'Y'
NCARPORT
String
1
New Carport on Property 'Y'
NPOOL
String
1
New Pool on Property 'Y'
NBOATDOCK
String
1
New Boat Dock on Property 'Y'
NSEAWALL
String
1
New Sea Wall on Property 'Y'
O_NAME
String
30
Owner Name
O_OTHERS
String
120
Other Owners
O_CAREOF
String
30
In Care Of Line
O_ADDR1
String
30
Owner Mailing Address Line 1
O_ADDR2
String
30
Owner Mailing Address Line 2
O_CITY
String
30
Owner Mailing City
O_STATE
String
2
Owner Mailing State
O_ZIP
String
9
Owner Mailing Zip
O_COUNTRY
String
30
Owner Mailing Country
S_1DATE
Date
8
Most Current Sale Date > $100.00
S_1AMOUNT
Double
8
Sale Amount
S_1VI
String
1
Sale Vacant or Improved
S_1TC
String
2
Sale Transaction Code
S_1TOC
String
2
Sale Transaction Override Code
S_1OR_NUM
String
13
Original Record (Lee County Clerk)
S_2DATE
Date
8
Previous Sale Date > $100.00
S_2AMOUNT
Double
8
Sale Amount
S_2VI
String
1
Sale Vacant or Improved
S_2TC
String
2
Sale Transaction Code
S_2TOC
String
2
Sale Transaction Override Code
S_2OR_NUM
String
13
Original Record (Lee County Clerk)
S_3DATE
Date
8
Next Previous Sale Date > $100.00
S_3AMOUNT
Double
8
Sale Amount
S_3VI
String
1
Sale Vacant or Improved
S_3TC
String
2
Sale Transaction Code
S_3TOC
String
2
Sale Transaction Override Code
S_3OR_NUM
String
13
Original Record (Lee County Clerk)
S_4DATE
Date
8
Next Previous Sale Date > $100.00
S_4AMOUNT
Double
8
Sale Amount
S_4VI
String
1
Sale Vacant or Improved
S_4TC
String
2
Sale Transaction Code
S_4TOC
String
2
Sale Transaction Override Code
S_4OR_NUM
String
13
This dataset contains the White Mountain National Forest Boundary. The boundary was extracted from the National Forest boundaries coverage for the lower 48 states, including Puerto Rico developed by the USDA Forest Service - Geospatial Service and Technology Center. The coverage was projected from decimal degrees to UTM zone 19. This dataset includes administrative unit boundaries, derived primarily from the GSTC SOC data system, comprised of Cartographic Feature Files (CFFs), using ESRI Spatial Data Engine (SDE) and an Oracle database. The data that was available in SOC was extracted on November 10, 1999. Some of the data that had been entered into SOC was outdated, and some national forest boundaries had never been entered for a variety of reasons. The USDA Forest Service, Geospatial Service and Technology Center has edited this data in places where it was questionable or missing, to match the National Forest Inventoried Roadless Area data submitted for the President's Roadless Area Initiative. Data distributed as shapefile in Coordinate system EPSG:26919 - NAD83 / UTM zone 19N.
Routes, Stops, Park & Rides for Project Connect. This data is for informational purposes only and are subject to change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This submission contains information used to compute the risk factors for the GPFA-AB project. The risk factors are natural reservoir quality, thermal resource quality, potential for induced seismicity, and utilization. The methods used to combine the risk factors included taking the product, sum, and minimum of the four risk factors. The files are divided into images, rasters, shapefiles, and supporting information. The image files show what the raster and shapefiles should look like. The raster files contain the input risk factors, calculation of the scaled risk factors, and calculation of the combined risk factors. The shapefiles include definition of the fairways, definition of the US Census Places, the center of the raster cells, and locations of industries. Supporting information contains details of the calculations or processing used in generating the files. An image of the raster will have the same name except *.png as the file ending instead of *.tif. Images with 'fairways' or 'industries' added to the name are composed of a raster with the relevant shapefile added.
The file About_GPFA-AB_Phase1RiskAnalysisTask5DataUpload.pdf contains information the citation, special use considerations, authorship, etc.
See 'GPFA-AB.zip' at bottom for compressed and organized version of the files associated with this submission
More details (including location) on each file are given in the spreadsheet 'list_of_contents.csv' in the folder 'SupportingInfo'
Code used to calculate values is available: https://github.com/calvinwhealton/geothermal_pfa under the folder 'combining_metrics' - See link below
Dataset containing (5) GIS shapefiles which can be used to visualize a circumpolar overview map of geographical language speaker areas for Arctic Indigenous Peoples languages with additional attribute information about the languages. The language speaker areas show generally the maximum continuous areas where the Indigenous Peoples who spoke those languages lived in a historical context. The exact time range is defined specifically per region. Data from the languages and dialects shapefile was used to make language family and language family branch shapefiles. There is also a separate shapefile with some examples of innovative language revitalization in the region. There is a supporting shapefile of Arctic places to assist when visualizing the data. The 5 shapefiles can be used together or separately. All shapefiles are intended to be used as open resources for education and research. The shapefile for Languages and Dialects (Arctic_In_Lang_Dialect_V1-1_2024-Final.zip) is an updated version 2 from August 30, 2024. Fixes in this version 1.1: 1. Language polygon for "Chilcotin"/"Tsilhqút'ín" included 2. 3 empty remnant attribute entries removed
AT_2004_BACO
File Geodatabase Feature Class
Thumbnail Not Available
Tags
Socio-economic resources, Information, Social Institutions, Hierarchy, Territory, BES, Parcel, Property, Property View, A&T, Database, Assessors, Taxation
Summary
Serves as a basis for performing various analyses based on parcel data.
Description
Assessments & Taxation (A&T) Database from MD Property View 2004 for Baltimore County. The A&T Database contains parcel data from the State Department of Assessments and Taxation; it incorporates parcel ownership and address information, parcel valuation information and basic information about the land and structure(s) associated with a given parcel. These data form the basis for the 2004 Database, which also includes selected Computer Assisted Mass Appraisal (CAMA) characteristics, text descriptions to make parcel code field data more readily accessible and logical True/False fields which identify parcels with certain characteristics. Documentation for A&T, including a thorough definition for all attributes is enclosed. Complete Property View documentation can be found at http://www.mdp.state.md.us/data/index.htm under the "Technical Background" tab.
It should be noted that the A&T Database consists of points and not parcel boundaries. For those areas where parcel polygon data exists the A&T Database can be joined using the ACCTID or a concatenation of the BLOCK and LOT fields, whichever is appropriate. (Spaces may have to be excluded when concatenating the BLOCK and LOT fields).
A cursory review of the 2004 version of the A&T Database indicates that it has more accurate data when compared with the 2003 version, particularly with respect to dwelling types. However, for a given record it is not uncommon for numerous fields to be missing attributes. Based on previous version of the A&T Database it is also not unlikely that some of the information is inaccurate. This layer was edited to remove points that did not have a valid location because they failed to geocode. There were 5870 such points. A listing of the deleted points is in the table with the suffix "DeletedRecords."
Credits
Maryland Department of Planning
Use limitations
BES use only.
Extent
West -76.897802 East -76.335214
North 39.726520 South 39.192552
Scale Range
There is no scale range for this item.
A shapefile of 311 undersea features from all major oceans and seas has been created as an aid for retrieving georeferenced information resources. The geographic extent of the shapefile is 0 degrees E to 0 degrees W longitude and 75 degrees S to 90 degrees N latitude. Many of the undersea features (UF) in the shapefile were selected from a list assembled by Weatherall and Cramer (2008) in a report from the British Oceanographic Data Centre (BODC) to the General Bathymetric Chart of the Oceans (GEBCO) Sub-Committee on Undersea Feature Names (SCUFN). Annex II of the Weatherall and Cramer report (p. 20-22) lists 183 undersea features that "may need additional points to define their shape" and includes online links to additional BODC documents providing coordinate pairs sufficient to define detailed linestrings for these features. For the first phase of the U.S. Geological Survey (USGS) project, Wingfield created polygons for 87 of the undersea features on the BODC list, using the linestrings as guides; the selected features were primarily ridges, rises, trenches, fracture zones, basins, and seamount chains. In the second phase of the USGS project, Wingfield and Hartwell created polygons for an additional 224 undersea features, mostly basins, abyssal plains, and fracture zones. Because USGS is a Federal agency, the attribute tables follow the conventions of the National Geospatial-Intelligence Agency (NGA) GEOnet Names Server (http://earth-info.nga.mil/gns/html).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the 2024 data update. For the 2018 update, please see the link below.
Starting with the most recently updated polygon shapefile of ASPAs (Terauds and Lee 2016), which contained some minor improvement on the original ASPA spatial layer first made publicly available in 2011, we first cross-checked the location of ASPA polygons with the spatially explicit locations provided in the ASPAs Management Plans. Once polygons were aligned with the Management Plans, we then georeferenced the maps provided in the management plans to check the ASPA boundaries in relation to known landscape features, In some cases, there was a lack of concurrence between co-ordinates, PDF map, coastline, rock layer or Google Earth. In these cases the following protocol was followed: snap to coordinates (unless clearly wrong), otherwise align to rock outcrop layer based on the PDF map, otherwise align to coastline. Full details of the updates made to each ASPA can be found in the README file accompanying the updated layer.
The downloadable dataset contains a folder with a points dataset, a folder with a polygon dataset, and a word document with further information.
For ASPAS and ASMAs within the AAT please see: https://data.aad.gov.au/metadata/aspas_asmas_aat - doi:10.4225/15/5a963cbd74a3a.
For the 2018 data update please see: https://data.aad.gov.au/metadata/AAS_4296_Updated_ASPAs_2018 - doi:10.26179/5c1b10c534c19.
This dataset contains a point shapefile with benthic habitat classifications of vertical relief, geomorphological structure, substrate, and biological cover for selected points along various Remotely Operated Vehicle (ROV) underwater video transects in the US Virgin Islands and Puerto Rico. NOAA's NOS/NCCOS/CCMA Biogeography Team, in collaboration with NOAA vessel Nancy Foster and territory, fe...
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways.