Notice: this is not the latest Heat Island Anomalies image service. For 2023 data visit https://tpl.maps.arcgis.com/home/item.html?id=e89a556263e04cb9b0b4638253ca8d10.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, with patching from summer of 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Notice: this is not the latest Heat Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. The Heat Anomalies is also reclassified into a Heat Severity raster also published on this site. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2023.To explore previous versions of the data, visit the links below:Full Range Heat Anomalies - USA 2022Full Range Heat Anomalies - USA 2021Full Range Heat Anomalies - USA 2020Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
This dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.
Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
WorldClim 2.1 provides downscaled estimates of climate variables as monthly means over the period of 1970-2000 based on interpolated station measurements. Here we provide analytical image services of precipitation for each month along with an annual mean. Each time step is accessible from a processing template.Time Extent: Monthly/Annual 1970-2000Units: mm/monthCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 16 Bit IntegerData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim v2.1Using Processing Templates to Access TimeThere are 13 processing templates applied to this service, each providing access to the 12 monthly and 1 annual mean precipitation layers. To apply these in ArcGIS Online, select the Image Display options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left-hand menu. From the Processing Template pull down menu, select the version to display.What can you do with this layer?This layer may be added to maps to visualize and quickly interrogate each pixel value. The pop-up provides a graph of the time series along with the calculated annual mean value.This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro and an area count of precipitation may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from month to month to show seasonal patterns.To calculate precipitation by land area, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Source Data: The datasets behind this layer were extracted from GeoTIF files produced by WorldClim at 2.5 minutes resolution. The mean of the 12 GeoTIFs was calculated (annual), and the 13 rasters were converted to Cloud Optimized GeoTIFF format and added to a mosaic dataset.Citation: Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable organic carbon density (ocd) which measures carbon mass in proportion to volume of soil (mass divided by volume.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for organic carbon density are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Organic carbon density in kg/m³Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for ocd were used to create this layer. You may access organic carbon density values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable nitrogen (nitrogen).Nitrogen is an essential nutrient for sustaining life on Earth. Nitrogen is a core component of amino acids, which are the building blocks of proteins, and of nucleic acids, which are the building blocks of genetic material (RNA and DNA).This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for nitrogen are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Total nitrogen (N) in g/kgCell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for nitrogen were used to create this layer. You may access nitrogen values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Notice: this is not the latest Heat Island Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThis layer shows where and how data gaps were filled for the Land tenure of Australia 2010–11. The data caveats highlight known uncertainties in land tenure for 2010-11 when reporting land tenure change in the Land tenure of Australia 2010-11 to 2020-21. The data was produced by the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) within the Australian Government Department of Agriculture, Fisheries and Forestry as part of the Australian Collaborative Land Use and Management Program (ACLUMP). For more information see the dataset metadata at DOI: 10.25814/89rx-zs30.CurrencyDate modified: 31 October 2024Publication Date: 31 October 2024Modification frequency: As neededData ExtentCoordinate reference: WGS84 / Mercator Auxiliary SphereSpatial Extent:The following spatial extent is provided in the Geocentric Datum of Australia (GDA94).North: -9.995South: -44.005East: 154.004West: 112.505Source InformationData, Metadata, Maps and Interactive views are available from Land tenure of Australia 2010–11 to 2020–21 Land tenure of Australia 2010–11 to 2020–21 – Descriptive metadataThe data was obtained from Department of Agriculture, Fisheries and Forestry - Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). ABARES is providing this data to the public under a Creative Commons Attribution 4.0 license.Lineage StatementThis data caveat shows where no data voids for 2020–21 were filled by data from recent years, spatial filtering (despeckling), stock routes or Tenure of Australia's Forest (2018). For more information see the dataset metadata.Note: The Digital Atlas of Australia downloaded and created a copy of the source data in February 2025 that was suitable to be hosted through ArcGIS Image Server & Image Dedicated. A copy of the raster dataset was created with RGB fields as a colour map with Geoprocessing tools in ArcGIS Pro, and the raster dataset was re-projected from 1994 Australia Albers to WGS 1984 Web Mercator (Auxiliary Sphere). This Web Mapping Service is for display purposes only. It is in Web Mercator projection and not suitable for deriving area statistics. For any analyses use the original dataset published in Albers projection.Table: Data caveat (DC) attribute for 2010-11 descriptions and meaningsDCDC_DESCMeaning-1OffshoreOffshore0No data/unresolvedNo data/unresolved tenure for this pixel. Captures where there is no tenure data or conflicting data sources; includes water features with unallocated tenure.1No data caveatNo known data caveats for this pixel.2No data in 2010–11, filled with 2015–16 dataThe pixel was populated with the same dataset for 2015–16 as no data was available for 2010–11. Change detection may be limited due to data availability issues.3No data in 2010–11, filled with 2020–21 dataThe pixel was populated with the same dataset for 2020–21 as no data was available for either 2010–11 or 2015–16. Change detection may be limited due to data availability issues.4No data in the 10 years prior or post, filled with despeckling processNo data was available for both target periods, so a modelled approach was used to fill no data voids. Only no data voids <0.0002 degrees squared were filled using this method. Change detection may be limited due to data availability and modelling issues.5No data in the 10 years prior or post, filled with Tenure of Australia’s forests (2018) aNo data was available for both target periods and filled from ABARES' Tenure of Australia’s forests (2018) dataset. Latest date of information/currency is 30 June 2016. This was not applied to Inland water bodies in Tasmania which remain no data. Change detection may be limited due to data availability and modelling issues.6Updated lease with 2015–16 dataLeasehold pixel where lease type was defined by 2015–16 data. Data attribution improved, but change detection may be limited due to data availability issues.7Updated lease with 2020–21 dataLeasehold pixel where lease type was defined by 2020–21 data. Data attribution improved, but change detection may be limited due to data availability issues.8No data in the 10 years prior or post, filled with stock route data bThe pixel was identified as a stock route and filled. This applies to areas of no data in Western Australia and Queensland. Change detection may be limited due to data availability and modelling issues.a Tenure of Australia's forests (2018) provides tenure for forests and land. LEASE is assigned to Other lease, with the other classes transferring to the equivalent class name if used to fill; Freehold, Nature conversation reserve, Multiple-use public forest or Other Crown land.b Stock routes assigned to Other Crown purposes.Data DictionaryField NameField DescriptionData TypeOID *Internal feature number that uniquely identifies each row.OIDValue (Service Pixel Value)Data caveat code. The code describes the data caveat related to using the cell for change detection. Refer to Tables A2.2-A2.4 of the dataset metadata.Integer, range: -1 to 8Count *Count of the number of raster cells in each class of Value.Integer countLabelLabel for data caveatTextDC_DESCDescription of data caveat code. Describes the data caveat related to using the cell for change detection. Refer to Tables A2.2-A2.4 of the dataset metadata.TextRed *Red RGB value for classification colours.IntegerGreen *Green RGB value for classification colours.IntegerBlue Blue RGB value for classification colours.Integer Denotes a hidden field.ContactAustralian Government Department of Agriculture, Fisheries and Forestry – Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), land_management@aff.gov.au.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThis layer shows where land is owned, leased, reserved or unallocated to a defined purpose in Australia for 2015–16.Tenure information in this dataset is classified according to a four-tiered hierarchical structure, ordered in increasing level of detail. Level 1 distinguishes between the basic land title types of Freehold and Crown land. Level 2 splits Crown land into leasehold, dedicated or reserved for Crown purposes and other Crown land. Level 3 further distinguishes Crown land, defining leasehold type or Crown purposes type based on term and purpose. Leasehold types are split into Freeholding lease, Pastoral perpetual lease, Other perpetual lease, Pastoral term lease, Other term lease, and Other lease. Crown purposes are split into Nature conservation reserve, Multiple-use public forest and Other Crown purposes. Level 4 distinguishes land with an Indigenous land grant, either Crown land held on behalf of, or freehold land owned by, traditional owner groups. Level 4 does not include native title which applies alongside tenure.While the underlying dataset reflects the most detailed tenure classification (Level 4), the layer’s symbology is simplified to Level 3. It separates tenure into Freehold and Crown land specifying types of leasehold (6 classes) and Crown purposes (3 classes) plus Other Crown land. This layer was used in the National Land Account, Experimental Estimates 2021 released by the Australian Bureau of Statistics. The data was produced by the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) within the Australian Government Department of Agriculture, Fisheries and Forestry as part of the Australian Collaborative Land Use and Management Program (ACLUMP). For more information see the dataset metadata at DOI:10.25814/89rx-zs30.CurrencyDate modified: 31 October 2024Publication Date: 31 October 2024Modification frequency: As neededData ExtentCoordinate reference: WGS84 / Mercator Auxiliary SphereSpatial ExtentThe following spatial extent is provided in the Geocentric Datum of Australia (GDA94).North: -9.995South: -44.005East: 154.004West: 112.505Source InformationData, Metadata, Maps and Interactive views are available from Land tenure of Australia 2010–11 to 2020–21 Land tenure of Australia 2010–11 to 2020–21 – Descriptive metadataThe data was obtained from Department of Agriculture, Fisheries and Forestry - Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). For more information see the ABARES is providing this data to the public under a Creative Commons Attribution 4.0 license.Lineage StatementThe data was constructed by combining jurisdictional land title information from digital cadastral databases or their equivalents with Indigenous land grant instruments areas. For more information see the dataset metadata.Note: The Digital Atlas of Australia downloaded and created a copy of the source data in February 2025 that was suitable to be hosted through ArcGIS Image Server & Image Dedicated. A copy of the raster dataset was created with RGB fields as a colour map with Geoprocessing tools in ArcGIS Pro, and the raster dataset was re-projected from 1994 Australia Albers to WGS 1984 Web Mercator (Auxiliary Sphere). This Web Mapping Service is for display purposes only. It is in Web Mercator projection and not suitable for deriving area statistics. For any analyses use the original dataset published in Albers projection.Table: Land tenure of Australia Level 3 tenure descriptions and meaningsCodeDescriptionMeaning100FreeholdThe highest form of land ownership. Land title is held in perpetuity. Includes land held by Indigenous land trusts.211Freeholding leaseCrown leasehold land where a lessee is in the process of transferring lease to freehold with instalments.212Pastoral perpetual leaseCrown leasehold land granted in perpetuity to an entity for primarily pastoral purposes.213Other perpetual leaseCrown leasehold land granted in perpetuity to an entity for non-pastoral or non-specified purposes.214Pastoral term leaseCrown leasehold land granted for a specified term of years to an entity for primarily pastoral purposes.215Other term leaseCrown leasehold land granted to an entity for a specified term of years for non-pastoral or non-specified purposes.216Other leaseCrown leasehold land where the purpose is specified as other or undefined.221Nature conservation reserveCrown land set aside for conservation purposes. Includes heritage reserves where specified.222Multiple-use public forestCrown land set aside for multiple-use forest values such as wood harvesting, recreation, and environmental protection, includes state forests and timber reserves.223Other Crown purposesCrown land set aside for all other purposes including water, infrastructure, institutional, defence and other undefined reserves; or lands vested to, acquired, or purchased by the Crown or its authorised entities to deliver essential services.230Other Crown landCrown land unallocated to a purpose or purposes.*The first three digits of the Service Pixel Value reflect this Level 3 code.Data DictionaryField NameField DescriptionData TypeOID *Internal feature number that uniquely identifies each row.OIDCount *Count of the number of raster cells in each class of Value.Integer countValue (Service Pixel Value) *Tenure code in the target year. First digit represents Level 1, second digit Level 2, third digit Level 3 and the fourth digit Level 4 of the land tenure hierarchical classification. Refer to Table A1.5. of the dataset metadata. aInteger, range: 1001 to 2302Label *Label reflecting the description of the Level 3 land tenure classes in the target period.TextL1NLevel 1 tenure classification code. Refer to Table A1.2. of the dataset metadata. aInteger, range: 1 to 2L1_DESCDescription of the Level 1 land tenure classes in the target period. Refer to Table A1.2. of the dataset metadata.TextL2NLevel 2 tenure classification code. Refer to Table A1.3. of the dataset metadata. aInteger, range: 10 to 23L2_DESCDescription of the Level 2 land tenure classes in the target period. Refer to Table A1.3. of the dataset metadata.TextL3NLevel 3 tenure classification code. Refer to Table A1.4. of the dataset metadata. aInteger, range: 100 to 230L3_DESCDescription of the Level 3 land tenure classes in the target period. Refer to Table A1.4. of the dataset metadata.TextL4N *Level 4 tenure classification code. Refer to Table A1.5. of the dataset metadata. aInteger, range: 1001 to 2302L4_DESC *Description of the Level 4 land tenure classes in the target period. Refer to Table A1.5. of the dataset metadata.TextRed *Red RGB value for classification colours.IntegerGreen *Green RGB value for classification colours.IntegerBlue Blue RGB value for classification colours.Integera the first two integers are -1 for Offshore and 0 for No data/unresolved tenure. Denotes a hidden field.ContactAustralian Government Department of Agriculture, Fisheries and Forestry – Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), land_management@aff.gov.au.
This World Elevation TopoBathy service combines topography (land elevation) and bathymetry (water depths) from various authoritative sources from across the globe. Heights are orthometric (sea level = 0), and bathymetric values are negative downward from sea level. The source data of land elevation in this service is same as in the Terrain layer. When possible, the water areas are represented by the best available bathymetry. Height/Depth units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select additional functions, applied on the server, that return rendered data. For visualizations such as hillshade or elevation tinted hillshade, consider using the appropriate server-side function defined on this service. Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns. NOTE: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the max extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.
Slope Degrees Slope Percentage Hillshade Multi-Directional Hillshade Elevation Tinted HillshadeSlope MapMosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 is included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request. This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks. Disclaimer: Bathymetry data sources are not to be used for navigation/safety at sea.
Notice: this is not the latest Heat Island Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
WorldClim 2.1 provides downscaled estimates of climate variables as monthly means over the period of 1970-2000 based on interpolated station measurements. Here we provide analytical image services of precipitation for each month along with an annual mean. Each time step is accessible from a processing template.Time Extent: Monthly/Annual 1970-2000Units: mm/monthCell Size: 2.5 minutes (~5 km)Source Type: StretchedPixel Type: 16 Bit IntegerData Projection: GCS WGS84Mosaic Projection: GCS WGS84Extent: GlobalSource: WorldClim v2.1Using Processing Templates to Access TimeThere are 13 processing templates applied to this service, each providing access to the 12 monthly and 1 annual mean precipitation layers. To apply these in ArcGIS Online, select the Image Display options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left-hand menu. From the Processing Template pull down menu, select the version to display.What can you do with this layer?This layer may be added to maps to visualize and quickly interrogate each pixel value. The pop-up provides a graph of the time series along with the calculated annual mean value.This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro and an area count of precipitation may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from month to month to show seasonal patterns.To calculate precipitation by land area, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Source Data: The datasets behind this layer were extracted from GeoTIF files produced by WorldClim at 2.5 minutes resolution. The mean of the 12 GeoTIFs was calculated (annual), and the 13 rasters were converted to Cloud Optimized GeoTIFF format and added to a mosaic dataset.Citation: Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
Albedo measures the reflectivity of an object. Surfaces that are black reflect little light and have low albedo values while white surfaces reflect most of the light striking them and have high albedo values. Albedo is measured on a scale of 0 (no light reflected) to 1 (100% of light reflected). Albedo is measured using a scale of 0 (no light reflected) to 1 (100% of the light is reflected). Divide each integer"s raw pixel value by one hundred to find its representative albedo value. Thus, a pixel with the value of 24 represents an albedo value of 0.24 while a pixel with the value of 38 represents the albedo value 0.38. Dataset SummaryPhenomenon Mapped: Soil albedoGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: NoneCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Typical albedo values:Fresh asphalt 0.04Worn asphalt 0.12Confier forest 0.08 – 0.15Deciduous trees 0.15 – 0.18Bare soil 0.17Green grass 0.25Desert sand 0.4New concrete 0.55Ocean ice 0.5 – 0.7Fresh snow 0.8-0.9 Albedo is used in climate and water cycle models. Estimates of evapotranspiration rate and prediction of soil water balances require albedo values. Soil hydrology models that are part of water quality and resource assessment programs also require albedo. Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for soil albedo is derived from the gSSURGO component table field Albedo Dry - Representative Value (albedodry_r). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "albedo" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "albedo" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Rangelands are regions dominated by grasses and shrubs including savannahs, grasslands, and deserts. Rangelands provide valuable forage for gazing and browsing animals. This layer quantifies annual range production in pounds/acre/year. A raw pixel value in this service represents the number of pounds of range forage expected per acre per year. Dataset SummaryPhenomenon Mapped: Range Forage ProductionGeographic Extent: Contiguous United States, Alaska, Hawaii.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Hawaii).Units: pounds/acre/yearCell Size: 30 meterSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 Data from the gNATSGO database was used to create the layer. This layer is derived from the 30m rasters produced by the Natural Resources Conservation Service (NRCS). The value for range production is derived from the gSSURGO component table field Range Production - Representative Value (rsprod_r). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "range production" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "range production" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many otherbeautiful and authoritative maps on hundreds of topics like this one. Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
USA Cropland is a time-enabled imagery layer of the USDA Cropland Data Layer dataset from the National Agricultural Statistics Service (NASS). The time series shows the crop grown during every growing season in the conterminous US since 2008. Use the time slider to select only one year to view or analyze. Press play to see each growing season displayed sequentially in an animated map. The USDA is now serving the Cropland Data Layer in their own application called CroplandCros which allows selection and display of a single product or growing season. This application will eventually replace their popular CropScape application. Dataset SummaryVariable mapped: Crop grown in each pixel since 2008.Data Projection: AlbersMosaic Projection: AlbersExtent: Conterminous USACell Size: 30m in 2008-2023, 10m in 2024Source Type: ThematicVisible Scale: All scales are visibleSource: USDA NASSPublication Date: 2/26/2025 Why USA Cropland living atlas layer masks out NLCD land cover in its default templateUSDA Cropland Data Layer, by default as downloaded from USDA, fills in the non-cultivated areas of the conterminous USA with land cover classes from the MRLC National Land Cover Dataset (NLCD). The default behavior for Esri"s USA Cropland layer is a little bit different. By default the Esri USA Cropland layer uses the analytic renderer, which masks out this NLCD data. Why did we choose to mask out the NLCD land cover classes by default? While crops are updated every year from USDA NASS, the NLCD data changes every several years, and it can be quite a bit older than the crop data beside it. If analysis is conducted to quantify landscape change, the NLCD-derived pixels will skew the results of the analysis because NLCD land cover in a yearly time series may appear to remain the same class for several years in a row. This can be problematic because conclusions drawn from this dataset may underrepresent the amount of change happening to the landscape. To display the most current land cover available from both sources, add both the USA NLCD Land Cover service and USA Cropland time series to your map. Use the analytical template with the USA Cropland service, and draw it on top of the USA NLCD Land Cover service. When a time slider is used with these datasets together, the map user will see the most current land cover from both services in any given year. This layer and the data making up the layer are in the Albers map projection. Albers is an equal area projection, and this allows users of this layer to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into web Mercator, if that is the destination projection of the layer. Processing templates available with this layerTo help filter out and display just the crops and land use categories you are interested in showing, choose one of the thirteen processing templates that will help you tailor the symbols in the time series to suit your map application. The following are the processing templates that are available with this layer: Analytic RendererUSDA Analytic RendererThe analytic renderer is the default template. NLCD codes are masked when using analytic renderer processing templates. There is a default esri analytic renderer, but also an analytic renderer that uses the original USDA color scheme that was developed for the CropScape layers. This is useful if you have already built maps with the USDA color scheme or otherwise prefer the USDA color scheme. Cartographic RendererUSDA Cartographic RendererThese templates fill in with NLCD land cover types where crops are not cultivated, thereby filling the map with color from coast to coast. There is also a template using the USDA color scheme, which is identical to the datasets as downloaded from USDA NASS. In addition to different ways to display the whole dataset, some processing templates are included which help display the top agricultural products in the United States. If these templates seem to include too many crops in their category (for example, tomatoes are included in both the fruit and vegetables templates), this is because it"s easier for a map user to remove a symbol from a template than it is to add one. Corn - Corn, sweet corn, popcorn or ornamental corn, plus double crops with corn and another crop.Cotton - Cotton and double crops, includes double crops with cotton and another crop.Fruit - Symbolized fruit crops include not only things like melons, apricots, and strawberries, but also olives, avocados, and tomatoes.Nuts - Peanuts, tree nuts, sunflower, etc.Oil Crops - Oil crops include rapeseed and canola, soybeans, avocado, peanut, corn, safflower, sunflower, also cotton and grapes.Permanent Crops - Crops that do not need to be replanted after harvest. Includes fruit and nut trees, caneberries, and grapes.Rice - Rice crops.Sugar - Crops grown to make sugars. Sugar beets and cane are displayed of course, but so are corn and grapes.Soybeans - Soybean crops. Includes double crops where soybeans are grown at some time during the growing season.Vegetables - Vegetable crops, and yes this includes tomatoes.Wheat - Winter and spring wheat, durum wheat, triticale, spelt, and wheat double crops. In many places, two crops were grown in one growing season. Keep in mind that a double crop of corn and soybeans will display in both the corn and soybeans processing templates. What can you do with this layer?This layer is suitable for both visualization and analysis acrossthe ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "USA Cropland" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "USA Cropland" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. Online you can filter the layer to show subsets of the data using the filter button and the layer"s built-in raster functions. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Index to raster values in USA Cropland:Value,Crop0,Background (not a cultivated crop or no data)1,Corn2,Cotton3,Rice4,Sorghum5,Soybeans6,Sunflower10,Peanuts11,Tobacco12,Sweet Corn13,Popcorn or Ornamental Corn14,Mint21,Barley22,Durum Wheat23,Spring Wheat24,Winter Wheat25,Other Small Grains26,Double Crop Winter Wheat/Soybeans27,Rye28,Oats29,Millet30,Speltz31,Canola32,Flaxseed33,Safflower34,Rape Seed35,Mustard36,Alfalfa37,Other Hay/Non Alfalfa38,Camelina39,Buckwheat41,Sugarbeets42,Dry Beans43,Potatoes44,Other Crops45,Sugarcane46,Sweet Potatoes47,Miscellaneous Vegetables and Fruits48,Watermelons49,Onions50,Cucumbers51,Chick Peas52,Lentils53,Peas54,Tomatoes55,Caneberries56,Hops57,Herbs58,Clover/Wildflowers59,Sod/Grass Seed60,Switchgrass61,Fallow/Idle Cropland62,Pasture/Grass63,Forest64,Shrubland65,Barren66,Cherries67,Peaches68,Apples69,Grapes70,Christmas Trees71,Other Tree Crops72,Citrus74,Pecans75,Almonds76,Walnuts77,Pears81,Clouds/No Data82,Developed83,Water87,Wetlands88,Nonagricultural/Undefined92,Aquaculture111,Open Water112,Perennial Ice/Snow121,Developed/Open Space122,Developed/Low Intensity123,Developed/Med Intensity124,Developed/High Intensity131,Barren141,Deciduous Forest142,Evergreen Forest143,Mixed Forest152,Shrubland176,Grassland/Pasture190,Woody Wetlands195,Herbaceous Wetlands204,Pistachios205,Triticale206,Carrots207,Asparagus208,Garlic209,Cantaloupes210,Prunes211,Olives212,Oranges213,Honeydew Melons214,Broccoli215,Avocados216,Peppers217,Pomegranates218,Nectarines219,Greens220,Plums221,Strawberries222,Squash223,Apricots224,Vetch225,Double Crop Winter Wheat/Corn226,Double Crop Oats/Corn227,Lettuce228,Double Crop Triticale/Corn229,Pumpkins230,Double Crop Lettuce/Durum Wheat231,Double Crop Lettuce/Cantaloupe232,Double Crop Lettuce/Cotton233,Double Crop Lettuce/Barley234,Double Crop Durum Wheat/Sorghum235,Double Crop Barley/Sorghum236,Double Crop Winter Wheat/Sorghum237,Double Crop Barley/Corn238,Double Crop Winter Wheat/Cotton239,Double Crop Soybeans/Cotton240,Double Crop Soybeans/Oats241,Double Crop Corn/Soybeans242,Blueberries243,Cabbage244,Cauliflower245,Celery246,Radishes247,Turnips248,Eggplants249,Gourds250,Cranberries254,Double Crop Barley/Soybeans Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
This layer uses sand, silt, and clay most likely values from soilgrids.org to create texture classes. Soilgrids.org sand, silt, and clay datasets are integers that give a weight in grams in each particle class. The weight we are converting directly into percent, for example soilgrids value of 500g of sand means 50% sand ((500g/1kg) * 100 = 50%).A 100cm depth was chosen because it matches many of the world's most important crops' rooting depths. A 0 to 60cm version of this is also available.Variable mapped: Predominant USDA texture class as derived from predicted percent sand, silt, and clay.Data Projection: Goode's Homolosine (land) WKID 54052Mosaic Projection: Goode's Homolosine (land) WKID 54052Extent: World, except AntarcticaCell Size: 250 mSource Type: ThematicVisible Scale: All scales are visibleSource: SoilGrids.orgPublication Date: June 14, 2021NOTE: This layer uses the USDA texture classification system with international soil datasets, which use different particle size definitions than the USDA. Very little silt shows up in this layer, this could be a reason why.To determine the predominant soil texture we first classified texture for the following layer depths:0-5cm5-15cm15-30cm30-60cm60-100cmThen we used focal statistics with the majority option to find the majority texture class of each pixel from the five layers, weighted as follows:0-5cm * 15-15cm * 215-30cm * 330-60cm * 660-100cm * 7 (not 8, something had to break the tie and I reduced the multiplier by 1 to break ties, thinking of all soil depths the depth from 95-100cm may be the least significant in the stack overall.)-----------------------------------------------------------------Raster functions were created to classify sand, silt, and clay using the following statements in raster calculator:Sand Con((( Silt + ( 1.5 * Clay )) < 150 ), 1, 0)Loamy Sand Con(((Silt + (1.5 * Clay)) >= 150) & ((Silt + (2 * Clay)) < 300),2, 0)Sandy Loam Con(((Clay
=70)&(Clay<200)&(Sand>520)&((Silt + (2 * Clay)) = 300))|((Clay<70)&(Silt<500)&((Silt + (2 * Clay)) = 300)),4, 0)Loam Con(((Clay>=70) & (Clay<270) & (Silt>=280) & (Silt<500) & (Sand<=520)),8 ,0)Silt LoamCon((((Silt>=500) & (Clay>=120) & (Clay<270)) | ((Silt>=500) & (Silt<800) & (Clay<120))),16 , 0)SiltCon(((Silt >= 800)&(Clay<120)),32 ,0)Sandy Clay LoamCon(((Clay>=200) & (Clay < 350) & (Silt < 280) & (Sand > 450)),64 ,0)Clay LoamCon(((Clay >= 270) & (Clay<400) & (Sand > 200) & (Sand <= 450)), 128, 0)Silty Clay LoamCon(((Clay >= 270) & (Clay < 400) & (Sand <= 200)),256 ,0)Sandy ClayCon(((Clay >= 350) & (Sand > 450)) ,512 , 0)Silty Clay Con(((Clay >= 400) & (Silt >= 400)), 1024, 0)Clay Con(((Clay>=400) & (Sand <= 450) & (Silt < 400)) , 2048 , 0 )These conditionals were used on the "mean" soilgrids.org rasters for silt, sand, and clay on rasters representing the following depths:0-5 cm below the land surface5-15cm below the land surface15-30cm below the land surface30-60cm below the land surface60-100cm below the land surfaceThe conditionals were just summed together to create check rasters for each depth. All analysis was done in soilgrids.org own Goode's Homolosine projection (land) in ArcGIS Pro. The data were served in this same projection in ArcGIS Image for ArcGIS Online.---------------------------------------------------------------------------------------------------At first, the classes were given a value of 1, 2, 4, 8, 16, 32 and so on, then were added together. This is so we could see if some classes were overlapping others. We continued to troubleshoot the above definitions until there were no overlaps and as few values of 0 as possible. Once the overlaps and misses were fixed, the dataset was reclassed into values of 1-13. An attribute table was built to drive popups and a legend.
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent silt (silt).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, silt is defined as particles that are equal to or are between 0.002mm and 0.05mm in size. Silty soils are usually more fertile than other types of soil, with a good balance of air circulation and water retention.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for silt are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of silt particles (≥ 0.002 mm and ≤ 0.05 mm) in the fine earth fraction in g/100g (%)Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for silt were used to create this layer. You may access the percent silt in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the physical soil variable percent sand (sand).Within the subset of soil that is smaller than 2mm in size, also known as the fine earth portion, sand is defined as the particles that are greater than 0.05mm. Sand provides excellent aeration and drainage, but has a low capacity for holding water and nutrients.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for sand are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Proportion of sand particles (> 0.05 mm) in the fine earth fraction in g/100g (%).Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for sand were used to create this layer. You may access the percent sand in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable soil organic carbon (soc) which measures the mass of carbon in proportion to the mass of the soil. (mass divided by mass.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for soil organic carbon are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Soil organic carbon content in the fine earth fraction in g/kgCell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for soc were used to create this layer. You may access soil organic carbon values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.
Reason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. Because beaches in Puerto Rico and the U.S. Virgin Islands are open to the public, beaches also provide important outdoor recreation opportunities for urban residents, so we include beaches as parks in this indicator. Input Data
Southeast Blueprint 2023 subregions: Caribbean
Southeast Blueprint 2023 extent
National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) Coastal Relief Model, accessed 11-22-2022
Protected Areas Database of the United States (PAD-US) 3.0: VI, PR, and Marine Combined Fee Easement
Puerto Rico Protected Natural Areas 2018 (December 2018 update): Terrestrial and marine protected areas (PACAT2018_areas_protegidasPR_TERRESTRES_07052019.shp, PACAT2018_areas_protegidasPR_MARINAS_07052019.shp)
2020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 census
OpenStreetMap data “multipolygons” layer, accessed 3-14-2023
A polygon from this dataset is considered a park if the “leisure” tag attribute is either “park” or “nature_reserve”, and considered a beach if the value in the “natural” tag attribute is “beach”. OpenStreetMap describes leisure areas as “places people go in their spare time” and natural areas as “a wide variety of physical geography, geological and landcover features”. Data were downloaded in .pbf format and translated ton an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page.
TNC Lands - Public Layer, accessed 3-8-2023
U.S. Virgin Islands beaches layer (separate vector layers for St. Croix, St. Thomas, and St. John) provided by Joe Dwyer with Lynker/the NOAA Caribbean Climate Adaptation Program on 3-3-2023 (contact jdwyer@lynker.com for more information)
Mapping Steps
Most mapping steps were completed using QGIS (v 3.22) Graphical Modeler.
Fix geometry errors in the PAD-US PR data using Fix Geometry. This must be done before any analysis is possible.
Merge the terrestrial PR and VI PAD-US layers.
Use the NOAA coastal relief model to restrict marine parks (marine polygons from PAD-US and Puerto Rico Protected Natural Areas) to areas shallower than 10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature.
Merge into one layer the resulting shallow marine parks from marine PAD-US and the Puerto Rico Protected Natural Areas along with the combined terrestrial PAD-US parks, OpenStreetMap, TNC Lands, and USVI beaches. Omit from the Puerto Rico Protected Areas layer the “Zona de Conservación del Carso”, which has some policy protections and conservation incentives but is not formally protected.
Fix geometry errors in the resulting merged layer using Fix Geometry.
Intersect the resulting fixed file with the Caribbean Blueprint subregion.
Process all multipart polygons to single parts (referred to in Arc software as an “explode”). This helps the indicator capture, as much as possible, the discrete units of a protected area that serve urban residents.
Clip the Census urban area to the Caribbean Blueprint subregion.
Select all polygons that intersect the Census urban extent within 1.2 miles (1,931 m). The 1.2 mi threshold is consistent with the average walking trip on a summer day (U.S. DOT 2002) used to define the walking distance threshold used in the greenways and trails indicator. Note: this is further than the 0.5 mi distance used in the continental version of the indicator. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation.
Dissolve all the park polygons that were selected in the previous step.
Process all multipart polygons to single parts (“explode”) again.
Add a unique ID to the selected parks. This value will be used to join the parks to their buffers.
Create a 1.2 mi (1,931 m) buffer ring around each park using the multiring buffer plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 1.2 mi buffer is created for each park.
Assess the amount of overlap between the buffered park and the Census urban area using overlap analysis. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix. This step creates a table that is joined back to the park polygons using the UniqueID.
Remove parks that had ≤2% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: In the continental version of this indicator, we used a threshold of 10%. In the Caribbean version, we lowered this to 2% in order to capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles.
Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.
Join the buffer attribute table to the previously selected parks, retaining only the parks that exceeded the 2% urban area overlap threshold while buffered.
Buffer the selected parks by 15 m. Buffering prevents very small parks and narrow beaches from being left out of the indicator when the polygons are converted to raster.
Reclassify the polygons into 7 classes, seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).
Export the final vector file to a shapefile and import to ArcGIS Pro.
Convert the resulting polygons to raster using the ArcPy Polygon to Raster function. Assign values to the pixels in the resulting raster based on the polygon class sizes of the contiguous park areas.
Clip to the Caribbean Blueprint 2023 subregion.
As a final step, clip to the spatial extent of Southeast Blueprint 2023.
Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator values Indicator values are assigned as follows: 6 = 75+ acre urban park 5 = >50 to <75 acre urban park 4 = 30 to <50 acre urban park 3 = 10 to <30 acre urban park 2 = 5 to <10 acre urban park 1 = <5 acre urban park 0 = Not identified as an urban park Known Issues
This indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.
This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.
This indicator includes parks and beaches from OpenStreetMap, which is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a park) or incorrect tags (e.g., labelling an area as a park that is not actually a park). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new parks to improve the accuracy and coverage of this indicator in the future.
Other Things to Keep in Mind
This indicator calculates the area of each park using the park polygons from the source data. However, simply converting those park polygons to raster results in some small parks and narrow beaches being left out of the indicator. To capture those areas, we buffered parks and beaches by 15 m and applied the original area calculation to the larger buffered polygon, so as not to inflate the area by including the buffer. As a result, when the buffered polygons are rasterized, the final indicator has some areas of adjacent pixels that receive different scores. While these pixels may appear to be part of one contiguous park or suite of parks, they are scored differently because the park polygons themselves are not actually contiguous.
The Caribbean version of this indicator uses a slightly different methodology than the continental Southeast version. It includes parks within a 1.2 mi distance from the Census urban area, compared to 0.5 mi in the continental Southeast. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation. Similarly, this indicator uses a 2% threshold of overlap between buffered parks and the Census urban areas, compared to a 10% threshold in the continental Southeast. This helped capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles. Finally, the Caribbean version does not use the impervious surface cutoff applied in the continental Southeast
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Notice: this is not the latest Heat Island Anomalies image service. For 2023 data visit https://tpl.maps.arcgis.com/home/item.html?id=e89a556263e04cb9b0b4638253ca8d10.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, with patching from summer of 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.