80 datasets found
  1. Google Earth Engine code

    • springernature.figshare.com
    • datasetcatalog.nlm.nih.gov
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthias M Boer; Ross R.A.B. Bradstock; Víctor Resco de Dios; Grazia Pellizzaro; Emilio Chuvieco; Glenn Newnham; Phil Dennison; L Ustin; Matt Jolly; Florent Mouillot; Marta Yebra; Gianluca Scortechini; Abdulbaset Badi; Maria Eugenia Beget; Mark Danson; Carlos M. Di Bella; Greg Forsyth; Philip Frost; Mariano Garcia; Abdelaziz Hamdi; Binbin He; Tineke Kraaij; Maria Pilar Martin; Rachael H. Nolan; Yi Qi; Xingwen Quan; David Riano; Dar Roberts; Momadou Sow (2023). Google Earth Engine code [Dataset]. http://doi.org/10.6084/m9.figshare.8980547.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Matthias M Boer; Ross R.A.B. Bradstock; Víctor Resco de Dios; Grazia Pellizzaro; Emilio Chuvieco; Glenn Newnham; Phil Dennison; L Ustin; Matt Jolly; Florent Mouillot; Marta Yebra; Gianluca Scortechini; Abdulbaset Badi; Maria Eugenia Beget; Mark Danson; Carlos M. Di Bella; Greg Forsyth; Philip Frost; Mariano Garcia; Abdelaziz Hamdi; Binbin He; Tineke Kraaij; Maria Pilar Martin; Rachael H. Nolan; Yi Qi; Xingwen Quan; David Riano; Dar Roberts; Momadou Sow
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Google Earth Engine used to compute the NDVI statistics added to Globe-LFMC. The input of the program is a point shapefile (“samplePlotsShapefile”, extensions .cpg, .dbf, .prj, .shp, .shx) representing the location of each Globe-LFMC site. This shapefile is available as additional data in figshare (see Code Availability). To run this GEE code the shapefile needs to be uploaded into the GEE Assets and, then, imported into the Code Editor with the name “plots” (without quotation marks).Google Earth Engine codeChange Notice - GEE_script_for_GlobeLFMC_ndvi_stats_v2.jsThe following acknowledgements have been added at the beginning of the code: “Portions of the following code are modifications based on work created and shared by Google in Earth Engine Data Catalog and Earth Engine Guides under the Apache 2.0 License. https://www.apache.org/licenses/LICENSE-2.0”Change Notice - samplePlotsShapefile_v2The shapefile describing the database sites has been corrected and updated with the correct coordinates.

  2. d

    transportation

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). transportation [Dataset]. https://catalog.data.gov/dataset/transportation-2be00
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    Street center lines in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  3. d

    buildings

    • catalog.data.gov
    • data.cityofchicago.org
    • +4more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). buildings [Dataset]. https://catalog.data.gov/dataset/buildings-37e2d
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    OUTDATED. See the current data at https://data.cityofchicago.org/d/hz9b-7nh8 -- Building footprints in Chicago. Metadata may be viewed and downloaded at http://bit.ly/HZVDIY. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  4. A

    Boundaries - ZIP Codes

    • data.amerigeoss.org
    • gimi9.com
    csv, json, kml, zip
    Updated Aug 24, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2016). Boundaries - ZIP Codes [Dataset]. https://data.amerigeoss.org/bg/dataset/boundaries-zip-codes
    Explore at:
    kml, zip, json, csvAvailable download formats
    Dataset updated
    Aug 24, 2016
    Dataset provided by
    United States
    Description

    ZIP Code boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).

  5. Z

    Super resolution enhancement of Landsat imagery and detections of...

    • data.niaid.nih.gov
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethan D. Kyzivat (2024). Super resolution enhancement of Landsat imagery and detections of high-latitude lakes [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7306218
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Department of Earth, Environmental & Planetary Sciences and Institute at Brown for Environment & Society, Brown University
    Authors
    Ethan D. Kyzivat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This archive contains native resolution and super resolution (SR) Landsat imagery, derivative lake shorelines, and previously-published lake shorelines derived airborne remote sensing, used here for comparison. Landsat images are from 1985 (Landsat 5) and 2017 (Landsat 8) and are cropped to study areas used in the corresponding paper and converted to 8-bit format. SR images were created using the model of Lezine et al (2021a, 2021b), which outputs imagery at 10x-finer resolution, and they have the same extent and bit depth as the native resolution scenes included. Reference shoreline datasets are from Kyzivat et al. (2019a and 2019b) for the year 2017 and Walter Anthony et al. (2021a, 2021b) for Fairbanks, AK, USA in 1985. All derived and comparison shoreline datasets are cropped to the same extent, filtered to a common minimum lake size (40 m2 for 2017; 13 m2 for 1985), and smoothed via 10 m morphological closing. The SR-derived lakes were determined to have F-1 scores of 0.75 (2017 data) and 0.60 (1985 data) as compared to reference lakes for lakes larger than 500 m2, and accuracy is worse for smaller lakes. More details are in the forthcoming accompanying publication.

    All raster images are in cloud-optimized geotiff (COG) format (.tif) with file naming shown in Table 1. Vector shoreline datasets are in ESRI shapefile format (.shp, .dbf, etc.), and file names use the abbreviations LR for low resolution, SR for high resolution, and GT for “ground truth” comparison airborne-derived datasets.

    Landsat-5 and Landsat-8 images courtesy of the U.S. Geological Survey

    For an interactive map demo of these datasets via Google Earth Engine Apps, visit: https://ekyzivat.users.earthengine.app/view/super-resolution-demo

    Table 1: File naming scheme based on region, with some regions requiring two-scene mosaics.

    Region

    Landsat ID

    Mosaic name

    Yukon Flats Basin

    LC08_L2SP_068014_20170708_20200903_02_T1

    LC08_20170708_yflats_cog.tif

    LC08_L2SP_068013_20170708_20201015_02_T1

    Old Crow Flats

    LC08_L2SP_067012_20170903_20200903_02_T1

    -

    Mackenzie River Delta

    LC08_L2SP_064011_20170728_20200903_02_T1

    LC08_20170728_inuvik_cog.tif

    LC08_L2SP_064012_20170728_20200903_02_T1

    Canadian Shield Margin

    LC08_L2SP_050015_20170811_20200903_02_T1

    LC08_20170811_cshield-margin_cog.tif

    LC08_L2SP_048016_20170829_20200903_02_T1

    Canadian Shield near Baker Creek

    LC08_L2SP_046016_20170831_20200903_02_T1

    -

    Canadian Shield near Daring Lake

    LC08_L2SP_045015_20170723_20201015_02_T1

    -

    Peace-Athabasca Delta

    LC08_L2SP_043019_20170810_20200903_02_T1

    -

    Prairie Potholes North 1

    LC08_L2SP_041021_20170812_20200903_02_T1

    LC08_20170812_potholes-north1_cog.tif

    LC08_L2SP_041022_20170812_20200903_02_T1

    Prairie Potholes North 2

    LC08_L2SP_038023_20170823_20200903_02_T1

    -

    Prairie Potholes South

    LC08_L2SP_031027_20170907_20200903_02_T1

    -

    Fairbanks

    LT05_L2SP_070014_19850831_20200918_02_T1

    -

    References:

    Kyzivat, E. D., Smith, L. C., Pitcher, L. H., Fayne, J. V., Cooley, S. W., Cooper, M. G., Topp, S. N., Langhorst, T., Harlan, M. E., Horvat, C., Gleason, C. J., & Pavelsky, T. M. (2019b). A high-resolution airborne color-infrared camera water mask for the NASA ABoVE campaign. Remote Sensing, 11(18), 2163. https://doi.org/10.3390/rs11182163

    Kyzivat, E.D., L.C. Smith, L.H. Pitcher, J.V. Fayne, S.W. Cooley, M.G. Cooper, S. Topp, T. Langhorst, M.E. Harlan, C.J. Gleason, and T.M. Pavelsky. 2019a. ABoVE: AirSWOT Water Masks from Color-Infrared Imagery over Alaska and Canada, 2017. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1707

    Ekaterina M. D. Lezine, Kyzivat, E. D., & Smith, L. C. (2021a). Super-resolution surface water mapping on the Canadian shield using planet CubeSat images and a generative adversarial network. Canadian Journal of Remote Sensing, 47(2), 261–275. https://doi.org/10.1080/07038992.2021.1924646

    Ekaterina M. D. Lezine, Kyzivat, E. D., & Smith, L. C. (2021b). Super-resolution surface water mapping on the canadian shield using planet CubeSat images and a generative adversarial network. Canadian Journal of Remote Sensing, 47(2), 261–275. https://doi.org/10.1080/07038992.2021.1924646

    Walter Anthony, K.., Lindgren, P., Hanke, P., Engram, M., Anthony, P., Daanen, R. P., Bondurant, A., Liljedahl, A. K., Lenz, J., Grosse, G., Jones, B. M., Brosius, L., James, S. R., Minsley, B. J., Pastick, N. J., Munk, J., Chanton, J. P., Miller, C. E., & Meyer, F. J. (2021a). Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett, 16, 35010. https://doi.org/10.1088/1748-9326/abc848

    Walter Anthony, K., and P. Lindgren. 2021b. ABoVE: Historical Lake Shorelines and Areas near Fairbanks, Alaska, 1949-2009. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1859

  6. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  7. d

    Census Blocks

    • datasets.ai
    • data.cityofchicago.org
    • +2more
    23, 40, 55, 8
    Updated Apr 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2024). Census Blocks [Dataset]. https://datasets.ai/datasets/census-blocks-af716
    Explore at:
    40, 55, 23, 8Available download formats
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    City of Chicago
    Description

    2000 Census block boundaries clipped to Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  8. Mapping the yearly extent of surface coal mining in Central Appalachia using...

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    txt
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew A. Pericak; Christian J. Thomas; David A. Kroodsma; Matthew F. Wasson; Matthew R. V. Ross; Nicholas E. Clinton; David J. Campagna; Yolandita Franklin; Emily S. Bernhardt; John F. Amos (2018). Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine — Yearly Mining Areas (shapefile) [Dataset]. http://doi.org/10.6084/m9.figshare.6253976.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 21, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Andrew A. Pericak; Christian J. Thomas; David A. Kroodsma; Matthew F. Wasson; Matthew R. V. Ross; Nicholas E. Clinton; David J. Campagna; Yolandita Franklin; Emily S. Bernhardt; John F. Amos
    License

    https://www.apache.org/licenses/LICENSE-2.0.htmlhttps://www.apache.org/licenses/LICENSE-2.0.html

    Area covered
    Appalachia
    Description

    These data accompany the 2018 manuscript published in PLOS One titled "Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine". In this manuscript, researchers used the Google Earth Engine platform and freely-accessible Landsat imagery to create a yearly dataset (1985 through 2015) of surface coal mining in the Appalachian region of the United States of America. This specific dataset is a collection of Esri shapefiles of the mining areas as determined by this study for each year from 1985 through 2015. Individual file names within the dataset indicate the specific year. These files show the mining “footprint” in Appalachia for that given year, indicating that mining was occurring in a given location during that year. These files do not, however, indicate the year at which mining began or ceased in any given location.

  9. C

    Boundaries - Police Beats (current)

    • data.cityofchicago.org
    • chicagocop.com
    • +2more
    csv, xlsx, xml
    Updated Feb 13, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2013). Boundaries - Police Beats (current) [Dataset]. https://data.cityofchicago.org/widgets/aerh-rz74
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Feb 13, 2013
    Dataset authored and provided by
    City of Chicago
    Description

    Current police beat boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  10. u

    Barrow Area Information Database (BAID) Geospatial Data Sets, Barrow, AK,...

    • data.ucar.edu
    • arcticdata.io
    • +2more
    excel
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allison Graves Gaylord (2025). Barrow Area Information Database (BAID) Geospatial Data Sets, Barrow, AK, USA [Dataset]. https://data.ucar.edu/dataset/barrow-area-information-database-baid-geospatial-data-sets-barrow-ak-usa
    Explore at:
    excelAvailable download formats
    Dataset updated
    Aug 1, 2025
    Authors
    Allison Graves Gaylord
    Time period covered
    Jan 1, 1948 - Jan 31, 2010
    Area covered
    Description

    The Barrow Area Information Database (BAID) data collection is comprised of geospatial data for the research hubs of Barrow, Atqasuk and Ivotuk on Alaska's North Slope. Over 9600 research plots and instrument locations are included in the BAID research sites database. Updates to the project tracking database are ongoing through field mapping of new research locations and extant sampling sites dating back to the 1940s. Many ancillary data layers are also compiled to facilitate research activities and science communication. These geospatial data sets have been compiled through BAID and related NSF efforts. Geospatial data unique to this project are currently browseable via the BAID archive and include shapefiles of research information (sampling sites and instrumentation, the NOAA-CMDL clean air sector), administrative units (Barrow Environmental Observatory Science Research District plus adjacent federal lands, village districts, zoning, tax parcels, and the Ukpeagvik Inupiat Corporation boundary), infrastructure (power poles, snow fences, roads), erosion data for Elson Lagoon and imagery (declassified military imagery, air photo mosaics, IKONOS, Landsat, Quickbird, SAR and flight line indexes). Related data sets can be browsed via BAID’s web mapping tools and downloaded via the “Related links” section below. In addition, the BAID Internet Map Server (BAID-IMS) provides browse access to a number of additional layers which are available for download through catalog pages at the National Snow and Ice Data Center (NSIDC), the Alaska Geospatial Data Clearinghouse at USGS and the Alaska State Geo-Spatial Data Clearinghouse. Some layers are proprietary and are only available for browse access in BAID-IMS through special agreement. BAID provides a suite of user interfaces (Internet Map Server, Google Earth and Adobe Flex) and Open Geospatial Consortium web services for accessing the research plots and instrument locations. For more information on...

  11. C

    SSA

    • data.cityofchicago.org
    • datasets.ai
    • +2more
    Updated Oct 23, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2014). SSA [Dataset]. https://data.cityofchicago.org/w/cnf7-yj5k/3q3f-6823?cur=g6KyiScwJHl
    Explore at:
    kmz, xlsx, csv, application/geo+json, kml, xmlAvailable download formats
    Dataset updated
    Oct 23, 2014
    Dataset authored and provided by
    City of Chicago
    Description

    Special Service Areas (SSA) boundaries in Chicago. The Special Service Area program is a mechanism used to fund expanded services and programs through a localized property tax levy within contiguous industrial, commercial and residential areas. The enhanced services and programs are in addition to services and programs currently provided through the city. SSA-funded projects could include, but are not limited to, security services, area marketing and advertising assistance, promotional activities such as parades and festivals, or any variety of small scale capital improvements that could be supported through a modest property tax levy. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).

  12. C

    Industrial_Corridors

    • data.cityofchicago.org
    • s.cnmilf.com
    • +1more
    Updated Feb 8, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2013). Industrial_Corridors [Dataset]. https://data.cityofchicago.org/w/cqyw-9dbu/3q3f-6823?cur=55TEx7utarX
    Explore at:
    xml, kmz, xlsx, csv, application/geo+json, kmlAvailable download formats
    Dataset updated
    Feb 8, 2013
    Dataset authored and provided by
    City of Chicago
    Description

    Industrial corridors in Chicago that were effective through December 2012. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  13. Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Santa Rosa Island, California
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  14. g

    U.S. Forest Service Rocky Mountain Region Geospatial Library

    • data.geospatialhub.org
    Updated Jul 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WyomingGeoHub (2022). U.S. Forest Service Rocky Mountain Region Geospatial Library [Dataset]. https://data.geospatialhub.org/items/09b38cb867144617bdcd9e41a3ac649f
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset authored and provided by
    WyomingGeoHub
    Description

    Metadata record for the USFS's Rocky Mountain Region library of geospatial datasets; link to web-page in record. The datasets presented are derived from the USFS Land Status Records System(LSRS) and the USFS infrastructure database (Infra) and processed using ArcMap and Google Earth Pro. The datasets are presented in several formats: ESRI shapefiles SHP (zipped sets), clipped JPEG images JPEG 2000, clipped and oriented Imagine IMG images, visitor map image View (zoomable), Metadata (HTML format), and Virtual Globe KML files (KMZ format). The current version of Google Earth is recommended for proper function and display of KML datasets.

  15. d

    South Alaskan ice-marginal lakes from Landsat 8 (2013-2019) via Google Earth...

    • search.dataone.org
    • dataone.org
    • +1more
    Updated Aug 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anton Hengst; William Armstrong (2023). South Alaskan ice-marginal lakes from Landsat 8 (2013-2019) via Google Earth Engine [Dataset]. http://doi.org/10.18739/A23R0PV3M
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset provided by
    Arctic Data Center
    Authors
    Anton Hengst; William Armstrong
    Time period covered
    May 1, 2013 - Aug 31, 2019
    Area covered
    Variables measured
    date, hash, type
    Description

    This dataset accompanies a manuscript submitted for review to the Journal of Remote Sensing. Lakes in direct contact with glaciers (ice-marginal lakes) are found across alpine and polar landscapes. As dynamic features that experience short-term (i.e., day to year) variations in area and volume, they form an important yet understudied element of the complete hydrologic system of glaciers with which they are in contact. To accelerate the study of ice-marginal lakes over large temporal and spatial extents, we automate the mapping of ice-marginal lakes by implementing a trained minimum-distance classifier of monthly Landsat 8 data products in Google Earth Engine. We produce maps of ice-marginal lakes in south Alaska for the summer months March through August for each year from 2013 through 2019. These maps are manually reviewed for accuracy. By spatially joining all maps, we can identify lakes throughout time, even if they are changing rapidly or dramatically. This dataset includes the spatial join of all lakes and shapefiles of each individual lake identified, grouped by lake. Within these lake shapefiles is illustrated an individual history of lake change; each feature is a delineation of the lake at a specific point in time.

  16. d

    safepassage_route

    • datasets.ai
    • data.cityofchicago.org
    • +1more
    23, 40, 55, 8
    Updated Apr 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2024). safepassage_route [Dataset]. https://datasets.ai/datasets/safepassage-route
    Explore at:
    55, 8, 40, 23Available download formats
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    City of Chicago
    Description

    The safe passages program has been implemented to increase children’s safety as they come and go each day. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  17. Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity, Colorado (NPS, GRD, GRI, ROMO, ROMO digital map) adapted from a U.S. Geological Survey Miscellaneous Investigations Series Map by Braddock and Cole (1990) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-rocky-mountain-national-park-and-vicinity-colorado-nps-grd-gri
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Colorado, Rocky Mountains
    Description

    The Digital Geologic-GIS Map of Rocky Mountain National Park and Vicinity, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (romo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (romo_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (romo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (romo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (romo_geology_metadata_faq.pdf). Please read the romo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (romo_geology_metadata.txt or romo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. c

    Census_Tracts

    • s.cnmilf.com
    • data.cityofchicago.org
    • +1more
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). Census_Tracts [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/census-tracts-c46f1
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    Census tract boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  19. Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York (NPS, GRD, GRI, GATE, GATE digital map) adapted from a Rutgers University Institute of Marine and Coastal Sciences unpublished digital data by Psuty, N.P., McLoughlin, S.M., Schmelz, W. and Spahn, A. (2014) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-pre-hurricane-sandy-geomorphological-gis-map-of-the-gateway-national-r
    Explore at:
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Jamaica Bay, Sandy Hook, Staten Island, New York
    Description

    **THIS NEWER 2016 DIGITAL MAP REPLACES THE OLDER 2014 VERSION OF THE GRI GATE Geomorphological-GIS data. The Unpublished Digital Pre-Hurricane Sandy Geomorphological-GIS Map of the Gateway National Recreation Area: Sandy Hook, Jamaica Bay and Staten Island Units, New Jersey and New York is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gate_geomorphology.gdb), a 10.1 ArcMap (.MXD) map document (gate_geomorphology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (gate_geomorphology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (gate_gis_readme.pdf). Please read the gate_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Rutgers University Institute of Marine and Coastal Sciences. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gate_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/gate/gate_pre-sandy_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:6,000 and United States National Map Accuracy Standards features are within (horizontally) 5.08 meters or 16.67 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Gateway National Recreation Area.

  20. Digital Geologic-GIS Map of the French Quarter Visitor Center and Barataria...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of the French Quarter Visitor Center and Barataria Preserve Unit, Jean Lafitte National Historical Park and Preserve, Louisiana (NPS, GRD, GRI, JELA, JELA digital map) adapted from Louisiana Geological Survey Open-File Map (1:100,000) maps by Heinrich, McCulloh and Horn (2010), McCulloh, Heinrich and Snead (2003), and Heinrich, McCulloh and Snead (2004) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-french-quarter-visitor-center-and-barataria-preserve-unit-
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Louisiana, French Quarter
    Description

    The Digital Geologic-GIS Map of the French Quarter Visitor Center and Barataria Preserve Unit, Jean Lafitte National Historical Park and Preserve, Louisiana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jela_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jela_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jela_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (jela_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (jela_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jela_geology_metadata_faq.pdf). Please read the jela_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Louisiana Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jela_geology_metadata.txt or jela_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Matthias M Boer; Ross R.A.B. Bradstock; Víctor Resco de Dios; Grazia Pellizzaro; Emilio Chuvieco; Glenn Newnham; Phil Dennison; L Ustin; Matt Jolly; Florent Mouillot; Marta Yebra; Gianluca Scortechini; Abdulbaset Badi; Maria Eugenia Beget; Mark Danson; Carlos M. Di Bella; Greg Forsyth; Philip Frost; Mariano Garcia; Abdelaziz Hamdi; Binbin He; Tineke Kraaij; Maria Pilar Martin; Rachael H. Nolan; Yi Qi; Xingwen Quan; David Riano; Dar Roberts; Momadou Sow (2023). Google Earth Engine code [Dataset]. http://doi.org/10.6084/m9.figshare.8980547.v2
Organization logo

Google Earth Engine code

Related Article
Explore at:
zipAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Matthias M Boer; Ross R.A.B. Bradstock; Víctor Resco de Dios; Grazia Pellizzaro; Emilio Chuvieco; Glenn Newnham; Phil Dennison; L Ustin; Matt Jolly; Florent Mouillot; Marta Yebra; Gianluca Scortechini; Abdulbaset Badi; Maria Eugenia Beget; Mark Danson; Carlos M. Di Bella; Greg Forsyth; Philip Frost; Mariano Garcia; Abdelaziz Hamdi; Binbin He; Tineke Kraaij; Maria Pilar Martin; Rachael H. Nolan; Yi Qi; Xingwen Quan; David Riano; Dar Roberts; Momadou Sow
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Google Earth Engine used to compute the NDVI statistics added to Globe-LFMC. The input of the program is a point shapefile (“samplePlotsShapefile”, extensions .cpg, .dbf, .prj, .shp, .shx) representing the location of each Globe-LFMC site. This shapefile is available as additional data in figshare (see Code Availability). To run this GEE code the shapefile needs to be uploaded into the GEE Assets and, then, imported into the Code Editor with the name “plots” (without quotation marks).Google Earth Engine codeChange Notice - GEE_script_for_GlobeLFMC_ndvi_stats_v2.jsThe following acknowledgements have been added at the beginning of the code: “Portions of the following code are modifications based on work created and shared by Google in Earth Engine Data Catalog and Earth Engine Guides under the Apache 2.0 License. https://www.apache.org/licenses/LICENSE-2.0”Change Notice - samplePlotsShapefile_v2The shapefile describing the database sites has been corrected and updated with the correct coordinates.

Search
Clear search
Close search
Google apps
Main menu