95 datasets found
  1. d

    Batch Metadata Modifier Toolbar

    • catalog.data.gov
    Updated Nov 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho Library (2020). Batch Metadata Modifier Toolbar [Dataset]. https://catalog.data.gov/dataset/batch-metadata-modifier-toolbar
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    University of Idaho Library
    Description

    For more information about this tool see Batch Metadata Modifier Tool Toolbar Help.Modifying multiple files simultaneously that don't have identical structures is possible but not advised. Be especially careful modifying repeatable elements in multiple files that do not have and identical structureTool can be run as an ArcGIS Add-In or as a stand-alone Windows executableExecutable runs on PC only. (Not supported on Mac.)The ArcGIS Add-In requires ArcGIS Desktop version 10.2 or 10.3Metadata formats accepted: FGDC CSDGM, ArcGIS 1.0, ArcGIS ISO, and ISO 19115Contact Bruce Godfrey (bgodfrey@uidaho.edu, Ph. 208-292-1407) if you have questions or wish to collaborate on further developing this tool.Modifying and maintaining metadata for large batches of ArcGIS items can be a daunting task. Out-of-the-box graphical user interface metadata tools within ArcCatalog 10.x are designed primarily to allow users to interact with metadata for one item at a time. There are, however, a limited number of tools for performing metadata operations on multiple items. Therefore, the need exists to develop tools to modify metadata for numerous items more effectively and efficiently. The Batch Metadata Modifier Tools toolbar is a step in that direction. The Toolbar, which is available as an ArcGIS Add-In, currently contains two tools. The first tool, which is additionally available as a standalone Windows executable application, allows users to update metadata on multiple items iteratively. The tool enables users to modify existing elements, find and replace element content, delete metadata elements, and import metadata elements from external templates. The second tool of the Toolbar, a batch thumbnail creator, enables the batch-creation of the graphic that appears in an item’s metadata, illustrating the data an item contains. Both of these tools make updating metadata in ArcCatalog more efficient, since the tools are able to operate on numerous items iteratively through an easy-to-use graphic interface.This tool, developed by INSIDE Idaho at the University of Idaho Library, was created to assist researchers with modifying FGDC CSDGM, ArcGIS 1.0 Format and ISO 19115 metadata for numerous data products generated under EPSCoR award EPS-0814387.This tool is primarily designed to be used by those familiar with metadata, metadata standards, and metadata schemas. The tool is for use by metadata librarians and metadata managers and those having experience modifying standardized metadata. The tool is designed to expedite batch metadata maintenance. Users of this tool must fully understand the files they are modifying. No responsibility is assumed by the Idaho Geospatial Data Clearinghouse or the University of Idaho in the use of this tool. A portion of the development of this tool was made possible by an Idaho EPSCoR Office award.

  2. d

    XML Metadata Template for the U.S. Fish and Wildlife Service.

    • datadiscoverystudio.org
    • data.amerigeoss.org
    • +1more
    Updated May 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). XML Metadata Template for the U.S. Fish and Wildlife Service. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/004870e38d374cd1a20674eea7f8c9e5/html
    Explore at:
    Dataset updated
    May 21, 2018
    Description

    description: This dataset is provided as an example of XML metadata that can be used to create a records in ServCat for GIS datasets.; abstract: This dataset is provided as an example of XML metadata that can be used to create a records in ServCat for GIS datasets.

  3. t

    Metadata Form Template

    • data.tempe.gov
    • open.tempe.gov
    • +10more
    Updated Jun 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2020). Metadata Form Template [Dataset]. https://data.tempe.gov/documents/c450d13c28ed4b1888ed6ab9d0363473
    Explore at:
    Dataset updated
    Jun 5, 2020
    Dataset authored and provided by
    City of Tempe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Metadata form template for Tempe Open Data.

  4. d

    SOFIA - Metadata - Development of an Internet-Based GIS to Visualize ATLSS...

    • datadiscoverystudio.org
    • dataone.org
    • +2more
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). SOFIA - Metadata - Development of an Internet-Based GIS to Visualize ATLSS Datasets for Resource Managers. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/443f494a12f148398137c009968b38bf/html
    Explore at:
    Dataset updated
    May 21, 2018
    Description

    description: The ATLSS Data Visualization System was designed to make it simple to view and analyze Spatially-Explicit Species Index (SESI) models.; abstract: The ATLSS Data Visualization System was designed to make it simple to view and analyze Spatially-Explicit Species Index (SESI) models.

  5. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  6. d

    Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping...

    • datarade.ai
    .json
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum, Global Geospatial & GIS Data | 230M+ POIs with Location Coordinates, Mapping Metadata & 5000 Categories [Dataset]. https://datarade.ai/data-products/xverum-geospatial-data-100-verified-locations-230m-poi-xverum
    Explore at:
    .jsonAvailable download formats
    Dataset authored and provided by
    Xverum
    Area covered
    United States
    Description

    Xverum’s Global GIS & Geospatial Data is a high-precision dataset featuring 230M+ verified points of interest across 249 countries. With rich metadata, structured geographic attributes, and continuous updates, our dataset empowers businesses, researchers, and governments to extract location intelligence and conduct advanced geospatial analysis.

    Perfectly suited for GIS systems, mapping tools, and location intelligence platforms, this dataset covers everything from businesses and landmarks to public infrastructure, all classified into over 5000 categories. Whether you're planning urban developments, analyzing territories, or building location-based products, our data delivers unmatched coverage and accuracy.

    Key Features: ✅ 230M+ Global POIs Includes commercial, governmental, industrial, and service locations - updated regularly for accurate relevance.

    ✅ Comprehensive Geographic Coverage Worldwide dataset covering 249 countries, with attributes including latitude, longitude, city, country code, postal code, etc.

    ✅ Detailed Mapping Metadata Get structured address data, place names, categories, and location, which are ideal for map visualization and geospatial modeling.

    ✅ Bulk Delivery for GIS Platforms Available in .json - delivered via S3 Bucket or cloud storage for easy integration into ArcGIS, QGIS, Mapbox, and similar systems.

    ✅ Continuous Discovery & Refresh New POIs added and existing ones refreshed on a regular refresh cycle, ensuring reliable, up-to-date insights.

    ✅ Compliance & Scalability 100% compliant with global data regulations and scalable for enterprise use across mapping, urban planning, and retail analytics.

    Use Cases: 📍 Location Intelligence & Market Analysis Identify high-density commercial zones, assess regional activity, and understand spatial relationships between locations.

    🏙️ Urban Planning & Smart City Development Design infrastructure, zoning plans, and accessibility strategies using accurate location-based data.

    🗺️ Mapping & Navigation Enrich digital maps with verified business listings, categories, and address-level geographic attributes.

    📊 Retail Site Selection & Expansion Analyze proximity to key POIs for smarter retail or franchise placement.

    📌 Risk & Catchment Area Assessment Evaluate location clusters for insurance, logistics, or regional outreach strategies.

    Why Xverum? ✅ Global Coverage: One of the largest POI geospatial databases on the market ✅ Location Intelligence Ready: Built for GIS platforms and spatial analysis use ✅ Continuously Updated: New POIs discovered and refreshed regularly ✅ Enterprise-Friendly: Scalable, compliant, and customizable ✅ Flexible Delivery: Structured format for smooth data onboarding

    Request a free sample and discover how Xverum’s geospatial data can power your mapping, planning, and spatial analysis projects.

  7. d

    Converting analog interpretive data to digital formats for use in database...

    • datadiscoverystudio.org
    Updated Jun 6, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2008). Converting analog interpretive data to digital formats for use in database and GIS applications [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ed9bb80881c64dc38dfc614d7d454022/html
    Explore at:
    Dataset updated
    Jun 6, 2008
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  8. 1.2m Resolution Metadata

    • hurricane-tx-arcgisforem.hub.arcgis.com
    • hamhanding-dcdev.opendata.arcgis.com
    • +3more
    Updated Dec 13, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 1.2m Resolution Metadata [Dataset]. https://hurricane-tx-arcgisforem.hub.arcgis.com/datasets/esri::1-2m-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 13, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  9. M

    Metro Regional Parcel Dataset - (Updated Quarterly)

    • gisdata.mn.gov
    ags_mapserver, fgdb +4
    Updated Apr 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MetroGIS (2025). Metro Regional Parcel Dataset - (Updated Quarterly) [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metrogis-plan-regional-parcels
    Explore at:
    fgdb, gpkg, html, shp, jpeg, ags_mapserverAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset provided by
    MetroGIS
    Description

    This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.

    This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.

    NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
    https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    See section 5 of the metadata for an attribute summary.

    Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.

    The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.

    The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.

    In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.

    This is a MetroGIS Regionally Endorsed dataset.

    Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.

    Anoka = http://www.anokacounty.us/315/GIS
    Caver = http://www.co.carver.mn.us/GIS
    Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
    Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
    Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
    Scott = http://opendata.gis.co.scott.mn.us/
    Washington: http://www.co.washington.mn.us/index.aspx?NID=1606

  10. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  11. S USA.BdyOwn PADUS Designation USGS - Metadata Review

    • usfs.hub.arcgis.com
    Updated Aug 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2022). S USA.BdyOwn PADUS Designation USGS - Metadata Review [Dataset]. https://usfs.hub.arcgis.com/documents/c60d5c38020140d19e24dc1f120aebe2
    Explore at:
    Dataset updated
    Aug 24, 2022
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    Area covered
    United States,
    Description

    The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme ( https://communities.geoplatform.gov/ngda-cadastre/ ). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all open space public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, permanent and long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of U.S. public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using thirty-six attributes and five separate feature classes representing the U.S. protected areas network: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. An additional Combined feature class includes the full PAD-US inventory to support data management, queries, web mapping services, and analyses. The Feature Class (FeatClass) field in the Combined layer allows users to extract data types as needed. A Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) facilitates the extraction of authoritative federal data provided or recommended by managing agencies from the Combined PAD-US inventory. This PAD-US Version 3.0 dataset includes a variety of updates from the previous Version 2.1 dataset (USGS, 2020, https://doi.org/10.5066/P92QM3NT ), achieving goals to: 1) Annually update and improve spatial data representing the federal estate for PAD-US applications; 2) Update state and local lands data as state data-steward and PAD-US Team resources allow; and 3) Automate data translation efforts to increase PAD-US update efficiency. The following list summarizes the integration of "best available" spatial data to ensure public lands and other protected areas from all jurisdictions are represented in the PAD-US (other data were transferred from PAD-US 2.1). Federal updates - The USGS remains committed to updating federal fee owned lands data and major designation changes in annual PAD-US updates, where authoritative data provided directly by managing agencies are available or alternative data sources are recommended. The following is a list of updates or revisions associated with the federal estate: 1) Major update of the Federal estate (fee ownership parcels, easement interest, and management designations where available), including authoritative data from 8 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census Bureau), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), and National Oceanic and Atmospheric Administration (NOAA). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/ ). 2) Improved the representation (boundaries and attributes) of the National Park Service, U.S. Forest Service, Bureau of Land Management, and U.S. Fish and Wildlife Service lands, in collaboration with agency data-stewards, in response to feedback from the PAD-US Team and stakeholders. 3) Added a Federal Data Reference file geodatabase lookup table (PADUS3_0Combined_Federal_Data_References) to the PAD-US 3.0 geodatabase to facilitate the extraction (by Data Provider, Dataset Name, and/or Aggregator Source) of authoritative data provided directly (or recommended) by federal managing agencies from the full PAD-US inventory. A summary of the number of records (Frequency) and calculated GIS Acres (vs Documented Acres) associated with features provided by each Aggregator Source is included; however, the number of records may vary from source data as the "State Name" standard is applied to national files. The Feature Class (FeatClass) field in the table and geodatabase describe the data type to highlight overlapping features in the full inventory (e.g. Designation features often overlap Fee features) and to assist users in building queries for applications as needed. 4) Scripted the translation of the Department of Defense, Census Bureau, and Natural Resource Conservation Service source data into the PAD-US format to increase update efficiency. 5) Revised conservation measures (GAP Status Code, IUCN Category) to more accurately represent protected and conserved areas. For example, Fish and Wildlife Service (FWS) Waterfowl Production Area Wetland Easements changed from GAP Status Code 2 to 4 as spatial data currently represents the complete parcel (about 10.54 million acres primarily in North Dakota and South Dakota). Only aliquot parts of these parcels are documented under wetland easement (1.64 million acres). These acreages are provided by the U.S. Fish and Wildlife Service and are referenced in the PAD-US geodatabase Easement feature class 'Comments' field. State updates - The USGS is committed to building capacity in the state data-steward network and the PAD-US Team to increase the frequency of state land updates, as resources allow. The USGS supported efforts to significantly increase state inventory completeness with the integration of local parks data in the PAD-US 2.1, and developed a state-to-PAD-US data translation script during PAD-US 3.0 development to pilot in future updates. Additional efforts are in progress to support the technical and organizational strategies needed to increase the frequency of state updates. The PAD-US 3.0 included major updates to the following three states: 1) California - added or updated state, regional, local, and nonprofit lands data from the California Protected Areas Database (CPAD), managed by GreenInfo Network, and integrated conservation and recreation measure changes following review coordinated by the data-steward with state managing agencies. Developed a data translation Python script (see Process Step 2 Source Data Documentation) in collaboration with the data-steward to increase the accuracy and efficiency of future PAD-US updates from CPAD. 2) Virginia - added or updated state, local, and nonprofit protected areas data (and removed legacy data) from the Virginia Conservation Lands Database, provided by the Virginia Department of Conservation and Recreation's Natural Heritage Program, and integrated conservation and recreation measure changes following review by the data-steward. 3) West Virginia - added or updated state, local, and nonprofit protected areas data provided by the West Virginia University, GIS Technical Center. For more information regarding the PAD-US dataset please visit, https://www.usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the PAD-US Data Manual available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual . A version history of PAD-US updates is summarized below (See https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-history for more information): 1) First posted - April 2009 (Version 1.0 - available from the PAD-US: Team pad-us@usgs.gov). 2) Revised - May 2010 (Version 1.1 - available from the PAD-US: Team pad-us@usgs.gov). 3) Revised - April 2011 (Version 1.2 - available from the PAD-US: Team pad-us@usgs.gov). 4) Revised - November 2012 (Version 1.3) https://doi.org/10.5066/F79Z92XD 5) Revised - May 2016 (Version 1.4) https://doi.org/10.5066/F7G73BSZ 6) Revised - September 2018 (Version 2.0) https://doi.org/10.5066/P955KPLE 7) Revised - September 2020 (Version 2.1) https://doi.org/10.5066/P92QM3NT 8) Revised - January 2022 (Version 3.0) https://doi.org/10.5066/P9Q9LQ4B Comparing protected area trends between PAD-US versions is not recommended without consultation with USGS as many changes reflect improvements to agency and organization GIS systems, or conservation and recreation measure classification, rather than actual changes in protected area acquisition on the ground.

  12. Compilation of GIS datasets for Davis Station

    • data.aad.gov.au
    • researchdata.edu.au
    • +1more
    Updated Oct 7, 1999
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HARRIS, URSULA (1999). Compilation of GIS datasets for Davis Station [Dataset]. https://data.aad.gov.au/metadata/Davis_Station
    Explore at:
    Dataset updated
    Oct 7, 1999
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    HARRIS, URSULA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 11, 1997 - Sep 1, 1998
    Area covered
    Description

    This dataset represents topographic features of Davis Station, Antarctica. The mapped features include coastline, contours, spot heights, high water mark (the 0.4 m contour was used as the high water mark) and station infrastructure (buildings, masts, aerials, tanks, pipes and other structures).

    The data are included in the data available for download from the provided URL.

    The data conform to the SCAR Feature Catalogue which includes data quality information. See a Related URL below. Data described by this metadata record has Dataset_id = 16. Each feature has a Qinfo number which, when entered at the 'Search datasets and quality' tab, provides data quality information for the feature.

    Changes have occurred at the station since this dataset was produced. For example some buildings and other structures have been removed and some added. As a result the data available for download from the provided URL is updated with new data having different Dataset_id(s).

  13. c

    Herp Coverboard Sampling - Spears and Didion Ranches [ds324] GIS Dataset

    • map.dfg.ca.gov
    Updated Oct 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Herp Coverboard Sampling - Spears and Didion Ranches [ds324] GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds0324.html
    Explore at:
    Dataset updated
    Oct 11, 2023
    Description

    CDFW BIOS GIS Dataset, Contact: Armand Gonzales, Description: The data are detections of reptiles in 2006 under 2 ft x 2 ft plywood coverboards at four of 15 sample points at Spears and Didion Ranches, Placer County, CA. There are 81 coverboards in a 9 board by 9 board array (on 15 m spacing) centered on the sample points. Coverboards were placed in oak woodland and annual grassland habitat in Nov.-Dec. 2005 and checked bi-weekly between Mar.-Jul. 2006. All 204 animals found under the coverboards were counted, identified to species, and aged and sexed.

  14. B

    Residential Schools Locations Dataset (Geodatabase)

    • borealisdata.ca
    • search.dataone.org
    Updated May 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Orlandini (2019). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 31, 2019
    Dataset provided by
    Borealis
    Authors
    Rosa Orlandini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Area covered
    Canada
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  15. d

    GIS Features of the Geospatial Fabric for National Hydrologic Modeling

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). GIS Features of the Geospatial Fabric for National Hydrologic Modeling [Dataset]. https://catalog.data.gov/dataset/gis-features-of-the-geospatial-fabric-for-national-hydrologic-modeling
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Geopspatial Fabric provides a consistent, documented, and topologically connected set of spatial features that create an abstracted stream/basin network of features useful for hydrologic modeling.The GIS vector features contained in this Geospatial Fabric (GF) data set cover the lower 48 U.S. states, Hawaii, and Puerto Rico. Four GIS feature classes are provided for each Region: 1) the Region outline ("one"), 2) Points of Interest ("POIs"), 3) a routing network ("nsegment"), and 4) Hydrologic Response Units ("nhru"). A graphic showing the boundaries for all Regions is provided at http://dx.doi.org/doi:10.5066/F7542KMD. These Regions are identical to those used to organize the NHDPlus v.1 dataset (US EPA and US Geological Survey, 2005). Although the GF Feature data set has been derived from NHDPlus v.1, it is an entirely new data set that has been designed to generically support regional and national scale applications of hydrologic models. Definition of each type of feature class and its derivation is provided within the

  16. a

    3.7cm Resolution Metadata

    • livingatlas-dcdev.opendata.arcgis.com
    • unaids-teamdev.opendata.arcgis.com
    Updated Dec 12, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 3.7cm Resolution Metadata [Dataset]. https://livingatlas-dcdev.opendata.arcgis.com/datasets/esri::3-7cm-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esri
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15-meter TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3-meter resolution for select metropolitan areas around the world, 0.5-meter resolution across the United States and parts of Western Europe, and 0.6-1.2-meter resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3-meter to 0.03-meter resolution, down to ~1:280 in select communities. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  17. BLM AK PLSS Second Division

    • gis.data.alaska.gov
    • gbp-blm-egis.hub.arcgis.com
    • +2more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM AK PLSS Second Division [Dataset]. https://gis.data.alaska.gov/datasets/BLM-EGIS::blm-ak-plss-second-division
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Area covered
    Description

    This data represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular survey data. The rectangular survey data are a reference system for land tenure based upon meridian, township/range, section, section subdivision and government lots. The non-rectangular survey data represent surveys that were largely performed to protect and/or convey title on specific parcels of land such as mineral surveys and tracts. The data are largely complete in reference to the rectangular survey data at the level of first division. However, the data varies in terms of granularity of its spatial representation as well as its content below the first division. Therefore, depending upon the data source and steward, accurate subdivision of the rectangular data may not be available below the first division and the non-rectangular minerals surveys may not be present. At times, the complexity of surveys rendered the collection of data cost prohibitive such as in areas characterized by numerous, overlapping mineral surveys. In these situations, the data were often not abstracted or were only partially abstracted and incorporated into the data set. These PLSS data were compiled from a broad spectrum or sources including federal, county, and private survey records such as field notes and plats as well as map sources such as USGS 7 ½ minute quadrangles. The metadata in each data set describes the production methods for the data content. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. A complete PLSS data set includes the following: PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non-rectangular components of the PLSS) Meandered Water, Corners, Metadata at a Glance (which identified last revised date and data steward) and Conflicted Areas (known areas of gaps or overlaps or inconsistencies). The Entity-Attribute section of this metadata describes these components in greater detail. The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class. The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class.

  18. c

    ds315 GIS Dataset

    • map.dfg.ca.gov
    Updated Oct 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ds315 GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds0315.html
    Explore at:
    Dataset updated
    Oct 11, 2023
    Description

    CDFW BIOS GIS Dataset, Contact: Armand Gonzales, Description: These data are summary statistics of abundances of birds counted within 100-m radius circles with 10-minute point counts at 15 sample points within Spears and Didion Ranches, Placer County, in the foothills of the Sierra Nevada Mountain Range. Bird surveys were conducted 1 April to 6 June 2005 and 19 March to 23 June 2006. These data represent 539 detections of 69 species at 15 different sample points within these two ranches that are part of the Placer Legacy program.

  19. Open Data Portal Catalogue

    • open.canada.ca
    • datasets.ai
    • +1more
    csv, json, jsonl, png +2
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Treasury Board of Canada Secretariat (2025). Open Data Portal Catalogue [Dataset]. https://open.canada.ca/data/en/dataset/c4c5c7f1-bfa6-4ff6-b4a0-c164cb2060f7
    Explore at:
    csv, sqlite, json, png, jsonl, xlsxAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset provided by
    Treasury Board of Canadahttps://www.canada.ca/en/treasury-board-secretariat/corporate/about-treasury-board.html
    Treasury Board of Canada Secretariathttp://www.tbs-sct.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The open data portal catalogue is a downloadable dataset containing some key metadata for the general datasets available on the Government of Canada's Open Data portal. Resource 1 is generated using the ckanapi tool (external link) Resources 2 - 8 are generated using the Flatterer (external link) utility. ###Description of resources: 1. Dataset is a JSON Lines (external link) file where the metadata of each Dataset/Open Information Record is one line of JSON. The file is compressed with GZip. The file is heavily nested and recommended for users familiar with working with nested JSON. 2. Catalogue is a XLSX workbook where the nested metadata of each Dataset/Open Information Record is flattened into worksheets for each type of metadata. 3. datasets metadata contains metadata at the dataset level. This is also referred to as the package in some CKAN documentation. This is the main table/worksheet in the SQLite database and XLSX output. 4. Resources Metadata contains the metadata for the resources contained within each dataset. 5. resource views metadata contains the metadata for the views applied to each resource, if a resource has a view configured. 6. datastore fields metadata contains the DataStore information for CSV datasets that have been loaded into the DataStore. This information is displayed in the Data Dictionary for DataStore enabled CSVs. 7. Data Package Fields contains a description of the fields available in each of the tables within the Catalogue, as well as the count of the number of records each table contains. 8. data package entity relation diagram Displays the title and format for column, in each table in the Data Package in the form of a ERD Diagram. The Data Package resource offers a text based version. 9. SQLite Database is a .db database, similar in structure to Catalogue. This can be queried with database or analytical software tools for doing analysis.

  20. M

    MetroGIS Regional Parcel Dataset (Year End 2004)

    • gisdata.mn.gov
    • data.wu.ac.at
    ags_mapserver, fgdb +4
    Updated Apr 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MetroGIS (2024). MetroGIS Regional Parcel Dataset (Year End 2004) [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metrogis-plan-regonal-parcels-2004
    Explore at:
    html, gpkg, shp, fgdb, jpeg, ags_mapserverAvailable download formats
    Dataset updated
    Apr 6, 2024
    Dataset provided by
    MetroGIS
    Description

    This dataset is a compilation of tax parcel polygon and point layers from the seven Twin Cities, Minnesota metropolitan area counties of Anoka, Carver, Dakota, Hennepin, Ramsey, Scott and Washington. The seven counties were assembled into a common coordinate system. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. (See section 5 of the metadata). The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.

    This is an annual version of the MetroGIS Regional Parcel Dataset that can be used with other annual versions to do change analysis and time series investigations. This dataset is intended to contain all updates to each county's parcel data through the end of 2004. It was originally published as the 'January 1, 2005' version of the dataset. See the Currentness Reference below and the Entity and Attribute information in Section 5 for more information about the dates for specific aspects of the dataset.

    The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties will polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. The primary example of this is the condominium. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.

    The polygon layer is broken into individual county shape files. The points layer is one file for the entire metro area.

    In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.

    Polygon and point counts for each county are as follows (based on the January, 2005 dataset):

    Anoka = 124,042 polygons, 124,042 points
    Carver = 32,910 polygons, 32,910 points
    Dakota = 130,989 polygons, 141,444 points
    Hennepin = 353,759 polygons, 399,184 points
    Ramsey = 148,266 polygons, 163,376 points
    Scott = 49,958 polygons, 49,958 points
    Washington = 93,794 polygons, 96,570 points

    This is a MetroGIS Regionally Endorsed dataset.

    Each of the seven Metro Area counties has entered into a multiparty agreement with the Metropolitan Council to assemble and distribute the parcel data for each county as a regional (seven county) parcel dataset.

    A standard set of attribute fields is included for each county. The attributes are identical for the point and polygon datasets. Not all attributes fields are populated by each county. Detailed information about the attributes can be found in the MetroGIS Regional Parcels Attributes 2004 document.

    Additional information may be available in the individual metadata for each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person listed in the individual county metadata.

    Anoka = http://www.anokacounty.us/315/GIS

    Caver = http://www.co.carver.mn.us/GIS

    Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx

    Hennepin: http://www.hennepin.us/gisopendata

    Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data

    Scott = http://www.scottcountymn.gov/1183/GIS-Data-and-Maps

    Washington = http://www.co.washington.mn.us/index.aspx?NID=1606

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
University of Idaho Library (2020). Batch Metadata Modifier Toolbar [Dataset]. https://catalog.data.gov/dataset/batch-metadata-modifier-toolbar

Batch Metadata Modifier Toolbar

Explore at:
Dataset updated
Nov 30, 2020
Dataset provided by
University of Idaho Library
Description

For more information about this tool see Batch Metadata Modifier Tool Toolbar Help.Modifying multiple files simultaneously that don't have identical structures is possible but not advised. Be especially careful modifying repeatable elements in multiple files that do not have and identical structureTool can be run as an ArcGIS Add-In or as a stand-alone Windows executableExecutable runs on PC only. (Not supported on Mac.)The ArcGIS Add-In requires ArcGIS Desktop version 10.2 or 10.3Metadata formats accepted: FGDC CSDGM, ArcGIS 1.0, ArcGIS ISO, and ISO 19115Contact Bruce Godfrey (bgodfrey@uidaho.edu, Ph. 208-292-1407) if you have questions or wish to collaborate on further developing this tool.Modifying and maintaining metadata for large batches of ArcGIS items can be a daunting task. Out-of-the-box graphical user interface metadata tools within ArcCatalog 10.x are designed primarily to allow users to interact with metadata for one item at a time. There are, however, a limited number of tools for performing metadata operations on multiple items. Therefore, the need exists to develop tools to modify metadata for numerous items more effectively and efficiently. The Batch Metadata Modifier Tools toolbar is a step in that direction. The Toolbar, which is available as an ArcGIS Add-In, currently contains two tools. The first tool, which is additionally available as a standalone Windows executable application, allows users to update metadata on multiple items iteratively. The tool enables users to modify existing elements, find and replace element content, delete metadata elements, and import metadata elements from external templates. The second tool of the Toolbar, a batch thumbnail creator, enables the batch-creation of the graphic that appears in an item’s metadata, illustrating the data an item contains. Both of these tools make updating metadata in ArcCatalog more efficient, since the tools are able to operate on numerous items iteratively through an easy-to-use graphic interface.This tool, developed by INSIDE Idaho at the University of Idaho Library, was created to assist researchers with modifying FGDC CSDGM, ArcGIS 1.0 Format and ISO 19115 metadata for numerous data products generated under EPSCoR award EPS-0814387.This tool is primarily designed to be used by those familiar with metadata, metadata standards, and metadata schemas. The tool is for use by metadata librarians and metadata managers and those having experience modifying standardized metadata. The tool is designed to expedite batch metadata maintenance. Users of this tool must fully understand the files they are modifying. No responsibility is assumed by the Idaho Geospatial Data Clearinghouse or the University of Idaho in the use of this tool. A portion of the development of this tool was made possible by an Idaho EPSCoR Office award.

Search
Clear search
Close search
Google apps
Main menu