Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By ddrg (From Huggingface) [source]
With a total of six columns, including formula1, formula2, label (binary format), formula1, formula2, and label, the dataset provides all the necessary information for conducting comprehensive analysis and evaluation.
The train.csv file contains a subset of the dataset specifically curated for training purposes. It includes an extensive range of math formula pairs along with their corresponding labels and unique ID names. This allows researchers and data scientists to construct models that can predict whether two given formulas fall within the same category or not.
On the other hand, test.csv serves as an evaluation set. It consists of additional pairs of math formulas accompanied by their respective labels and unique IDs. By evaluating model performance on this test set after training it on train.csv data, researchers can assess how well their models generalize to unseen instances.
By leveraging this informative dataset, researchers can unlock new possibilities in mathematics-related fields such as pattern recognition algorithms development or enhancing educational tools that involve automatic identification and categorization tasks based on mathematical formulas
Introduction
Dataset Description
train.csv
The
train.csvfile contains a set of labeled math formula pairs along with their corresponding labels and formula name IDs. It consists of the following columns: - formula1: The first mathematical formula in the pair (text). - formula2: The second mathematical formula in the pair (text). - label: The classification label indicating whether the pair of formulas belong to the same category or not (binary). A label value of 1 indicates that both formulas belong to the same category, while a label value of 0 indicates different categories.test.csv
The purpose of the
test.csvfile is to provide a set of formula pairs along with their labels and formula name IDs for testing and evaluation purposes. It has an identical structure totrain.csv, containing columns like formula1, formula2, label, etc.Task
The main task using this dataset is binary classification, where your objective is to predict whether two mathematical formulas belong to the same category or not based on their textual representation. You can use various machine learning algorithms such as logistic regression, decision trees, random forests, or neural networks for training models on this dataset.
Exploring & Analyzing Data
Before building your model, it's crucial to explore and analyze your data. Here are some steps you can take:
- Load both CSV files (
train.csvandtest.csv) into your preferred data analysis framework or programming language (e.g., Python with libraries like pandas).- Examine the dataset's structure, including the number of rows, columns, and data types.
- Check for missing values in the dataset and handle them accordingly.
- Visualize the distribution of labels to understand whether it is balanced or imbalanced.
Model Building
Once you have analyzed and preprocessed your dataset, you can start building your classification model using various machine learning algorithms:
- Split your
train.csvdata into training and validation sets for model evaluation during training.- Choose a suitable
- Math Formula Similarity: This dataset can be used to develop a model that classifies whether two mathematical formulas are similar or not. This can be useful in various applications such as plagiarism detection, identifying duplicate formulas in databases, or suggesting similar formulas based on user input.
- Formula Categorization: The dataset can be used to train a model that categorizes mathematical formulas into different classes or categories. For example, the model can classify formulas into algebraic expressions, trigonometric equations, calculus problems, or geometric theorems. This categorization can help organize and search through large collections of mathematical formulas.
- Formula Recommendation: Using this dataset, one could build a recommendation system that suggests related math formulas based on user input. By analyzing the similarities between different formula pairs and their corresponding labels, the system could provide recommendations for relevant mathematical concepts that users may need while solving problems or studying specific topics in mathematics
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Study information The sample included in this dataset represents five children who participated in a number line intervention study. Originally six children were included in the study, but one of them fulfilled the criterion for exclusion after missing several consecutive sessions. Thus, their data is not included in the dataset. All participants were currently attending Year 1 of primary school at an independent school in New South Wales, Australia. For children to be able to eligible to participate they had to present with low mathematics achievement by performing at or below the 25th percentile in the Maths Problem Solving and/or Numerical Operations subtests from the Wechsler Individual Achievement Test III (WIAT III A & NZ, Wechsler, 2016). Participants were excluded from participating if, as reported by their parents, they have any other diagnosed disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, developmental language disorder, cerebral palsy or uncorrected sensory disorders. The study followed a multiple baseline case series design, with a baseline phase, a treatment phase, and a post-treatment phase. The baseline phase varied between two and three measurement points, the treatment phase varied between four and seven measurement points, and all participants had 1 post-treatment measurement point. The number of measurement points were distributed across participants as follows: Participant 1 – 3 baseline, 6 treatment, 1 post-treatment Participant 3 – 2 baseline, 7 treatment, 1 post-treatment Participant 5 – 2 baseline, 5 treatment, 1 post-treatment Participant 6 – 3 baseline, 4 treatment, 1 post-treatment Participant 7 – 2 baseline, 5 treatment, 1 post-treatment In each session across all three phases children were assessed in their performance on a number line estimation task, a single-digit computation task, a multi-digit computation task, a dot comparison task and a number comparison task. Furthermore, during the treatment phase, all children completed the intervention task after these assessments. The order of the assessment tasks varied randomly between sessions.
Measures Number Line Estimation. Children completed a computerised bounded number line task (0-100). The number line is presented in the middle of the screen, and the target number is presented above the start point of the number line to avoid signalling the midpoint (Dackermann et al., 2018). Target numbers included two non-overlapping sets (trained and untrained) of 30 items each. Untrained items were assessed on all phases of the study. Trained items were assessed independent of the intervention during baseline and post-treatment phases, and performance on the intervention is used to index performance on the trained set during the treatment phase. Within each set, numbers were equally distributed throughout the number range, with three items within each ten (0-10, 11-20, 21-30, etc.). Target numbers were presented in random order. Participants did not receive performance-based feedback. Accuracy is indexed by percent absolute error (PAE) [(number estimated - target number)/ scale of number line] x100.
Single-Digit Computation. The task included ten additions with single-digit addends (1-9) and single-digit results (2-9). The order was counterbalanced so that half of the additions present the lowest addend first (e.g., 3 + 5) and half of the additions present the highest addend first (e.g., 6 + 3). This task also included ten subtractions with single-digit minuends (3-9), subtrahends (1-6) and differences (1-6). The items were presented horizontally on the screen accompanied by a sound and participants were required to give a verbal response. Participants did not receive performance-based feedback. Performance on this task was indexed by item-based accuracy.
Multi-digit computational estimation. The task included eight additions and eight subtractions presented with double-digit numbers and three response options. None of the response options represent the correct result. Participants were asked to select the option that was closest to the correct result. In half of the items the calculation involved two double-digit numbers, and in the other half one double and one single digit number. The distance between the correct response option and the exact result of the calculation was two for half of the trials and three for the other half. The calculation was presented vertically on the screen with the three options shown below. The calculations remained on the screen until participants responded by clicking on one of the options on the screen. Participants did not receive performance-based feedback. Performance on this task is measured by item-based accuracy.
Dot Comparison and Number Comparison. Both tasks included the same 20 items, which were presented twice, counterbalancing left and right presentation. Magnitudes to be compared were between 5 and 99, with four items for each of the following ratios: .91, .83, .77, .71, .67. Both quantities were presented horizontally side by side, and participants were instructed to press one of two keys (F or J), as quickly as possible, to indicate the largest one. Items were presented in random order and participants did not receive performance-based feedback. In the non-symbolic comparison task (dot comparison) the two sets of dots remained on the screen for a maximum of two seconds (to prevent counting). Overall area and convex hull for both sets of dots is kept constant following Guillaume et al. (2020). In the symbolic comparison task (Arabic numbers), the numbers remained on the screen until a response was given. Performance on both tasks was indexed by accuracy.
The Number Line Intervention During the intervention sessions, participants estimated the position of 30 Arabic numbers in a 0-100 bounded number line. As a form of feedback, within each item, the participants’ estimate remained visible, and the correct position of the target number appeared on the number line. When the estimate’s PAE was lower than 2.5, a message appeared on the screen that read “Excellent job”, when PAE was between 2.5 and 5 the message read “Well done, so close! and when PAE was higher than 5 the message read “Good try!” Numbers were presented in random order.
Variables in the dataset Age = age in ‘years, months’ at the start of the study Sex = female/male/non-binary or third gender/prefer not to say (as reported by parents) Math_Problem_Solving_raw = Raw score on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016). Math_Problem_Solving_Percentile = Percentile equivalent on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016). Num_Ops_Raw = Raw score on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016). Math_Problem_Solving_Percentile = Percentile equivalent on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).
The remaining variables refer to participants’ performance on the study tasks. Each variable name is composed by three sections. The first one refers to the phase and session. For example, Base1 refers to the first measurement point of the baseline phase, Treat1 to the first measurement point on the treatment phase, and post1 to the first measurement point on the post-treatment phase.
The second part of the variable name refers to the task, as follows: DC = dot comparison SDC = single-digit computation NLE_UT = number line estimation (untrained set) NLE_T= number line estimation (trained set) CE = multidigit computational estimation NC = number comparison The final part of the variable name refers to the type of measure being used (i.e., acc = total correct responses and pae = percent absolute error).
Thus, variable Base2_NC_acc corresponds to accuracy on the number comparison task during the second measurement point of the baseline phase and Treat3_NLE_UT_pae refers to the percent absolute error on the untrained set of the number line task during the third session of the Treatment phase.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By TIGER-Lab (From Huggingface) [source]
MathInstruct is a comprehensive and meticulously curated dataset specifically designed to facilitate the development and evaluation of models for math instruction tuning. This dataset consists of a total of 13 different math rationale datasets, out of which six have been exclusively curated for this project, ensuring a diverse range of instructional materials. The main objective behind creating this dataset is to provide researchers with an easily accessible and manageable resource that aids in enhancing the effectiveness and precision of math instruction.
One noteworthy feature of MathInstruct is its lightweight nature, making it highly convenient for researchers to utilize without any hassle. With carefully selected columns such as source, source, output, output, users can readily identify the origin or reference material from where the math instruction was obtained. Additionally, they can also refer to the expected output or solution corresponding to each specific math problem or exercise.
Overall, MathInstruct offers immense potential in refining hybrid math instruction by facilitating meticulous model development and rigorous evaluation processes. Researchers can leverage this diverse dataset to gain deeper insights into effective teaching methodologies while exploring innovative approaches towards enhancing mathematical learning experiences
Title: How to Use the MathInstruct Dataset for Hybrid Math Instruction Tuning
Introduction: The MathInstruct dataset is a comprehensive collection of math instruction examples, designed to assist in developing and evaluating models for math instruction tuning. This guide will provide an overview of the dataset and explain how to make effective use of it.
Understanding the Dataset Structure: The dataset consists of a file named train.csv. This CSV file contains the training data, which includes various columns such as source and output. The source column represents the source of math instruction (textbook, online resource, or teacher), while the output column represents expected output or solution to a particular math problem or exercise.
Accessing the Dataset: To access the MathInstruct dataset, you can download it from Kaggle's website. Once downloaded, you can read and manipulate the data using programming languages like Python with libraries such as pandas.
Exploring the Columns: a) Source Column: The source column provides information about where each math instruction comes from. It may include references to specific textbooks, online resources, or even teachers who provided instructional material. b) Output Column: The output column specifies what students are expected to achieve as a result of each math instruction. It contains solutions or expected outputs for different math problems or exercises.
Utilizing Source Information: By analyzing the different sources mentioned in this dataset, researchers can understand which instructional materials are more effective in teaching specific topics within mathematics. They can also identify common strategies used by teachers across multiple sources.
Analyzing Expected Outputs: Researchers can study variations in expected outputs for similar types of problems across different sources. This analysis may help identify differences in approaches across textbooks/resources and enrich our understanding of various teaching methods.
Model Development and Evaluation: Researchers can utilize this dataset to develop machine learning models that automatically assess whether a given math instruction leads to the expected output. By training models on this data, one can create automated systems that provide feedback on math problems or suggest alternative instruction sources.
Scaling the Dataset: Due to its lightweight nature, the MathInstruct dataset is easily accessible and manageable. Researchers can scale up their training data by combining it with other instructional datasets or expand it further by labeling more examples based on similar guidelines.
Conclusion: The MathInstruct dataset serves as a valuable resource for developing and evaluating models related to math instruction tuning. By analyzing the source information and expected outputs, researchers can gain insights into effective teaching methods and build automated assessment
- Model development: This dataset can be used for developing and training models for math instruction...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.
The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.
If you share or use this dataset, please cite [4] and [5] in any relevant documentation.
In addition, an image dataset for crack classification has also been published at [6].
References:
[1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873
[2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605
[3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434
[4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678
[5] (This dataset) Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044
[6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
This mmWave Datasets are used for fitness activity identification. This dataset (FA Dataset) contains 14 common fitness daily activities. The data are captured by the mmWave radar TI-AWR1642. The dataset can be used by fellow researchers to reproduce the original work or to further explore other machine-learning problems in the domain of mmWave signals.
Format: .png format
Section 1: Device Configuration
Section 2: Data Format
We provide our mmWave data in heatmaps for this dataset. The data file is in the png format. The details are shown in the following:
Section 3: Experimental Setup
Section 4: Data Description
14 common daily activities and their corresponding files
File Name Activity Type File Name Activity Type
FA1 Crunches FA8 Squats
FA2 Elbow plank and reach FA9 Burpees
FA3 Leg raise FA10 Chest squeezes
FA4 Lunges FA11 High knees
FA5 Mountain climber FA12 Side leg raise
FA6 Punches FA13 Side to side chops
FA7 Push ups FA14 Turning kicks
Section 5: Raw Data and Data Processing Algorithms
Section 6: Citations
If your paper is related to our works, please cite our papers as follows.
https://ieeexplore.ieee.org/document/9868878/
Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave." In 2022 International Conference on Computer Communications and Networks (ICCCN), pp. 1-10. IEEE, 2022.
Bibtex:
@inproceedings{xie2022mmfit,
title={mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave},
author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},
booktitle={2022 International Conference on Computer Communications and Networks (ICCCN)},
pages={1--10},
year={2022},
organization={IEEE}
}
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
File name definitions:
'...v_50_175_250_300...' - dataset for velocity ranges [50, 175] + [250, 300] m/s
'...v_175_250...' - dataset for velocity range [175, 250] m/s
'ANNdevelop...' - used to perform 9 parametric sub-analyses where, in each one, many ANNs are developed (trained, validated and tested) and the one yielding the best results is selected
'ANNtest...' - used to test the best ANN from each aforementioned parametric sub-analysis, aiming to find the best ANN model; this dataset includes the 'ANNdevelop...' counterpart
Where to find the input (independent) and target (dependent) variable values for each dataset/excel ?
input values in 'IN' sheet
target values in 'TARGET' sheet
Where to find the results from the best ANN model (for each target/output variable and each velocity range)?
open the corresponding excel file and the expected (target) vs ANN (output) results are written in 'TARGET vs OUTPUT' sheet
Check reference below (to be added when the paper is published)
https://www.researchgate.net/publication/328849817_11_Neural_Networks_-_Max_Disp_-_Railway_Beams
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General
For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.
Summary
A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
30 completely labeled (segmented) images
71 partly labeled images
altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
A set of metrics and a novel ranking score for respective meaningful method benchmarking
An evaluation of three baseline methods in terms of the above metrics and score
Abstract
Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.
Dataset documentation:
We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:
FISBe Datasheet
Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.
Files
fisbe_v1.0_{completely,partly}.zip
contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
fisbe_v1.0_mips.zip
maximum intensity projections of all samples, for convenience.
sample_list_per_split.txt
a simple list of all samples and the subset they are in, for convenience.
view_data.py
a simple python script to visualize samples, see below for more information on how to use it.
dim_neurons_val_and_test_sets.json
a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
Readme.md
general information
How to work with the image files
Each sample consists of a single 3d MCFO image of neurons of the fruit fly.For each image, we provide a pixel-wise instance segmentation for all separable neurons.Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.The segmentation mask for each neuron is stored in a separate channel.The order of dimensions is CZYX.
We recommend to work in a virtual environment, e.g., by using conda:
conda create -y -n flylight-env -c conda-forge python=3.9conda activate flylight-env
How to open zarr files
Install the python zarr package:
pip install zarr
Opened a zarr file with:
import zarrraw = zarr.open(, mode='r', path="volumes/raw")seg = zarr.open(, mode='r', path="volumes/gt_instances")
Zarr arrays are read lazily on-demand.Many functions that expect numpy arrays also work with zarr arrays.Optionally, the arrays can also explicitly be converted to numpy arrays.
How to view zarr image files
We recommend to use napari to view the image data.
Install napari:
pip install "napari[all]"
Save the following Python script:
import zarr, sys, napari
raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")
viewer = napari.Viewer(ndisplay=3)for idx, gt in enumerate(gts): viewer.add_labels( gt, rendering='translucent', blending='additive', name=f'gt_{idx}')viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')napari.run()
Execute:
python view_data.py /R9F03-20181030_62_B5.zarr
Metrics
S: Average of avF1 and C
avF1: Average F1 Score
C: Average ground truth coverage
clDice_TP: Average true positives clDice
FS: Number of false splits
FM: Number of false merges
tp: Relative number of true positives
For more information on our selected metrics and formal definitions please see our paper.
Baseline
To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..For detailed information on the methods and the quantitative results please see our paper.
License
The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Citation
If you use FISBe in your research, please use the following BibTeX entry:
@misc{mais2024fisbe, title = {FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures}, author = {Lisa Mais and Peter Hirsch and Claire Managan and Ramya Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller}, year = 2024, eprint = {2404.00130}, archivePrefix ={arXiv}, primaryClass = {cs.CV} }
Acknowledgments
We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuablediscussions.P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.This work was co-funded by Helmholtz Imaging.
Changelog
There have been no changes to the dataset so far.All future change will be listed on the changelog page.
Contributing
If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.
All contributions are welcome!
Facebook
Twitterhttps://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html
A key characteristic of free-range chicken farming is to enable chickens to spend time outdoors. However, each chicken may use the available areas for roaming in variable ways. To check if, and how, broilers use their outdoor range at an individual level, we need to reliably characterise range use behaviour. Traditional methods relying on visual scans require significant time investment and only provide discontinuous information. Passive RFID (Radio Frequency Identification) systems enable tracking individually tagged chickens’ when they go through pop-holes; hence they only provide partial information on the movements of individual chickens. Here, we describe a new method to measure chickens’ range use and test its reliability on three ranges each containing a different breed. We used an active RFID system to localise chickens in their barn, or in one of nine zones of their range, every 30 seconds and assessed range-use behaviour in 600 chickens belonging to three breeds of slow- or medium-growing broilers used for outdoor production (all < 40g daily weight gain). From those real-time locations, we determined five measures to describe daily range use: time spent in the barn, number of outdoor accesses, number of zones visited in a day, gregariousness (an index that increases when birds spend time in zones where other birds are), and numbers of zone changes. Principal Component Analyses (PCAs) were performed on those measures, in each production system, to create two synthetic indicators of chickens’ range use behaviour. Our dataset includes the files needed to calibrate the system (supplementary materials), the data files used in the publication and the associated codes.
Facebook
TwitterGLAH05 Level-1B waveform parameterization data include output parameters from the waveform characterization procedure and other parameters required to calculate surface slope and relief characteristics. GLAH05 contains parameterizations of both the transmitted and received pulses and other characteristics from which elevation and footprint-scale roughness and slope are calculated. The received pulse characterization uses two implementations of the retracking algorithms: one tuned for ice sheets, called the standard parameterization, used to calculate surface elevation for ice sheets, oceans, and sea ice; and another for land (the alternative parameterization). Each data granule has an associated browse product.
Facebook
TwitterSummary and methods used to calculate the physical characteristics used to compare the home range estimators.
Facebook
TwitterThis dataset is imported from the US Department of Commerce, National Telecommunications and Information Administration (NTIA) and its "Data Explorer" site. The underlying data comes from the US Census
dataset: Specifies the month and year of the survey as a string, in "Mon YYYY" format. The CPS is a monthly survey, and NTIA periodically sponsors Supplements to that survey.
variable: Contains the standardized name of the variable being measured. NTIA identified the availability of similar data across Supplements, and assigned variable names to ease time-series comparisons.
description: Provides a concise description of the variable.
universe: Specifies the variable representing the universe of persons or households included in the variable's statistics. The specified variable is always included in the file. The only variables lacking universes are isPerson and isHouseholder, as they are themselves the broadest universes measured in the CPS.
A large number of *Prop, *PropSE, *Count, and *CountSE columns comprise the remainder of the columns. For each demographic being measured (see below), four statistics are produced, including the estimated proportion of the group for which the variable is true (*Prop), the standard error of that proportion (*PropSE), the estimated number of persons or households in that group for which the variable is true (*Count), and the standard error of that count (*CountSE).
DEMOGRAPHIC CATEGORIES
us: The usProp, usPropSE, usCount, and usCountSE columns contain statistics about all persons and households in the universe (which represents the population of the fifty states and the District and Columbia). For example, to see how the prevelance of Internet use by Americans has changed over time, look at the usProp column for each survey's internetUser variable.
age: The age category is divided into five ranges: ages 3-14, 15-24, 25-44, 45-64, and 65+. The CPS only includes data on Americans ages 3 and older. Also note that household reference persons must be at least 15 years old, so the age314* columns are blank for household-based variables. Those columns are also blank for person-based variables where the universe is "isAdult" (or a sub-universe of "isAdult"), as the CPS defines adults as persons ages 15 or older. Finally, note that some variables where children are technically in the univese will show zero values for the age314* columns. This occurs in cases where a variable simply cannot be true of a child (e.g. the workInternetUser variable, as the CPS presumes children under 15 are not eligible to work), but the topic of interest is relevant to children (e.g. locations of Internet use).
work: Employment status is divided into "Employed," "Unemployed," and "NILF" (Not in the Labor Force). These three categories reflect the official BLS definitions used in official labor force statistics. Note that employment status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by work status, even if they are otherwise considered part of the universe for the variable of interest.
income: The income category represents annual family income, rather than just an individual person's income. It is divided into five ranges: below $25K, $25K-49,999, $50K-74,999, $75K-99,999, and $100K or more. Statistics by income group are only available in this file for Supplements beginning in 2010; prior to 2010, family income range is available in public use datasets, but is not directly comparable to newer datasets due to the 2010 introduction of the practice of allocating "don't know," "refused," and other responses that result in missing data. Prior to 2010, family income is unkown for approximately 20 percent of persons, while in 2010 the Census Bureau began imputing likely income ranges to replace missing data.
education: Educational attainment is divided into "No Diploma," "High School Grad," "Some College," and "College Grad." High school graduates are considered to include GED completers, and those with some college include community college attendees (and graduates) and those who have attended certain postsecondary vocational or technical schools--in other words, it signifies additional education beyond high school, but short of attaining a bachelor's degree or equivilent. Note that educational attainment is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by education, even if they are otherwise considered part of the universe for the variable of interest.
sex: "Male" and "Female" are the two groups in this category. The CPS does not currently provide response options for intersex individuals.
race: This category includes "White," "Black," "Hispanic," "Asian," "Am Indian," and "Other" groups. The CPS asks about Hispanic origin separately from racial identification; as a result, all persons identifying as Hispanic are in the Hispanic group, regardless of how else they identify. Furthermore, all non-Hispanic persons identifying with two or more races are tallied in the "Other" group (along with other less-prevelant responses). The Am Indian group includes both American Indians and Alaska Natives.
disability: Disability status is divided into "No" and "Yes" groups, indicating whether the person was identified as having a disability. Disabilities screened for in the CPS include hearing impairment, vision impairment (not sufficiently correctable by glasses), cognitive difficulties arising from physical, mental, or emotional conditions, serious difficulty walking or climbing stairs, difficulty dressing or bathing, and difficulties performing errands due to physical, mental, or emotional conditions. The Census Bureau began collecting data on disability status in June 2008; accordingly, this category is unavailable in Supplements prior to that date. Note that disability status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by disability status, even if they are otherwise considered part of the universe for the variable of interest.
metro: Metropolitan status is divided into "No," "Yes," and "Unkown," reflecting information in the dataset about the household's location. A household located within a metropolitan statistical area is assigned to the Yes group, and those outside such areas are assigned to No. However, due to the risk of de-anonymization, the metropolitan area status of certain households is unidentified in public use datasets. In those cases, the Census Bureau has determined that revealing this geographic information poses a disclosure risk. Such households are tallied in the Unknown group.
scChldHome:
Facebook
TwitterTransient killers whales inhabit the West Coast of the United States. Their range and movement patterns are difficult to ascertain, but are vital to understanding killer whale population dynamics and abundance trends. Satellite tagging of West Coast transient killer whales to determine range and movement patterns will provide data to assist in understanding transient killer whale populations. L...
Facebook
TwitterThe USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Facebook
Twitterhttps://api.github.com/licenses/mithttps://api.github.com/licenses/mit
This dataset contains Python numerical computation code for studying the phenomena of acoustic superluminescence and Hawking radiation in specific rotating acoustic black hole models. The code is based on the radial wave equation of scalar field (acoustic disturbance) under the effective acoustic metric background derived from analysis. Dataset generation process and processing methods: The core code is written in Python language, using standard scientific computing libraries NumPy and SciPy. The main steps include: (1) defining model parameters (such as A, B, m) and calculation range (frequency $\ omega $from 0.01 to 2.0, turtle coordinates $r ^ * $from -20 to 20); (2) Implement the mutual conversion function between the radial coordinate $r $and the turtle coordinate $r ^ * $, where the inversion of $r ^ * (r) $is numerically solved using SciPy's' optimize.root_scalar 'function (such as Brent's method), and special attention is paid to calculations near the horizon $r_H=| A |/c $to ensure stability; (3) Calculate the effective potential $V_0 (r ^ *, \ omega) $that depends on $r (r ^ *) $; (4) Convert the second-order radial wave equation into a system of quaternion first-order real valued ordinary differential equations; (5) The ODE system was solved using SciPy's' integrate. solve_ivp 'function (using an adaptive step size RK45 method with relative and absolute error margins set to $10 ^ {-8} $), applying pure inward boundary conditions (normalized unit transmission) at the field of view and asymptotic behavior at infinity; (6) Extract the reflection coefficient $\ mathcal {R} $and transmission coefficient $\ mathcal {T} $from the numerical solution; (7) Calculate the Hawking radiation power spectrum $P_ \ omega $based on the derived Hawking temperature $TH $, event horizon angular velocity $\ Omega-H $, Bose Einstein statistics, and combined with the gray body factor $| \ mathcal {T} | ^ 2 $. The calculation process adopts the natural unit system ($\ hbar=k_B=c=1 $) and sets the feature length $r_0=1 $. Dataset content: This dataset mainly includes a Python script file (code for numerical research on superluminescence and Hawking radiation of rotating acoustic black holes. py) and a README documentation file (README. md). The Python script implements the complete calculation process mentioned above. The README file provides a detailed explanation of the code's functionality, the required dependency libraries (Python 3, NumPy, SciPy) for running, the running methods, and the meaning of parameters. This dataset does not contain any raw experimental data and is only theoretical calculation code. Data accuracy and validation: The reliability of the code has been validated through two key indicators: (1) Flow conservation relationship$|\ mathcal{R}|^2 + [(\omega-m\Omega_H)/\omega]|\mathcal{T}|^2 = 1$ The numerical approximation holds within the calculated frequency range (with a deviation typically on the order of $10 ^ {-8} $or less); (2) Under the condition of superluminescence $0<\ omega1 $, which is consistent with theoretical expectations. File format and software: The code is in standard Python 3 (. py) format and can run in any standard Python 3 environment with NumPy and SciPy libraries installed. The README file is in Markdown (. md) format and can be opened with any text editor or Markdown viewer. No special or niche software is required.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
This mmWave Datasets are used for activity verification. It contains two datasets. The first dataset (FA Dataset) contains 14 common daily activities. This second one (EA Dataset) contains 5 kinds of eating activities. The data are captured by the mmWave radar TI-AWR1642. The dataset can be used by fellow researchers to reproduce the original work or to further explore other machine-learning problems in the domain of mmWave signals.
Format: .png format
Section 1: Device Configuration
Section 2: Data Format
We provide our mmWave data in heatmaps for the two datasets. The data file is in the png format. The details are shown in the following:
FA Dataset
EA Dataset
Section 3: Experimental Setup
FA Dataset
EA Dataset
Section 4: Data Description
|
Folder Name |
Activity Type |
Folder Name | Activity Type |
|
FA1 |
Crunches |
FA8 |
Squats |
|
FA2 |
Elbow plank and reach |
FA9 |
Burpees |
|
FA3 |
Leg raise |
FA10 |
Chest squeezes |
|
FA4 |
Lunges |
FA11 |
High knees |
|
FA5 |
Mountain climber |
FA12 |
Side leg raise |
|
FA6 |
Punches |
FA13 |
Side to side chops |
|
FA7 |
Push ups |
FA14 |
Turning kicks |
|
Folder Name |
Activity Type |
|
EA1 |
Eating with chopsticks |
|
EA2 |
Eating with fork |
|
EA3 |
Eating with bare hand |
|
EA4 |
Eating with fork&knife |
|
EA5 |
Eating with spoon |
Section 5: Raw Data and Data Processing Algorithms
Section 6: Citations
If your paper is related to our works, please cite our papers as follows.
https://ieeexplore.ieee.org/document/9868878/
Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave." In 2022 International Conference on Computer Communications and Networks (ICCCN), pp. 1-10. IEEE, 2022.
Bibtex:
@inproceedings{xie2022mmfit,
title={mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave},
author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},
booktitle={2022 International Conference on Computer Communications and Networks (ICCCN)},
pages={1--10},
year={2022},
organization={IEEE}
}
https://www.sciencedirect.com/science/article/abs/pii/S2352648321000532
Xie, Yucheng, Ruizhe Jiang, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen. "mmEat: Millimeter wave-enabled environment-invariant eating behavior monitoring." Smart Health 23 (2022): 100236.
Bibtex:
@article{xie2022mmeat,
title={mmEat: Millimeter wave-enabled environment-invariant eating behavior monitoring},
author={Xie, Yucheng and Jiang, Ruizhe and Guo, Xiaonan and Wang, Yan and Cheng, Jerry and Chen, Yingying},
journal={Smart Health},
volume={23},
pages={100236},
year={2022},
publisher={Elsevier}
}
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Aim: Despite the wide distribution of many parasites around the globe, the range of individual species varies significantly even among phylogenetically related taxa. Since parasites need suitable hosts to complete their development, parasite geographical and environmental ranges should be limited to communities where their hosts are found. Parasites may also suffer from a trade-off between being locally abundant or widely dispersed. We hypothesize that the geographical and environmental ranges of parasites are negatively associated to their host specificity and their local abundance. Location: Worldwide Time period: 2009 to 2021 Major taxa studied: Avian haemosporidian parasites Methods: We tested these hypotheses using a global database which comprises data on avian haemosporidian parasites from across the world. For each parasite lineage, we computed five metrics: phylogenetic host-range, environmental range, geographical range, and their mean local and total number of observations in the database. Phylogenetic generalized least squares models were ran to evaluate the influence of phylogenetic host-range and total and local abundances on geographical and environmental range. In addition, we analysed separately the two regions with the largest amount of available data: Europe and South America. Results: We evaluated 401 lineages from 757 localities and observed that generalism (i.e. phylogenetic host range) associates positively to both the parasites’ geographical and environmental ranges at global and Europe scales. For South America, generalism only associates with geographical range. Finally, mean local abundance (mean local number of parasite occurrences) was negatively related to geographical and environmental range. This pattern was detected worldwide and in South America, but not in Europe. Main Conclusions: We demonstrate that parasite specificity is linked to both their geographical and environmental ranges. The fact that locally abundant parasites present restricted ranges, indicates a trade-off between these two traits. This trade-off, however, only becomes evident when sufficient heterogeneous host communities are considered. Methods We compiled data on haemosporidian lineages from the MalAvi database (http://130.235.244.92/Malavi/ , Bensch et al. 2009) including all the data available from the “Grand Lineage Summary” representing Plasmodium and Haemoproteus genera from wild birds and that contained information regarding location. After checking for duplicated sequences, this dataset comprised a total of ~6200 sequenced parasites representing 1602 distinct lineages (775 Plasmodium and 827 Haemoproteus) collected from 1139 different host species and 757 localities from all continents except Antarctica (Supplementary figure 1, Supplementary Table 1). The parasite lineages deposited in MalAvi are based on a cyt b fragment of 478 bp. This dataset was used to calculate the parasites’ geographical, environmental and phylogenetic ranges. Geographical range All analyses in this study were performed using R version 4.02. In order to estimate the geographical range of each parasite lineage, we applied the R package “GeoRange” (Boyle, 2017) and chose the variable minimum spanning tree distance (i.e., shortest total distance of all lines connecting each locality where a particular lineage has been found). Using the function “create.matrix” from the “fossil” package, we created a matrix of lineages and coordinates and employed the function “GeoRange_MultiTaxa” to calculate the minimum spanning tree distance for each parasite lineage distance (i.e. shortest total distance in kilometers of all lines connecting each locality). Therefore, as at least two distinct sites are necessary to calculate this distance, parasites observed in a single locality could not have their geographical range estimated. For this reason, only parasites observed in two or more localities were considered in our phylogenetically controlled least squares (PGLS) models. Host and Environmental diversity Traditionally, ecologists use Shannon entropy to measure diversity in ecological assemblages (Pielou, 1966). The Shannon entropy of a set of elements is related to the degree of uncertainty someone would have about the identity of a random selected element of that set (Jost, 2006). Thus, Shannon entropy matches our intuitive notion of biodiversity, as the more diverse an assemblage is, the more uncertainty regarding to which species a randomly selected individual belongs. Shannon diversity increases with both the assemblage richness (e.g., the number of species) and evenness (e.g., uniformity in abundance among species). To compare the diversity of assemblages that vary in richness and evenness in a more intuitive manner, we can normalize diversities by Hill numbers (Chao et al., 2014b). The Hill number of an assemblage represents the effective number of species in the assemblage, i.e., the number of equally abundant species that are needed to give the same value of the diversity metric in that assemblage. Hill numbers can be extended to incorporate phylogenetic information. In such case, instead of species, we are measuring the effective number of phylogenetic entities in the assemblage. Here, we computed phylogenetic host-range as the phylogenetic Hill number associated with the assemblage of hosts found infected by a given parasite. Analyses were performed using the function “hill_phylo” from the “hillr” package (Chao et al., 2014a). Hill numbers are parameterized by a parameter “q” that determines the sensitivity of the metric to relative species abundance. Different “q” values produce Hill numbers associated with different diversity metrics. We set q = 1 to compute the Hill number associated with Shannon diversity. Here, low Hill numbers indicate specialization on a narrow phylogenetic range of hosts, whereas a higher Hill number indicates generalism across a broader phylogenetic spectrum of hosts. We also used Hill numbers to compute the environmental range of sites occupied by each parasite lineage. Firstly, we collected the 19 bioclimatic variables from WorldClim version 2 (http://www.worldclim.com/version2) for all sites used in this study (N = 713). Then, we standardized the 19 variables by centering and scaling them by their respective mean and standard deviation. Thereafter, we computed the pairwise Euclidian environmental distance among all sites and used this distance to compute a dissimilarity cluster. Finally, as for the phylogenetic Hill number, we used this dissimilarity cluster to compute the environmental Hill number of the assemblage of sites occupied by each parasite lineage. The environmental Hill number for each parasite can be interpreted as the effective number of environmental conditions in which a parasite lineage occurs. Thus, the higher the environmental Hill number, the more generalist the parasite is regarding the environmental conditions in which it can occur. Parasite phylogenetic tree A Bayesian phylogenetic reconstruction was performed. We built a tree for all parasite sequences for which we were able to estimate the parasite’s geographical, environmental and phylogenetic ranges (see above); this represented 401 distinct parasite lineages. This inference was produced using MrBayes 3.2.2 (Ronquist & Huelsenbeck, 2003) with the GTR + I + G model of nucleotide evolution, as recommended by ModelTest (Posada & Crandall, 1998), which selects the best-fit nucleotide substitution model for a set of genetic sequences. We ran four Markov chains simultaneously for a total of 7.5 million generations that were sampled every 1000 generations. The first 1250 million trees (25%) were discarded as a burn-in step and the remaining trees were used to calculate the posterior probabilities of each estimated node in the final consensus tree. Our final tree obtained a cumulative posterior probability of 0.999. Leucocytozoon caulleryi was used as the outgroup to root the phylogenetic tree as Leucocytozoon spp. represents a basal group within avian haemosporidians (Pacheco et al., 2020).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a detailed overview of gym members' exercise routines, physical attributes, and fitness metrics. It contains 973 samples of gym data, including key performance indicators such as heart rate, calories burned, and workout duration. Each entry also includes demographic data and experience levels, allowing for comprehensive analysis of fitness patterns, athlete progression, and health trends.
Key Features:
This dataset is ideal for data scientists, health researchers, and fitness enthusiasts interested in studying exercise habits, modeling fitness progression, or analyzing the relationship between demographic and physiological data. With a wide range of variables, it offers insights into how different factors affect workout intensity, endurance, and overall health.
Facebook
Twitterhttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.15139/S3/J2O61Phttps://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.15139/S3/J2O61P
Please cite the following paper when using this dataset: N. Thakur, “MonkeyPox2022Tweets: A large-scale Twitter dataset on the 2022 Monkeypox outbreak, findings from analysis of Tweets, and open research questions,” Infect. Dis. Rep., vol. 14, no. 6, pp. 855–883, 2022, DOI: https://doi.org/10.3390/idr14060087. Abstract The mining of Tweets to develop datasets on recent issues, global challenges, pandemics, virus outbreaks, emerging technologies, and trending matters has been of significant interest to the scientific community in the recent past, as such datasets serve as a rich data resource for the investigation of different research questions. Furthermore, the virus outbreaks of the past, such as COVID-19, Ebola, Zika virus, and flu, just to name a few, were associated with various works related to the analysis of the multimodal components of Tweets to infer the different characteristics of conversations on Twitter related to these respective outbreaks. The ongoing outbreak of the monkeypox virus, declared a Global Public Health Emergency (GPHE) by the World Health Organization (WHO), has resulted in a surge of conversations about this outbreak on Twitter, which is resulting in the generation of tremendous amounts of Big Data. There has been no prior work in this field thus far that has focused on mining such conversations to develop a Twitter dataset. Therefore, this work presents an open-access dataset of 571,831 Tweets about monkeypox that have been posted on Twitter since the first detected case of this outbreak on May 7, 2022. The dataset complies with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter, as well as with the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management. Data Description The dataset consists of a total of 571,831 Tweet IDs of the same number of tweets about monkeypox that were posted on Twitter from 7th May 2022 to 11th November (the most recent date at the time of uploading the most recent version of the dataset). The Tweet IDs are presented in 12 different .txt files based on the timelines of the associated tweets. The following represents the details of these dataset files. Filename: TweetIDs_Part1.txt (No. of Tweet IDs: 13926, Date Range of the associated Tweet IDs: May 7, 2022, to May 21, 2022) Filename: TweetIDs_Part2.txt (No. of Tweet IDs: 17705, Date Range of the associated Tweet IDs: May 21, 2022, to May 27, 2022) Filename: TweetIDs_Part3.txt (No. of Tweet IDs: 17585, Date Range of the associated Tweet IDs: May 27, 2022, to June 5, 2022) Filename: TweetIDs_Part4.txt (No. of Tweet IDs: 19718, Date Range of the associated Tweet IDs: June 5, 2022, to June 11, 2022) Filename: TweetIDs_Part5.txt (No. of Tweet IDs: 46718, Date Range of the associated Tweet IDs: June 12, 2022, to June 30, 2022) Filename: TweetIDs_Part6.txt (No. of Tweet IDs: 138711, Date Range of the associated Tweet IDs: July 1, 2022, to July 23, 2022) Filename: TweetIDs_Part7.txt (No. of Tweet IDs: 105890, Date Range of the associated Tweet IDs: July 24, 2022, to July 31, 2022) Filename: TweetIDs_Part8.txt (No. of Tweet IDs: 93959, Date Range of the associated Tweet IDs: August 1, 2022, to August 9, 2022) Filename: TweetIDs_Part9.txt (No. of Tweet IDs: 50832, Date Range of the associated Tweet IDs: August 10, 2022, to August 24, 2022) Filename: TweetIDs_Part10.txt (No. of Tweet IDs: 39042, Date Range of the associated Tweet IDs: August 25, 2022, to September 19, 2022) Filename: TweetIDs_Part11.txt (No. of Tweet IDs: 12341, Date Range of the associated Tweet IDs: September 20, 2022, to October 9, 2022) Filename: TweetIDs_Part12.txt (No. of Tweet IDs: 15404, Date Range of the associated Tweet IDs: October 10, 2022, to November 11, 2022) Please note: The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used. For hydrating this dataset, the Hydrator application (link to download the application: https://github.com/DocNow/hydrator/releases and link to a step-by-step tutorial: https://towardsdatascience.com/learn-how-to-easily-hydrate-tweets-a0f393ed340e#:~:text=Hydrating%20Tweets) may be used.
Facebook
TwitterRange Improvements are man-made or man-caused features on the landscape designed and implemented for the purpose of improving the available forage, managing the season of use or use patterns and enhancing the overall rangeland health of areas available for domestic livestock use. Range improvements may occur on private, state, and public lands under the jurisdiction of the Bureau of Land Management (BLM) and/or other federal or state agencies. On public lands managed by the Bureau of Land Management (BLM), permittees or lessees (henceforth, “operators”) may be required to install range improvements to meet the terms and conditions of their permits or leases. Often the BLM, operators, and other interested parties work together and jointly contribute to construction.Range improvements are authorized physical modifications or treatment which are designed to improve production of forage; change vegetation composition; control patterns of use; provide water; stabilize soil and water conditions; restore, protect, and improve the conditions of the rangeland ecosystems to benefit livestock, wild horses and burros, and fish and wildlife. They include, but are not limited to, structures, treatment projects and use of mechanical devices or modifications achieved through mechanical means. Range Improvements. There are two kinds of range improvements: nonstructural and structural. Seeding or prescribed burns are examples of nonstructural range improvements. Fences or facilities such as wells or water pipelines are examples of structural improvements. Many structural improvements are considered permanent, as they are not easily removed from the land. This data standard will only relate to structural range improvements features as GIS and attribute data related to almost all non-structural range improvements is stored in other national data standard datasets (e.g. NISIMS, VTRT, NFPORS). Range improvement data is also available in the Range Improvement System (RIPS), a BLM database used for tracking the establishment and maintenance of range improvments. RIPS is the database of record and contains the data to be used for budgetary and workload planning. This data set shall be comprised of a spatial display of the data in RIPS. The record unique identifier within the RIPS database (RIPS number) will be added to GIS features in this data standard to link between spatial depictions of range improvements features to their corresponding RIPS records. Wherever possible RIPS data shall be used to populate this data set.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By ddrg (From Huggingface) [source]
With a total of six columns, including formula1, formula2, label (binary format), formula1, formula2, and label, the dataset provides all the necessary information for conducting comprehensive analysis and evaluation.
The train.csv file contains a subset of the dataset specifically curated for training purposes. It includes an extensive range of math formula pairs along with their corresponding labels and unique ID names. This allows researchers and data scientists to construct models that can predict whether two given formulas fall within the same category or not.
On the other hand, test.csv serves as an evaluation set. It consists of additional pairs of math formulas accompanied by their respective labels and unique IDs. By evaluating model performance on this test set after training it on train.csv data, researchers can assess how well their models generalize to unseen instances.
By leveraging this informative dataset, researchers can unlock new possibilities in mathematics-related fields such as pattern recognition algorithms development or enhancing educational tools that involve automatic identification and categorization tasks based on mathematical formulas
Introduction
Dataset Description
train.csv
The
train.csvfile contains a set of labeled math formula pairs along with their corresponding labels and formula name IDs. It consists of the following columns: - formula1: The first mathematical formula in the pair (text). - formula2: The second mathematical formula in the pair (text). - label: The classification label indicating whether the pair of formulas belong to the same category or not (binary). A label value of 1 indicates that both formulas belong to the same category, while a label value of 0 indicates different categories.test.csv
The purpose of the
test.csvfile is to provide a set of formula pairs along with their labels and formula name IDs for testing and evaluation purposes. It has an identical structure totrain.csv, containing columns like formula1, formula2, label, etc.Task
The main task using this dataset is binary classification, where your objective is to predict whether two mathematical formulas belong to the same category or not based on their textual representation. You can use various machine learning algorithms such as logistic regression, decision trees, random forests, or neural networks for training models on this dataset.
Exploring & Analyzing Data
Before building your model, it's crucial to explore and analyze your data. Here are some steps you can take:
- Load both CSV files (
train.csvandtest.csv) into your preferred data analysis framework or programming language (e.g., Python with libraries like pandas).- Examine the dataset's structure, including the number of rows, columns, and data types.
- Check for missing values in the dataset and handle them accordingly.
- Visualize the distribution of labels to understand whether it is balanced or imbalanced.
Model Building
Once you have analyzed and preprocessed your dataset, you can start building your classification model using various machine learning algorithms:
- Split your
train.csvdata into training and validation sets for model evaluation during training.- Choose a suitable
- Math Formula Similarity: This dataset can be used to develop a model that classifies whether two mathematical formulas are similar or not. This can be useful in various applications such as plagiarism detection, identifying duplicate formulas in databases, or suggesting similar formulas based on user input.
- Formula Categorization: The dataset can be used to train a model that categorizes mathematical formulas into different classes or categories. For example, the model can classify formulas into algebraic expressions, trigonometric equations, calculus problems, or geometric theorems. This categorization can help organize and search through large collections of mathematical formulas.
- Formula Recommendation: Using this dataset, one could build a recommendation system that suggests related math formulas based on user input. By analyzing the similarities between different formula pairs and their corresponding labels, the system could provide recommendations for relevant mathematical concepts that users may need while solving problems or studying specific topics in mathematics